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Abstract 

Apart from nodes and links, for many networked systems, we have access to data 
on paths, i.e., collections of temporally ordered variable-length node sequences 
that are constrained by the system’s topology. Understanding the patterns in such data 
is key to advancing our understanding of the structure and dynamics of complex sys-
tems. Moreover, the ability to accurately model and predict paths is important for engi-
neered systems, e.g., to optimise supply chains or provide smart mobility services. 
Here, we introduce MOGen, a generative modelling framework that enables both next-
element and out-of-sample prediction in paths with high accuracy and consistency. It 
features a model selection approach that automatically determines the optimal model 
directly from data, effectively making MOGen parameter-free. Using empirical data, we 
show that our method outperforms state-of-the-art sequence modelling techniques. 
We further introduce a mathematical formalism that links higher-order models of paths 
to transition matrices of random walks in multi-layer networks.

Keywords: Graph mining, Sequential pattern mining, Sequence prediction, 
Supervised learning

Introduction
Network models have provided us with important insights into the structure and 
dynamics of complex systems that consist of many interacting elements. In these mod-
els, we represent direct interactions between elements by means of dyadic or, increas-
ingly, polyadic relationships, e.g., directed or undirected links connecting pairs of nodes, 
hyperedges connecting groups of nodes, or abstract simplicial complexes simultaneously 
capturing multiple (sub)sets of interacting nodes (Benson et al. 2021; Torres et al. 2021). 
A key contribution of this topological perspective is that it tells us which of a system’s 
elements can possibly influence each other either directly via a relationship, or indirectly 
via sequences of relationships that constitute paths.1 While the topology of a network 
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tells us which paths are possible in principle, we nowadays often directly observe paths, 
i.e., we have access to data capturing time-ordered sequences of nodes that interact with 
each other or that are traversed by a process. Examples include time-stamped interac-
tions capturing how information  (Dai et  al. 2014; West and Leskovec 2012; Arlitt and 
Jin 2000; Cadez et al. 2000) or infectious diseases (Chai and Pavlou 2016; Wang and Wu 
2018; Jo et al. 2021) propagate along sequences of social actors, data about sequences of 
proteins, genes, or cells that lead to a specific biological function (Olson 2006; Shapira 
et al. 2009; Karlebach and Shamir 2008), or data on the flow of goods in logistics net-
works or supply chains (Kim et al. 2015; Li and Zobel 2020; Pavlov et al. 2019). Methods 
that help us to model and understand sequential patterns in such data, especially those 
that cannot be explained by the topology of the underlying network, bear the promise 
to fundamentally advance our understanding of complex systems (Schwarze and Por-
ter 2021). As such, path-centric models constitute an interesting class of higher-order 
networks that model both the temporal and topological dimension of complex systems 
(Lambiotte et  al. 2019). Moreover, the ability to accurately predict paths in networks 
such as travel itineraries in transportation systems  (Hackl et al. 2018; RITA 2014; Trans-
port for London 2014) or user navigation on eCommerce websites (Montgomery et al. 
2004; Bollen et al. 2009; Hui et al. 2009; Brodley and Kohavi 2000) can help us to more 
effectively manage travel disruptions, break infection paths, recommend related prod-
ucts, or predict online purchases.

