Agrawal, M, Zitnik M, Leskovec J (2018) Large-scale analysis of disease pathways in the human interactome In: Pacific Symposium on Biocomputing, vol 23, 111–122.. World Scientific Publishing Company, Singapore.
Google Scholar
Alanis-Lobato, G, Andrade-Navarro MA (2016) Distance distribution between complex network nodes in hyperbolic space. Compl Syst 25(3):223–236.
Article
MathSciNet
MATH
Google Scholar
Alanis-Lobato, G, Cannistraci CV, Eriksson A, Manica A, Ravasi T (2015) Highlighting nonlinear patterns in population genetics datasets. Sci Rep 5:8140. https://doi.org/10.1038/srep08140.
Article
ADS
Google Scholar
Alanis-Lobato, G, Mier P, Andrade-Navarro MA (2016a) Efficient embedding of complex networks to hyperbolic space via their Laplacian. Sci Rep 6:30,108. https://doi.org/10.1038/srep30108.
Article
Google Scholar
Alanis-Lobato, G, Mier P, Andrade-Navarro MA (2016b) Manifold learning and maximum likelihood estimation for hyperbolic network embedding. Appl Netw Sci 1(1):10. https://doi.org/10.1007/s41109-016-0013-0.
Article
Google Scholar
Alanis-Lobato, G, Andrade-Navarro MA, Schaefer MH (2017) HIPPIE v2.0: enhancing meaningfulness and reliability of protein–protein interaction networks. Nucleic Acids Res 45(D1):D408–D414. https://doi.org/10.1093/nar/gkw985.
Article
Google Scholar
Alanis-Lobato, G, Mier P, Andrade-Navarro MA (2018) The latent geometry of the human protein interaction network. Bioinformatics bty206. https://doi.org/10.1093/bioinformatics/bty206.
Albert, R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47–97.
Article
ADS
MathSciNet
MATH
Google Scholar
Allard, A, Serrano MA (2018) Navigable maps of structural brain networks across species. ArXiv e-prints 1801.06079. https://arxiv.org/abs/1801.06079.
Alter, BP (2014) Fanconi anemia and the development of leukemia. Best Pract Res Clin Haematol 27(3-4):214–221. https://doi.org/10.1016/j.beha.2014.10.002.
Article
Google Scholar
Aste, T, Di Matteo T, Hyde S (2005) Complex networks on hyperbolic surfaces. Physica A 346(1-2):20–26.
Article
ADS
Google Scholar
Aste, T, Gramatica R, Di Matteo T (2012) Exploring complex networks via topological embedding on surfaces. Phys Rev E 86(3):036,109. https://doi.org/10.1103/PhysRevE.86.036109.
Article
Google Scholar
Baird, G (2013) Classification of diseases and the neurodevelopmental disorders: the challenge for dsm-5 and icd-11. Dev Med Child Neurol 55(3):200–201. https://doi.org/10.1111/dmcn.12087.
Article
MathSciNet
Google Scholar
Barthélemy, M (2011) Spatial networks. Phys Rep 499(1-3):1–101. https://doi.org/10.1016/j.physrep.2010.11.002.
Article
ADS
MathSciNet
Google Scholar
Bharadwaj, U, Eckols TK, Kolosov M, Kasembeli MM, Adam A, Torres D, Zhang X, Dobrolecki LE, Wei W, Lewis MT, Dave B, Chang JC, Landis MD, Creighton CJ, Mancini MA, Tweardy DJ (2014) Drug-repositioning screening identified piperlongumine as a direct stat3 inhibitor with potent activity against breast cancer. Oncogene 34:1341. https://doi.org/10.1038/onc.2014.72.
Article
Google Scholar
Bianconi, G, Rahmede C (2017) Emergent hyperbolic network geometry. Sci Rep 7:41,974. https://doi.org/10.1038/srep41974.
Article
Google Scholar
Blochle, R, Lall P, Cherr GS, Harris LM, Dryjski ML, Hsu HK, Dosluoglu HH (2008) Abdominal aortic aneurysms. Am J Surg 196(5):697–702. https://doi.org/10.1016/j.amjsurg.2008.07.011.
Article
Google Scholar
Bogliolo, M, Surrallés J (2015) Fanconi anemia: a model disease for studies on human genetics and advanced therapeutics. Curr Opin Genet Dev 33:32–40. https://doi.org/10.1016/j.gde.2015.07.002.
