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Abstract
There is an increasing accumulation of evidence supporting the existence of a
hyperbolic geometry underlying the network representation of complex systems. In
particular, it has been shown that the latent geometry of the human protein network
(hPIN) captures biologically relevant information, leading to a meaningful visual
representation of protein-protein interactions and translating challenging systems
biology problems into measuring distances between proteins. Moreover, proteins can
efficiently communicate with each other, without global knowledge of the hPIN
structure, via a greedy routing (GR) process in which hyperbolic distances guide
biological signals from source to target proteins.
It is thanks to this effective information routing throughout the hPIN that the cell
operates, communicates with other cells and reacts to environmental changes. As a
result, the malfunction of one or a few members of this intricate system can disturb its
dynamics and derive in disease phenotypes. In fact, it is known that the proteins
associated with a single disease agglomerate non-randomly in the same region of the
hPIN, formingoneor several connected components knownas thediseasemodule (DM).
Here, we present a geometric characterisation of DMs. First, we found that DM
positions on the two-dimensional hyperbolic plane reflect their fragmentation and
functional heterogeneity, rendering an informative picture of the cellular processes
that the disease is affecting. Second, we used a distance-based dissimilarity measure to
cluster DMs with shared clinical features. Finally, we took advantage of the GR strategy
to study how defective proteins affect the transduction of signals throughout the hPIN.

Keywords: Protein interactions, Hyperbolic geometry, Diseasemodules, Greedy routing,
Systems biology, Network medicine

Introduction
Regardless of whether they represent the Internet or associations between proteins, peo-
ple or airports; complex networks share many topological features (Albert and Barabási
2002), which suggests that similar rules govern their formation. Various models, aimed at
mimicking the evolution and growth of these networks, assume the existence of a geom-
etry underlying their structure and shaping their topology (Aste et al. 2005; Aste et al.
2012; Barthélemy 2011; Dall and Christensen 2002; Ferretti and Cortelezzi 2011; Krioukov
et al. 2010; Papadopoulos et al. 2012). Recent work has shown that if such a geometry
is hyperbolic, the emergence of the observed architecture of complex networks can be
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naturally explained by a distance-dependent connection probability between nodes in
this metric space (Bianconi and Rahmede 2017; Ferretti et al. 2014; Krioukov et al. 2010;
Papadopoulos et al. 2012; Wu et al. 2015).
In the native representation of complex networks in the two-dimensional hyperbolic

plane H
2, the N network nodes are enclosed inside a circle of radius R ∼ lnN , each

one lying at polar coordinates (ri, θi) (Krioukov et al. 2010). These positions must ensure
that connected nodes are close to each other and disconnected nodes are far apart.
According to the definition of hyperbolic distance dH2(i, j) ≈ ri + rj + 2 ln(θij/2) (Alanis-
Lobato and Andrade-Navarro 2016; Krioukov et al. 2010; Papadopoulos et al. 2012),
high-degree nodes are close to the centre of H2 because they need to be nearby many
other nodes.
The embedding of real networks to hyperbolic space has shed light on their function

and community organisation (Alanis-Lobato et al. 2018; Allard and Serrano 2018; Boguñá
et al. 2010; García-Pérez et al. 2016; Serrano et al. 2012). For example, information routing
overheads could be alleviated if the latent geometry of the Internet is used to guide pack-
ets between computers (Boguñá et al. 2010). Also, the geometry of the E. coli and human
metabolic networks has put forward a new view of the definition of and interdependence
between biochemical pathways (Serrano et al. 2012).
Of special interest for the present work is the analysis of the latent geometry of the

human protein interaction network (hPIN). Alanis-Lobato and colleagues found that
the hyperbolic map of the hPIN constitutes a meaningful and useful two-dimensional
depiction of proteins and their interactions (Alanis-Lobato et al. 2018). The inferred
radial coordinates of proteins hint at their evolutionary origin, whereas angular sectors
group proteins with related biological functions and cellular localisations. In addition,
hyperbolic distances can be used as likelihood scores for the prediction of biologically
plausible protein-protein interactions (PPIs). Finally, Alanis-Lobato et al. showed that
proteins can efficiently communicate with each other, without knowledge of the whole
hPIN structure, by means of a greedy routing process in which hyperbolic distances
guide biological signals from membrane receptors to transcription factors in the nucleus
(Alanis-Lobato et al. 2018).
It is thanks to the effective transduction of signals throughout the hPIN that the cell

operates, communicates with other cells and reacts to environmental stresses (Vinayagam
et al. 2011). Therefore, defective or dysregulated proteins can disrupt PPIs, clog impor-
tant signalling pathways and cause disease phenotypes (Taylor and Wrana 2012). In fact,
it has been reported that the proteins associated with a single disease agglomerate non-
randomly in the same region of the hPIN, forming one or several connected components
known as the disease module (DM) (Agrawal et al. 2018; Menche et al. 2015). Conse-
quently, disease-related proteins are more likely to have PPIs with each other than with
random proteins. This particular connectivity pattern has been exploited to prioritise
other proteins that may be related to a disease of interest (Cowen et al. 2017; Ghiassian et
al. 2015; Köhler et al. 2008; Lage et al. 2007; Wu et al. 2008).
The above prompted us to analyse disease-associated proteins from a geometric per-

spective and to investigate how the latent geometry of the hPIN can reflect and expand
our current knowledge about the organisation of DMs. We also took advantage of the
greedy routing protocol to study the impact of disease proteins on the function of
the hPIN.
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Results
Topology and geometry of DMs

After the construction of a high-quality hPIN, its embedding to H
2 (see Methods

and Additional file 1: S1 and S2) and the evaluation of the embedding (see Methods,
Additional file 2: Figures S1 and S2), we proceeded to analyse the topological and geo-
metrical properties of DMs formed by the products of genes associated with 157 different
diseases (see Methods and Additional file 1: S3).
In agreement with previous studies (Agrawal et al. 2018; Menche et al. 2015), we found

that proteins associated with a single disease (see Fig. 1a) form several connected com-
ponents in the hPIN, instead of a unique connected entity (see Fig. 1b). Nevertheless, the
fraction of proteins contained in the largest of such components (LCC, see Fig. 1a) is sig-
nificantly greater than expected by chance (seeMethods and Fig. 1c). Besides, the average
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Fig. 1 Topology and geometry of disease modules. a A toy protein network embedded inH
2 and the gene

products associated with a disease highlighted in red. The resulting DM is fragmented in 4 components and
the largest one (LCC) has size 5. The topologically-closest protein to A is B (ds = 3) and its geometrically-closest
protein is C (dH = 10.387), although it is 4 hops away from A. b The 157 studied DMs are split into several
connected components in the hPIN. c The LCC size of each DM was compared with a random distribution of
LCC sizes via a z-test. d The average of the shortest paths from each disease protein to its topologically-closest
other DMmember (〈ds〉) was compared with random expectation via a z-test. e The average of the hyperbolic
distances from each disease protein to its geometrically-closest other DMmember (〈dH〉) was compared with
random expectation via a z-test. The red lines correspond to the significance level α = 0.05 and the blue
ones to the situation in which all proteins associated with a disease form a single connected component
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of the shortest paths from each disease protein to its closest other DM member (〈ds〉,
see Fig. 1a) is smaller than expected by chance (see Methods and Fig. 1d), which indi-
cates that, although DMs are fragmented, their components are made up of topologically
nearby proteins (Menche et al. 2015).
To investigate how the above DM connectivity patterns are reflected in H

2, we com-
puted, for each of the n disease proteins in a DM, the hyperbolic distance to the closest
other protein in the same module (dH , see Fig. 1a). The n resulting distances were aver-
aged (〈dH〉) and compared with a distribution of average hyperbolic distances resulting
from randomly sampling as many proteins from the hPIN as there are in each considered
DM (seeMethods). Figure 1e shows that, in all 157 cases, 〈dH〉 is significantly shorter than
expected by chance. This result points out that inH

2 DMs are fragmented in components
formed by at least two hyperbolically nearby proteins. While this appears to be a pre-
dictable result, it is important to note that the DM member that is topologically-closest
to a protein in the same module can be different from the geometrically-closest one
(see Fig. 1a).

DMs are formed by functionally distinct submodules

The observed level of DM fragmentation has been attributed to the incompleteness of the
hPIN and the limited knowledge of disease genes (Menche et al. 2015). While these two
factors may certainly contribute to DM splitting, disease-related genes belong to broad
functional categories (Jimenez-Sanchez et al. 2001) and locate to distant cellular com-
partments, which makes their PPI unlikely (Thul et al. 2017). As such, DMs are most
probably formed by functionally distinct submodules that, together, contribute to the
disease phenotype.
In H