Article
Google Scholar
Boguñá, M, Krioukov D, Claffy KC (2009) Navigability of complex networks. Nat Phys 5(1):74–80. https://doi.org/10.1038/nphys1130.
Article
Google Scholar
Boguñá, M, Papadopoulos F, Krioukov D (2010) Sustaining the Internet with hyperbolic mapping. Nat Commun 1(62). https://doi.org/10.1038/ncomms1063.
Brito, GC, Andrews DW (2011) Removing bias against membrane proteins in interaction networks. BMC Syst Biol 5(1):169. https://doi.org/10.1186/1752-0509-5-169.
Article
Google Scholar
Bruwier, A, Chantrain CF (2011) Hematological disorders and leukemia in children with down syndrome. Eur J Pediatr 171(9):1301–1307. https://doi.org/10.1007/s00431-011-1624-1.
Article
Google Scholar
Cannistraci, CV, Alanis-Lobato G, Ravasi T (2013) Minimum curvilinearity to enhance topological prediction of protein interactions by network embedding. Bioinformatics 29(13):i199–i209. https://doi.org/10.1093/bioinformatics/btt208.
Article
Google Scholar
Chiang, CC, Lin CL, Peng CL, Sung FC, Tsai YY (2014) Increased risk of cancer in patients with early-onset cataracts: A nationwide population-based study. Cancer Sci 105(4):431–436. https://doi.org/10.1111/cas.12360.
Article
Google Scholar
Coenen, MJH, Trynka G, Heskamp S, Franke B, van Diemen CC, Smolonska J, van Leeuwen M, Brouwer E, Boezen MH, Postma DS, Platteel M, Zanen P, Lammers JWWJ, Groen HJM, Mali WPTM, Mulder CJ, Tack GJ, Verbeek WHM, Wolters VM, zHouwen RHJ, Mearin ML, van Heel DA, Radstake TRDJ, van Riel PLCM, Wijmenga C, Barrera P, Zhernakova A (2009) Common and different genetic background for rheumatoid arthritis and coeliac disease. Hum Mol Genet 18(21):4195–4203. https://doi.org/10.1093/hmg/ddp365.
Article
Google Scholar
Cowen, L, Ideker T, Raphael BJ, Sharan R (2017) Network propagation: a universal amplifier of genetic associations. Nat Rev Genet 18(9):551–562. https://doi.org/10.1038/nrg.2017.38.
Article
Google Scholar
Cremona, CA, Behrens A (2013) ATM signalling and cancer. Oncogene 33(26):3351–3360. https://doi.org/10.1038/onc.2013.275.
Article
Google Scholar
Dall, J, Christensen M (2002) Random geometric graphs. Phys Rev E 66(1):016,121. https://doi.org/10.1103/PhysRevE.66.016121.
Article
MathSciNet
Google Scholar
Das, J, Yu H (2012) HINT: High-quality protein interactomes and their applications in understanding human disease. BMC Syst Biol 6(1):92.
Article
Google Scholar
Ding, HW, Deng CL, Li DD, Liu DD, Chai SM, Wang W, Zhang Y, Chen K, Li X, Wang J, Song SJ, Song HR (2018) Design, synthesis and biological evaluation of novel 4-aminoquinazolines as dual target inhibitors of egfr-pi3k α. Eur J Med Chem 146:460–470. https://doi.org/10.1016/j.ejmech.2018.01.081.
Article
Google Scholar
Ferretti, L, Cortelezzi M (2011) Preferential attachment in growing spatial networks. Phys Rev E 84(1):016,103. https://doi.org/10.1103/PhysRevE.84.016103.
Article
Google Scholar
Ferretti, L, Cortelezzi M, Mamino M (2014) Duality between preferential attachment and static networks on hyperbolic spaces. Europhys Lett 105(3):38,001. https://doi.org/10.1209/0295-5075/105/38001.
Article
Google Scholar
Fienberg, S, Cozier GE, Acharya KR, Chibale K, Sturrock ED (2018) The design and development of a potent and selective novel diprolyl derivative that binds to the n-domain of angiotensin-i converting enzyme. J Med Chem 61(1):344–359.
Article
Google Scholar
García-Pérez, G, Boguñá M, Allard A, Serrano MA (2016) The hidden hyperbolic geometry of international trade: World Trade Atlas 1870–2013. Sci Rep 6:33,441. https://doi.org/10.1038/srep33441.
Article
Google Scholar
Gerstberger, S, Hafner M, Tuschl T (2014) A census of human RNA-binding proteins. Nat Rev Genet 15(12):829–845. https://doi.org/10.1038/nrg3813.