2, neighbouring proteins play roles in very similar biological processes and lie
in the same organelles (see Fig. 2a, b and Methods). Furthermore, Alanis-Lobato et al.
reported that the angular component of hyperbolic space captures the functional and spa-
tial organisation of the cell (Alanis-Lobato et al. 2018) (see Additional file 2: Figure S2b).
Therefore, we partitioned the angular dimension into several sectors, according to the
over-represented protein class within them (see Methods), and studied whether the dis-
tribution of inferred angular coordinates of disease proteins does hint at their functional
modularity.
Figure 2c and Additional file 1: S3 promptly highlight the protein class heterogene-

ity of DMs, together with interesting correlations between protein function and fea-
tures of the disease. For example, almost all diseases exhibit a strong receptor (Rec)
component. Since most drug-targets are membrane Recs, this could be the result
of study biases against membrane proteins (Brito and Andrews 2011). However, this
also points at the crucial role of signalling in cell operation (Vinayagam et al. 2011):
celiac disease and rheumatoid arthritis, the DMs with the highest peaks at the Rec-
enriched sector, are both characterised by altered inflammatory signalling pathways
(Coenen et al. 2009). On the other hand, a high peak in the sector enriched for
RNA-binding proteins (RBPs) may be indicative of problems in post-transcriptional
gene regulation (Lukong et al. 2008). In fact, myelodysplastic syndromes have been
linked with the malfunction of different components of the spliceosome and fre-
quently develop into myeloid leukaemia, the DM with the highest RBP-related peak
(Turner and Monzón-Casanova 2017).
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Fig. 2 Disease modules split into functionally distinct submodules. a. Gene Ontology (GO) semantic similarity
of Biological Process (BP) terms that annotate proteins pairs spaced not further than the indicated hyperbolic
distance. b. Same as a but for Cellular Component (CC) terms. c Angular distribution of disease proteins
associated with 7 illnesses from our gene-disease association dataset. The coloured backgrounds indicate
that one of 6 considered protein classes is over-represented in that angular range (Ubi: proteins involved in
ubiquitination/proteolysis, TF: transcription factors, RBP: RNA-binding proteins, Trans: transporters, Skel:
constituents of the cytoskeleton, Rec: receptors)

Distance-based clustering of DMs

A pathophysiology-based classification system of human disorders is pivotal in diag-
nosis and research (Baird 2013). The International Statistical Classification of Diseases
and Related Health Problems 10th Revision (ICD-10) is an effort of the World Health
Organisation to categorise morbid entities according to established criteria (WHO 2016).
Despite the fact that, in practice, the ICD has become the standard classification, it has
to be periodically revised (WHO 2016). Revisions remain a challenging task: categories
must have a strong scientific basis, many diseases seem to be a complicated mix of disor-
ders and many lack archetypal biomarkers, which means that their diagnosis still depends
on subjective criteria (Baird 2013). Could DM features aid in this task?
Menche et al. introduced a measure of topological overlap between DMs to identify

their shared clinical characteristics (Menche et al. 2015). This measure of separation
compares the average shortest path between each DM member and the nearest pro-
tein within the module, 〈ds(A,A)〉 and 〈ds(B,B)〉, to the average shortest path between
each DM member and the nearest protein in the other module, 〈ds(A,B)〉: ss(A,B) =
〈ds(A,B)〉 − (〈ds(A,A)〉 − 〈ds(B,B)〉)/2. We translated this definition to the geometric
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position of DMs in H
2 by considering the average hyperbolic distance between each DM

member and the closest protein in the same, 〈dH(A,A)〉, or another module, 〈dH(A,B)〉
(see Methods).
We used the distance-based separation between DMs, sH(A,B), to construct a matrix

of pairwise module separations. Then, we resorted to non-centred Minimum Curvilin-
ear Embedding (ncMCE) for the non-linear dimensionality reduction of our 157 DMs
through this matrix (Cannistraci et al. 2013) (see Methods). Figure 3 shows that the use
of sH(A,B) leads to the distinction of ICD-10 categories that group pathobiologically and
clinically similar illnesses. This is in spite of the observed fragmentation and functional
heterogeneity of DMs (see Figs. 1 and 2).We quantified the quality of the resulting cluster-
ing with the concordance score (C-score, see Methods) and found that it is close to what
ss(A,B) achieves and better than using just intersections between the members of DMs
(see Fig. 3, Additional file 2: Figure S4 and the Methods). Moreover, using the sH(A,B)

matrix as the basis for a hierarchical clustering of DMs recapitulates the disease types
exposed by ncMCE (see Additional file 2: Figure S5 and the Methods).
Figure 3 also highlights some DMs whose ICD-10 classification does not correspond

to their ncMCE cluster. Yet, we found reasonable explanations for all these DMs. For
example, non-alcoholic fatty liver disease and steatohepatitis (a more extreme variety of
the former) are both strongly associated with insulin resistance and metabolic syndromes

C-score = 0.758

ataxia telangiectasia

aortic aneurysm, abdominal

fibrosis, liver

cataract

fanconi anemia

endometriosis

down syndrome

non-alcoholic fatty liver disease

steatohepatitis

Congenital malformations, deformations and
chromosomal abnormalities

Diseases of the blood and blood-forming organs and
certain disorders involving the immune mechanism

Diseases of the circulatory system

Diseases of the digestive system

Diseases of the eye and adnexa

Diseases of the genitourinary system

Diseases of the musculoskeletal system and
connective tissue

Diseases of the nervous system

Diseases of the respiratory system

Diseases of the skin and subcutaneous tissue

Endocrine, nutritional and metabolic diseases

Mental and behavioural disorders

Neoplasms

Fig. 3 Distance-based clustering of disease modules. ncMCE, a nonlinear dimensionality reduction
algorithm, was applied to the matrix of pairwise hyperbolic distance-based DM separations. The resulting
two-dimensional projection of the data separates DMs according to the disease type reported in the ICD-10.
Some interesting DMs that were not correctly clustered are highlighted. The concordance score (C-score)
over Dim 2 for this projection is 0.758. The points corresponding to endometriosis and down syndrome were
slightly moved to make them visible
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(Tolman and Dalpiaz 2007), which explains why they are clustered with endocrine and
metabolic disorders (ICD-10 classifies them as diseases of the digestive system).
The other cases involve conditions clustered with cancers but categorised differently

by the ICD-10. Ataxia telangiectasia (AT) is considered a neurodegenerative disease
but it is linked to a high risk for cancer (Gilmore 2014). Mutations in the gene coding
for the kinase ATM were identified as the main cause of AT (Gilmore 2014). ATM is
mainly involved in the recruitment of DNA repair complexes in response to single or
double strand breaks, hence the relationship between AT and neoplasms (Cremona and
Behrens 2013).
Endometriosis is a disease characterised by the presence of endometrial-like tissue out-

side the uterine cavity, causing a chronic inflammatory response (Heidemann et al. 2013).
Women with atypical endometriosis have a significantly increased risk of certain forms of
ovarian cancer. Likewise, women with ovarian cancer are more likely to have the disease
(Vercellini et al. 2013). In addition, there is also increasing awareness that women with
endometriosis have a higher risk for developing breast cancer (Roy et al. 2015; Pontikaki
et al. 2015).
Liver fibrosis is the result of constant inflammation of the liver, leading to excessive

accumulation of extracellular matrix proteins, especially collagen. Severe liver fibrosis can
lead to hepatocellular carcinoma (Uehara et al. 2013; Sakurai and Kudo 2013).
Down syndrome (DS) is known to have several associated haemopoietic conditions,

leukaemia amongst them. Children with DS have a 10-20 times higher risk of having
leukaemia than non-DS children (Bruwier and Chantrain 2011; Xavier et al. 2009).
Fanconi anaemia (FA) is a rare bone marrow failure disease leading to impaired DNA

repair response. This disease also leads to haematologic changes. So far, mutations in 19
DNA damage response genes are known to either cause FA or increase the risk to have it
(Bogliolo and Surrallés 2015). Depending on the affected genes, FA increases the risks for
developing leukaemia, solid tumours, breast and ovarian cancer (Alter 2014; Bogliolo and
Surrallés 2015).
Finally, we did not find conclusive associations between abdominal aortic aneurysm

and cataracts with neoplasms. However, smoking is the strongest risk factor of the former
(Kent 2014), which could explain its concomitance with lung cancer (Blochle et al. 2008).
For the latter, the association between early-onset cataracts and insufficient anti-oxidative
activity inspired a study in which early-onset cataract and healthy patients were followed
for several years to estimate the incidences of cancer. The result was a two-fold higher
cancer risk for the early-onset cataract cohort (Chiang et al. 2014).

Impact of disease proteins on cellular function

Signal transduction is the process of translating external signals at the cell membrane to
specific responses within the cell. In this manner, cells react to environmental stresses by
switching on certain genes and turning off others (Vinayagam et al. 2011). Interestingly,
membrane receptors are only aware of their direct interaction partners, not the entire
hPIN structure. Nonetheless, they manage to relay an external signal to the appropriate
neighbour, so that it reaches transcription factors (TFs) in the nucleus that up-regulate
target genes (Vinayagam et al. 2011).
The efficiency of signal transduction throughout the hPIN can be studied by means of