Article
Google Scholar
Ghiassian, SD, Menche J, Barabási AL (2015) A DIseAse MOdule Detection (DIAMOnD) algorithm derived from a systematic analysis of connectivity patterns of disease proteins in the human interactome. PLoS Comput Biol 11(4):e1004,120. https://doi.org/10.1371/journal.pcbi.1004120.
Article
Google Scholar
Gilmore, EC (2014) DNA repair abnormalities leading to ataxia: shared neurological phenotypes and risk factors. Neurogenetics 15(4):217–228. https://doi.org/10.1007/s10048-014-0415-z.
Article
Google Scholar
Heidemann, LN, Hartwell D, Heidemann CH, Jochumsen KM (2013) The relation between endometriosis and ovarian cancer - a review. Acta Obstet Gynecol Scand 93(1):20–31. https://doi.org/10.1111/aogs.12255.
Article
Google Scholar
Jaccard, P (1912) The distribution of the flora in the alpine zone. New Phytol 11(2):37–50.
Article
Google Scholar
Janku, F, Hong DS, Fu S, Piha-Paul SA, Naing A, Falchook GS, Tsimberidou AM, Stepanek SL Vanda MMoulder, Lee JJ, Luthra R, Zinner RG, Broaddus RR, Wheler JJ, Kurzrock R (2013) ssessing pik3ca and pten in early-phase trials with pi3k/akt/mtor inhibitors. Cell Rep 6(2):377–387. https://doi.org/10.1016/j.celrep.2013.12.035.
Article
Google Scholar
Jimenez-Sanchez, G, Childs B, Valle D (2001) Human disease genes. Nature 409:853–855.
Article
ADS
Google Scholar
Kent, KC (2014) Abdominal aortic aneurysms. N Engl J Med 371(22):2101–2108. https://doi.org/10.1056/NEJMcp1401430.
Article
Google Scholar
Kleinberg, JM (2000) Navigation in a small world. Nature 406(6798):845–845.
Article
ADS
Google Scholar
Köhler, S, Bauer S, Horn D, Robinson PN (2008) Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet 82(4):949–958. https://doi.org/10.1016/j.ajhg.2008.02.013.
Article
Google Scholar
Krioukov, D, Papadopoulos F, Kitsak M, Vahdat A, Boguñá M (2010) Hyperbolic geometry of complex networks. Phys Rev E 82(3):036,106. https://doi.org/10.1103/PhysRevE.82.036106.
Article
MathSciNet
Google Scholar
Lage, K, zKarlberg EO, Størling ZM, Ólason PI, Pedersen AG, Rigina O, Hinsby AM, Tümer Z, Pociot F, Tommerup N, Moreau Y, Brunak S (2007) A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol 25(3):309–316. https://doi.org/10.1038/nbt1295.
Article
Google Scholar
Luck, K, Sheynkman GM, Zhang I, Vidal M (2017) Proteome-Scale Human Interactomics. Trends Biochem Sci 42(5):342–354. https://doi.org/10.1016/j.tibs.2017.02.006.
Article
Google Scholar
Lukong, KE, Chang Kw, Khandjian EW, Richard S (2008) RNA-binding proteins in human genetic disease. Trends Genet 24(8):416–425. https://doi.org/10.1016/j.tig.2008.05.004.
Article
Google Scholar
Menche, J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J, Barabási AL (2015) Uncovering disease-disease relationships through the incomplete interactome. Science 347(6224):1257,601. https://doi.org/10.1126/science.1257601.
Article
Google Scholar
Mier, P, Andrade-Navarro MA (2016) FastaHerder2: four ways to research protein function and evolution with clustering and clustered databases. J Comput Biol 23:270–278. https://doi.org/10.1089/cmb.2015.0191.
Article
Google Scholar
Ortiz, E, Starnini M, Serrano MA (2017) Navigability of temporal networks in hyperbolic space. Sci Rep 7:15,054. https://doi.org/10.1038/s41598-017-15041-0.
Article
Google Scholar
Papadopoulos, F, Krioukov D, Boguñá M, Vahdat A (2010) Greedy forwarding in dynamic scale-free networks embedded in hyperbolic metric spaces In: INFOCOM, 2010 Proceedings IEEE, 1–9. https://doi.org/10.1109/INFCOM.2010.5462131.