its latent geometry and a navigation strategy known as greedy routing (GR) (Kleinberg
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2000). In GR, inferred node coordinates are used as addresses that guide a signal from a
source to a target node. The source checks amongst its direct neighbours for the hyperbol-
ically closest to the target and sends the signal there, the recipient node does the same and
the process is repeated until the signal reaches the target. If the signal is sent to a previ-
ously visited node (i.e. it falls into a loop), the routing is considered unsuccessful (Boguñá
et al. 2009; Ortiz et al. 2017; Papadopoulos et al. 2010). GR efficiency (i.e. network navi-
gability) is quantified as the fraction of successful routing events from a sufficiently large
number of randomly chosen source-target pairs (Krioukov et al. 2010).
We measured the reference efficiency of the hPIN by considering 500 source-target

pairs and repeating the measurement 100 times. Figure 4a shows that the median
GR efficiency of the hPIN is 0.8 and the median hop stretch (length of the greedy
path between two nodes divided by length of their shortest path) is close to 1. This
figure also highlights the biological importance of signal transduction: GR efficiency

p = 1.44x10-29 p = 7.05x10-15

p = 1.94x10-28 p = 1.49x10-7

p = 2.02x10-37

p = 0.207

a b

c

Fig. 4 Disease proteins affect signal transduction. a Reference greedy routing (GR) efficiency and hop stretch
of the hPIN (Rnd. src-trg pairs) compared to the efficiency (hop stretch) achieved if signals are routed
between receptors (Rec) and transcription factors (TF) or between proteins that are neither Recs nor TFs, but
that have degrees similar to their counterparts (Control). b Impact on GR efficiency (navigability) dealt by
faulty proteins sampled from the set of proteins associated with a DM or from a pool of proteins with similar
degrees. The blue dashed line indicates the value of the highest impact (i.e. the most negative) from the
latter case. c Frequently used faulty proteins are more likely to be FDA-approved drug targets or potential
drug targets than infrequent faulty proteins. P-values are the result of a Fisher’s test comparing the
proportion of FDA-approved or potential drug targets in frequent vs infrequent faulty proteins
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(hop stretch) for Rec-TF pairs is significantly bigger (smaller) than the reference
and what is achieved by considering proteins that are neither Recs nor TFs, but
have degrees similar to their counterparts (see Additional file 2: Figure S6 and the
Methods).
The communication channels between Recs and TFs are so important that almost

all known diseases are linked to their dysfunction (Thul et al. 2017). We studied the
impact of disease proteins on GR efficiency through the introduction of faulty pro-
teins to the GR process (Alanis-Lobato et al. 2018). Faulty proteins drop any signals
they receive, making routing unsuccessful, and model the effects caused by muta-
tions or insufficient protein levels. For each DM, we measured the average of 50 GR
efficiencies resulting from routing signals between 500 source-target pairs. Based on
a study estimating 3-24 homozygous disease-causing mutations per individual (Xue
et al. 2012), we introduced 20 faulty proteins to each one of the 50 experiments.
Faulty proteins were sampled from the members of a DM or chosen at random from a
pool of proteins with similar degrees. In each case, we quantified the impact on nav-
igability as the difference between the resulting average efficiency and the reference
efficiency of the hPIN (0.82). The more negative the difference, the higher the impact
(see Methods).
Figure 4b shows that disease proteins deal a higher impact on network navigability than

faulty proteins sampled randomly from the hPIN (see Methods). Besides, for 89.17% of
the DMs, this impact is significantly greater than expected (see Methods). Interestingly,
the functional enrichment analysis (see Methods) of proteins associated with these DMs
(mostly neoplasms and diseases of the nervous system) revealed that they are mainly
receptors whose failure affects gene transcription and apoptosis (see Additional file 2:
Figure S7a). By contrast, proteins associated with the remaining 10.83% DMs (mostly dis-
eases of the connective tissue and metabolic disorders) are receptors whose failure affects
inflammatory responses and cell homeostasis (see Additional file 2: Figure S7b). These
results further support our assumption that GR simulates signal transduction events from
Recs to TFs.
Given the high percentage of DMs whose members exert a negative impact on GR,

recurring gene products in the lists of faulty proteins from the above experiments could
hint at the biological role played by proteins responsible for such an impact. We focused
on faulty proteins reappearing more than the upper quartile of the frequency distribution
(frequent faulty) and found that they are mostly the products of genes with enzymatic
and receptor activity (see Additional file 2: Figure S8a), whereas infrequent faulty pro-
teins are involved in more heterogeneous functions (see Additional file 2: Figure S8b).
Since current FDA-approved drugs are mainly directed to enzymes and receptors (Brito
and Andrews 2011; Thul et al. 2017), we reasoned that this methodology could be used
to identify potential drug targets. Indeed, a significant fraction of frequent faulty pro-
teins are reported FDA-approved drug targets (see Fig. 4c, Methods and Additional
file 1: S4). Also, although not significant, the fraction of frequent faulty proteins that are
considered potential drug targets by the Human Protein Atlas (Thul et al. 2017) is higher
than the fraction of infrequent faulty proteins with the same property (see Fig. 4c and
Additional file 1: S4).
Potential drug targets are proteins whose structure, biochemical aspects and associated

pathways make them candidate druggable proteins (Thul et al. 2017). Intriguingly, some
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of the most frequent faulty proteins that we identified are already being investigated for
their therapeutic potential, which endorses the value of the proposed GR-based approach
for drug target prioritisation (see Additional file 1: S4). For example, Fienberg and col-
leagues are trying to selectively inhibit the domains of the ACE protein to treat fibrosis
and hypertension (Fienberg et al. 2018); Ding et al. are developing dual inhibitors of EGFR
and PI3Kα as an approach against tumours (Ding et al. 2018); similarly, early-phase trials
suggest that therapies targeting the PI3K/AKT/mTOR pathway can be used in patients
with advanced cancers (Janku et al. 2013). Finally, it has been shown that directly tar-
geting STAT3 with piperlongumine has positive and potent effects against breast cancer
(Bharadwaj et al. 2014).

Conclusions
The representation of the human protein interaction network in the two-dimensional
hyperbolic plane has been shown to be both meaningful and useful: inferred node coor-
dinates convey information about protein evolution and function, whereas hyperbolic
distances can be used to identify potential protein interactions and simulate signalling
events (Alanis-Lobato et al. 2018).
In this paper, we report yet another scenario in which the latent geometry of the

hPIN proves useful, namely the network-based analysis of disease-associated proteins.
First, we found that the geometric position of disease modules reflects their frag-
mentation and functional heterogeneity, underscoring the complexity of human dis-
orders. Visualisation of the angular distribution of DM members, together with the
protein classes over-represented in different sectors of H

2, renders an informative
picture of the cellular processes that the disease is affecting. Second, we used a hyper-
bolic distance-based dissimilarity measure to cluster DMs. The resulting clusters are
in good agreement with the standard ICD-10 and bring out unexpected but reason-
able relationships between disorders. Finally, we studied how defective proteins affect
the efficient routing of signals throughout the hPIN. Interestingly, proteins that were
frequently considered faulty in our experiments represent known or potential drug
targets.
While our geometric characterisation of DMs was carried out on a proteome-scale

high-quality network, human PPI maps are still incomplete (Luck et al. 2017). In
consequence, the projection to H

2 can change if more interactions or proteins are
considered. To test the robustness of our findings to network topology changes, we
repeated our experiments on an independent PPI dataset and observed the same trends
(see Additional file 2: Figures S11–S14, Additional file 1: S5-S6 and the Methods).
The consistency between the two independent analyses reasserts the validity of
our results.
Improvements in the sensitivity and scalability of PPI detection methods will ultimately

lead to a more complete picture of the network of protein interactions that take place in
the human cell (Luck et al. 2017). This reference PPI map will allow for a more accurate
depiction of the network in hyperbolic space, which in turn will represent amore powerful
tool for the analysis of protein and cellular functions. Based on the present study, we
anticipate that the integration of the hPIN geometry with gene-disease association data
will play a key role in advancing our understanding of human disease and defining the
druggable proteome.



Härtner et al. Applied Network Science  (2018) 3:10 Page 11 of 17

Methods
Gene-disease associations

We obtained gene-disease associations from DisGeNET v5.0 (Piñero et al. 2017), filtered
out gene-disease pairs supported by less than 3 publications and diseases with less than
50 associated genes. To avoid redundancies, we merged diseases with very similar lists of
associated genes. For this, we constructed a Jaccard similarity matrix between diseases
to cluster them hierarchically. Upon inspection of the resulting dendrogram, we merged
diseases that ended up in the same cluster after cutting the tree at height 6. If X and Y
represent the sets of genes associated with two different diseases, their Jaccard similarity
is obtained with J(X,Y ) = |X ∩ Y |/|X ∪ Y | (Jaccard 1912).
The described filtering andmerging process resulted in 157 diseases.We assigned them

to their corresponding disease type using Revision 10 of the ICD (WHO 2016).