Papadopoulos, F, Kitsak M, Serrano MA, Boguñá M, Krioukov D (2012) Popularity versus similarity in growing networks. Nature 489(7417):537–540. https://doi.org/10.1038/nature11459.
Article
ADS
Google Scholar
Papadopoulos, F, Aldecoa R, Krioukov D (2015) Network geometry inference using common neighbors. Phys Rev E 92(2):022,807. https://doi.org/10.1103/PhysRevE.92.022807.
Article
Google Scholar
Piñero, J, Bravo A, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, García-García J, Sanz F, Furlong LI (2017) DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res 45(D1):D833–D839. https://doi.org/10.1093/nar/gkw943.
Article
Google Scholar
Pontikaki, A, Sifakis S, Spandidos DA (2015) Endometriosis and breast cancer: A survey of the epidemiological studies. Oncol Lett 11(1):23–30. https://doi.org/10.3892/ol.2015.3895.
Article
Google Scholar
Roy, D, Morgan M, Yoo C, Deoraj A, Roy S, Yadav V, Garoub M, Assaggaf H, Doke M (2015) Integrated bioinformatics, environmental epidemiologic and genomic approaches to identify environmental and molecular links between endometriosis and breast cancer. Int J Mol Sci 16(10):25,285–25,322. https://doi.org/10.3390/ijms161025285.
Article
Google Scholar
Sakurai, T, Kudo M (2013) Molecular link between liver fibrosis and hepatocellular carcinoma. Liver Cancer 2(3-4):365–366. https://doi.org/10.1159/000343851.
Article
Google Scholar
Serrano, MA, Boguñá M, Sagués F (2012) Uncovering the hidden geometry behind metabolic networks. Mol BioSyst 8(3):843–850. https://doi.org/10.1039/c2mb05306c.
Article
Google Scholar
Southan, C, Sharman JL, Benson HE, Faccenda E, Pawson AJ, Alexander S, Buneman OP, Davenport AP, McGrath JC, Peters JA, Spedding M, Catterall WA, Fabbro D, Davies JA, NC-IUPHAR (2015) The IUPHAR/BPS guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucleic Acids Res 44(D1):D1054–D1058. https://doi.org/10.1093/nar/gkv1037.
Article
Google Scholar
Taylor, IW, Wrana JL (2012) Protein interaction networks in medicine and disease. Proteomics 12(10):1706–1716. https://doi.org/10.1002/pmic.201100594.
Article
Google Scholar
Thul, PJ, Akesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H, Alm T, Asplund A, Björk L, Breckels LM, Bäckström A, Danielsson F, Fagerberg L, Fall J, Gatto L, Gnann C, Hober S, Hjelmare M, Johansson F, Lee S, Lindskog C, Mulder J, Mulvey CM, Nilsson P, Oksvold P, Rockberg J, Schutten R, Schwenk JM, Sivertsson A, Sjöstedt E, Skogs M, Stadler C, Sullivan DP, Tegel H, Winsnes C, Zhang C, Zwahlen M, Mardinoglu A, Pontén F, von Feilitzen K, Lilley KS, Uhlén M, Lundberg E (2017) A subcellular map of the human proteome. Science 356(6340):eaal3321. https://doi.org/10.1126/science.aal3321.
Article
Google Scholar
Tolman, KG, Dalpiaz AS (2007) Treatment of non-alcoholic fatty liver disease. Ther Clin Risk Manag 3(6):1153–1163.
Google Scholar
Turner, M, Monzón-Casanova E (2017) Rna-binding proteins mind the gaps. Nat Immunol 18:146–148. https://doi.org/10.1038/ni.3662.
Article
Google Scholar
Uehara, T, Ainslie GR, Kutanzi K, Pogribny IP, Muskhelishvili L, Izawa T, Yamate J, Kosyk O, Shymonyak S, Bradford BU, Boorman GA, Bataller R, Rusyn I (2013) Molecular mechanisms of fibrosis-associated promotion of liver carcinogenesis. Toxicol Sci 132(1):53–63. https://doi.org/10.1093/toxsci/kfs342.
Article
Google Scholar
Uhlen, M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CAK, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F (2015) Tissue-based map of the human proteome. Science 347(6220):1260,419. https://doi.org/10.1126/science.1260419.
Article
Google Scholar
Vaquerizas, JM, Kummerfeld SK, Teichmann SA, Luscombe NM (2009) A census of human transcription factors: function, expression and evolution. Nat Rev Genet 10(4):252–263. https://doi.org/10.1038/nrg2538.