Construction of the hPIN

We built the hPIN with high-quality interactions from the Human Integrated Protein-
Protein Interaction rEference (HIPPIE) v2.0 (Alanis-Lobato et al. 2017). Each PPI in
HIPPIE has an assigned confidence score. Based on reference estimates of the hPIN
size (Venkatesan et al. 2009), we considered the 155,000 interactions with the high-
est scores. After discarding self-interactions, merging redundant PPIs by considering
their maximum score and extracting the network’s LCC, we finally arrived to an hPIN
formed by 150,212 interactions between 14,788 proteins. Protein names were translated
to their corresponding Entrez ID and gene symbol with the MyGene.info web service
(Xin et al. 2016).
In addition, we verified the validity of our results in an independent network dataset:

the LCC formed by PPIs from the HINT database (19/02/18 snapshot of binary interac-
tions) (Das and Yu 2012). The HINT network is comprised of 47,181 interactions between
10,370 proteins.

Identification of proteins classes and drug targets

We integrated information from several resources to identify proteins with TF, recep-
tor, transporter or RNA-binding activity; as well as constituents of the cytoskeleton
and proteins involved in ubiquitination/proteolysis. Our pool of TFs comes from the
Animal Transcription Factor Database 2.0 (Zhang et al. 2015), the census of human
TFs (Vaquerizas et al. 2009) and the Human Protein Atlas (Uhlen et al. 2015). From
the latter, we also collected constituents of the cytoskeleton, proteolysis- and cancer-
related proteins, receptors, transporters, RBPs, FDA-approved and potential drug targets.
Additional receptors and transporters were taken from the Guide to Pharmacol-
ogy (Southan et al. 2015). We also took into account RBPs from the RBP census
(Gerstberger et al. 2014).

Mapping the hPIN to hyperbolic space

We mapped the hPIN to the two-dimensional hyperbolic plane using LaBNE+HM
(Alanis-Lobato et al. 2016b), a method that combines manifold learning (Alanis-Lobato
et al. 2016a) and maximum likelihood estimation (Papadopoulos et al. 2015) for fast yet
accurate embeddings. We used the method implemented in R’s package NetHypGeom
(https://github.com/galanisl/NetHypGeom) with parameters γ = 2.644, T = 0.827 and

https://github.com/galanisl/NetHypGeom
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w = 2π . We mapped the HINT network to H
2 using the same method with parameters

γ = 2.115, T = 0.882 and w = 2π .

Evaluation of the hyperbolic map

In order to ensure that the inferred geometry of the hPIN and HINT was compatible
with their network topology, we considered four network-structure-related criteria: (i)
We divided the range of hyperbolic distances between proteins into 20 bins and, for
each one, computed the fraction of protein pairs that are connected in the network
(i.e. the connection probability for a distance window). We checked if these empirical
connection probabilities agree with those predicted by the Popularity-Similarity model
(PSM). The PSM is a model of network formation in which nodes connect with each
other if their hyperbolic distance is small enough (Papadopoulos et al. 2012). (ii) We
checked if expected node degrees 〈ki〉 = ∑

j �=i pij were similar to actual node degrees.
pij = 1/

[
1 + e(xij−R)/2T ]

is the probability that node i forms a link with node j and
depends on the hyperbolic distance xij described in the Introduction. R is the radius of
the hyperbolic disc containing the network and T is the network temperature. (iii) We
checked, if the clustering coefficient of the protein networks was similar to the average
clustering of 10 artificial networks generated with the PSM, using the same topological
properties of the hPIN and HINT. (iv) Finally, we checked whether greedy routing success
rates and hop stretches were similar to those achieved in artificial networks generated
with the PSM, using the same topological properties of the hPIN and HINT.
In addition, we validated the biological interpretation that Alanis-Lobato and col-

leagues reported for inferred protein coordinates (Alanis-Lobato et al. 2018). For this, we
assigned all network proteins to six different age groups using FastaHerder2 (Mier and
Andrade-Navarro 2016) and looked at the distribution of inferred radial coordinates for
each one. Also, we studied how proteins from different classes (i.e. TFs, Recs, RBPs, etc.)
agglomerate in the angular dimension of H2.

Statistical tests for DM topology and geometry

Using a z-test and a significance level α = 0.05, we compared the size of the LCC that each
disease module forms in the hPIN with a distribution of 1,000 random LCC sizes formed
by as many proteins as there are in each module, but sampled uniformly at random from
the set of all network nodes (see inset in Fig. 1c).
For each of the n disease proteins in a DM, we determined the shortest path and hyper-

bolic distance to the closest other protein in the same module (ds and dH , respectively).
The n resulting distances were averaged (〈ds〉 and 〈dH〉) and compared with a distribu-
tion of 1000 average ds and dH resulting from randomly sampling as many proteins from
the hPIN as there are in each considered DM (see insets in Fig. 1d, e). A z-test and a
significance level α = 0.05 were employed in both cases.

GO semantic similarities

We divided the range of hyperbolic distances between proteins into 20 bins and, for
each one, computed the average Gene Ontology (GO) semantic similarity of protein pairs
within the distance window. GO semantic similarities are a valuable means to quan-
tify the level of similitude between the GO annotations associated with two genes. We
used the R package GOSemSim (Yu et al. 2010) to calculate Wang similarities from the
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Biological Process and Cellular Compartment aspects of GO. We decided to use Wang’s
index because it was formulated specifically for the GO (Wang et al. 2007).

Protein classes in the angular dimension

We split the range of inferred protein angular coordinates into 15 bins and, for each one,
we carried out six Fisher’s tests to determine the most over-represented protein class in
the bin from the six considered classes (see above). If two or more adjacent bins were
enriched for the same protein class, the whole range covered by the bins was regarded as
representative for that class. We chose 15 bins as it was the minimum number necessary
for all the 6 protein classes to be represented.

Disease module separation and clustering

The separation between two disease modules A and B in hyperbolic space is inspired
by the shortest path-based measure proposed by Menche and colleagues (Menche et al.
2015). The separation is defined as follows:

sH(A,B) = 〈dH(A,B)〉 − 〈dH(A,A)〉 + 〈dH(B,B)〉
2

The more negative sH(A,B), the greater the overlap between modules A and B. We com-
pared this distance-based measure with the original shortest path-based one ss(A,B)

and with the Jaccard distance between DMs. The latter compares the size of the inter-
section between the members of two modules to the size of their union: J(A,B) =
1 − |A ∩ B|/|A ∪ B| (Jaccard 1912).
The resulting pairwise separations and Jaccard distances between DMs were used for

their unsupervised classification via ncMCE and hierarchical clustering with Ward’s link-
age (Ward Jr 1963). We used ncMCE, a non-linear dimensionality reduction algorithm,
because it is parameter-free and excels at emphasising small differences between samples.
Its two dimensional projections cluster similar observations along the y-axis and outline
their diversity on x (Alanis-Lobato et al. 2015; Cannistraci et al. 2013). To measure the
ability of ncMCE to separate DMs into reference categories (ICD-10) along the y-axis, we
employed the C-score. The C-score ranges from 0 to 1, where 0 corresponds to a com-
pletely random clustering and 1 to a perfect ordering of samples along a single dimension,
i.e. disease types appear one after the other with no DMs belonging to one, mixed with
the other (Alanis-Lobato et al. 2015; Zagar et al. 2011).

Navigability impact of faulty proteins

GR of signals involved 100 experiments with 500 sources and 500 targets each. Sources
and targets were selected at random from the hPIN or from a pool of Recs or TFs. We
used pools with the same amount of Recs and TFs (500 randomly-selected) to make sure
that the observed effects were not due to different abundances of these protein types in
the hPIN. In addition, we formed pools of non-Recs and non-TFs with degrees similar
to the ones exhibited by the actual members of each class (Control experiments). The
resulting Rec-TF efficiencies and hop stretches were compared to reference and Control
via Mann-Whitney U tests.
For each DM, we calculated the impact on navigability as the average of the 50 effi-

ciencies resulting from routing signals between 500 source-target pairs (with 20 faulty
proteins sampled from the set of DM members) minus the reference average efficiency
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of the hPIN (0.82). The same was done for faulty proteins sampled from a pool of pro-
teins with degrees similar to the DM members’. To assess if the difference between both
cases was significant, we computed the 50 impacts separately, compared them with a
Mann-Whitney U test and considered a significance level α = 0.05.
GO and REACTOME enrichment analyses were carried out with R’s package FunEn-

rich (https://github.com/galanisl/FunEnrich). P-values were corrected with Benjamini-
Hochberg’s method.
To compare the proportion of frequent faulty proteins that are FDA-approved or poten-

tial drug targets with the proportions in the infrequent faulty protein set, we used a
Fisher’s test and considered a significance level α = 0.05.

Hardware used for experiments

We executed the experiments presented in this paper on a Lenovo ThinkPad 64-bit with
7.7 GB of RAM and an Intel Core i7-4600U CPU @ 2.10 GHz × 4, running Ubuntu 16.04
LTS. The only exceptions were the greedy routing experiments, which we executed on
nodes with 30GB of RAM,within theMogon computer cluster at the Johannes Gutenberg
Universität in Mainz.
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