Article
Google Scholar
Venkatesan, K, Rual JF, Vazquez A, Stelzl U, Lemmens I, Hirozane-Kishikawa T, Hao T, Zenkner M, Xin X, Goh KI, Yildirim MA, Simonis N, Heinzmann K, Gebreab F, Sahalie JM, Cevik S, Simon C, de Smet AS, Dann E, Smolyar A, Vinayagam A, Yu H, Szeto D, Borick H, Dricot A, Klitgord N, Murray RR, Lin C, Lalowski M, Timm J, Rau K, Boone C, Braun P, Cusick ME, Roth FP, Hill DE, Tavernier J, Wanker EE, Barabási AL, Vidal M (2009) An empirical framework for binary interactome mapping. Nat Methods 6(1):83–90. https://doi.org/10.1038/nmeth.1280.
Article
Google Scholar
Vercellini, P, Viganó P, Somigliana E, Fedele L (2013) Endometriosis: pathogenesis and treatment. Nat Rev Endocrinol 10(5):261–275. https://doi.org/10.1038/nrendo.2013.255.
Article
Google Scholar
Vinayagam, A, Stelzl U, Foulle R, Plassmann S, Zenkner M, Timm J, Assmus HE, Andrade-Navarro MA, Wanker EE (2011) A directed protein interaction network for investigating intracellular signal transduction. Sci Signal 4(189):rs8. https://doi.org/10.1126/scisignal.2001699.
Article
Google Scholar
Wang, JZ, Du Z, Payattakool R, Yu PS, Chen CF (2007) A new method to measure the semantic similarity of GO terms. Bioinformatics 23(10):1274–1281. https://doi.org/10.1093/bioinformatics/btm087.
Article
Google Scholar
Ward Jr, JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244. https://doi.org/10.1080/01621459.1963.10500845.
Article
MathSciNet
Google Scholar
WHO (2016) International Statistical Classification of Diseases and Related Health Problems 10th Revision. http://apps.who.int/classifications/icd10/browse/2016/en. Accessed 5 Feb 2018.
Wu, X, Jiang R, Zhang MQ, Li S (2008) Network-based global inference of human disease genes. Mol Syst Biol 4:189. https://doi.org/10.1038/msb.2008.27.
Article
Google Scholar
Wu, Z, Menichetti G, Rahmede C, Bianconi G (2015) Emergent complex network geometry. Sci Rep 5:10,073. https://doi.org/10.1038/srep10073.
Article
Google Scholar
Xavier, AC, Ge Y, Taub JW (2009) Down syndrome and malignancies: A unique clinical relationship. J Mol Diagn 11(5):371–380. https://doi.org/10.2353/jmoldx.2009.080132.
Article
Google Scholar
Xin, J, Mark A, Afrasiabi C, Tsueng G, Juchler M, Gopal N, Stupp GS, Putman TE, Ainscough BJ, Griffith OL, Torkamani A, Whetzel PL, Mungall CJ, Mooney SD, Su AI, Wu C (2016) High-performance web services for querying gene and variant annotation. Genome Biol 17(1). https://doi.org/10.1186/s13059-016-0953-9.
Xue, Y, Chen Y, Ayub Q, Huang N, Ball EV, Mort M, Phillips AD, Shaw K, Stenson PD, Cooper DN, Tyler-Smith C (2012) Deleterious- and disease-allele prevalence in healthy individuals: insights from current predictions, mutation databases, and population-scale resequencing. Am J Hum Genet 91(6):1022–1032. https://doi.org/10.1016/j.ajhg.2012.10.015.
Article
Google Scholar
Yu, G, Li F, Qin Y, Bo X, Wu Y, Wang S (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products. Bioinformatics 26(7):976–978. https://doi.org/10.1093/bioinformatics/btq064.
Article
Google Scholar
Zagar, L, Mulas F, Garagna S, Zuccotti M, Bellazzi R, Zupan B (2011) Stage prediction of embryonic stem cell differentiation from genome-wide expression data. Bioinformatics:2546–2553. https://doi.org/10.1093/bioinformatics/btr422.
Zhang, HM, Liu T, Liu CJ, Song S, Zhang X, Liu W, Jia H, Xue Y, Guo AY (2015) AnimalTFDB 2.0: a resource for expression, prediction and functional study of animal transcription factors. Nucleic Acids Res 43(D1):D76–D81. https://doi.org/10.1093/nar/gku887.
Article
Google Scholar