Despite this importance, the modelling of patterns in data on paths in networks is still 
an open challenge. To address it, we must simultaneously account for three characteris-
tics of real-world data: (i) we typically have large collections of (short) paths with vari-
able lengths, (ii) each of those paths consists of a temporally ordered node sequence, and 
(iii) possible node sequences are constrained by an underlying network topology, i.e. two 
subsequent nodes u, v can only occur if a link (u, v) exists. Previously used modelling 
frameworks have, at most, accounted for two of these three characteristics at the same 
time. Variable length sequences are typically studied by means of sequence modelling 
algorithms  (Tax et al. 2020; Fournier-Viger et al. 2017). Examples are Petri nets (Wei-
jters and Ribeiro 2011; Augusto et  al. 2017), Markov models  (Deshpande and Karypis 
2004; Gündüz and Özsu 2003; Bernhard et al. 2016; Pitkow and Pirolli 1999; Cleary and 
Witten 1984; Chierichetti et  al. 2012; Singer et  al. 2014; Benson et  al. 2017), decision 
trees (Gueniche et al. 2015; Buijs et al. 2012; Leemans et al. 2018), spectral learning (Balle 
et al. 2014), as well as neural networks and automata (Tax et al. 2020). Such algorithms 
do not account for the underlying network constraining these sequences. Instead, net-
work models are used to capture topological patterns (Padmanabhan and Mogul 1996; 
Laird and Saul 1994; Peixoto and Rosvall 2017; West and Leskovec 2012; Brockmann 
and Helbing 2013) but neglect patterns in the sequence of traversed nodes  (Xu et  al. 
2016; Scholtes 2017). Recent works on higher-order network models have taken a first 
step towards combining the advantages of sequence modelling algorithms and standard 
network models. They have improved our ability to cluster and rank nodes (Rosvall et al. 
2014; Xu et al. 2016; Scholtes 2017), detect anomalies (LaRock et al. 2019) and open new 
perspectives for network embedding (Saebi et al. 2019; Belth et al. 2019). However, they 
still do not account for the finite and variable lengths of paths, which limits our ability to 
accurately predict variable-length paths in networks.
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Addressing this gap, our work makes the following contributions: First, we introduce 
MOGen, a method to learn compact models of large collections of paths that account 
for both the temporal ordering and variable-length of paths, as well as underlying net-
work constraints. Second, we show how the models generated by MOGen can be repre-
sented in terms of block adjacency and transition matrices, using a previously unknown 
relation between higher-order network models and matrix representations of multi-
layer networks. Third, we propose an efficient model selection algorithm that yields an 
optimal model to encode sequential patterns in a given set of paths. We evaluate this 
algorithm in empirical data and show that it yields generalisable models that neither 
under- nor overfit sequential patterns. Finally, we show that MOGen accurately predicts 
paths in networks. Unlike existing algorithms, our method supports both predicting the 
next node based on a prefix of varying length (next-element prediction) and the out-of-
sample prediction of full paths based on a training set. We apply our method to six data 
sets on human clickstreams and passenger itineraries in transportation networks and 
demonstrate its superior performance compared to state-of-the-art sequence modelling 
algorithms and higher-order network models. An overview of our method is shown in 
Fig. 1.

Results
We now present the four key results of the article.

Data sets

To obtain these results, we evaluate MOGen in six empirical data sets containing (i) user 
clickstreams on the Web, and (ii) travel itineraries of passengers in a train and an air-
line network. Here, BMS1 records clickstreams of customers of the web retailer Gazelle.
com  (Brodley and Kohavi 2000). Similarly, FIFA captures clickstreams of users of the 
’98 FIFA World Cup website (Arlitt and Jin 2000), and MSNBC contains clickstreams of 
page categories on the MSNBC news website (Cadez et al. 2000). Our final clickstream 
data set WIKI records navigation paths of users in the Wikipedia article graph, who 
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Fig. 1 a Five colour-coded paths between a set of six nodes (A–F) in a networked system. We split the paths 
into a training set ( , , ) and a validation set ( , ). The topology of the networked system—depicted in 
grey—limits which transitions can exist. All paths start in A or B. They are of variable length as they end either 
after a single transition in C, or after three transitions in E or F. Consider aiming to predict if a path arriving in 
C continues to D or ends. Only paths starting in A can end in C, whereas all paths starting in B continue to D. 
Hence, to make an informed prediction, we need to account for the temporal ordering of transitions, i.e., we 
require memory recording the sequence of visited nodes before arriving at C. b To fit MOGen, we estimate 
a set of models encoding the observed transitions with different maximum memory lengths. c We apply 
MOGen’s model selection algorithm to determine the optimal maximum order. d We find the optimal model 
for the given data. e We use this optimal model to predict the paths in the validation data
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were playing the game Wikispeedia (West and Leskovec 2012). For our second category, 
AIR contains flight itineraries of passengers travelling on routes between US airports in 
2001  (RITA 2014), and TUBE captures itineraries of London Tube passengers  (Trans-
port for London 2014). The raw data for all data sets are freely available online.2 We pro-
vide extended summary statistics in Table 1.

Next‑element prediction performance

First, we assess MOGen’s performance for the task of next-element prediction. Next-ele-
ment prediction seeks to predict the next element(s) in a given ordered sequence based 
on observed data. This problem, typically addressed with sequence modelling tech-
niques, occurs in a number of applications, e.g., recommender systems (Frias-Martinez 
et al. 2002), speculative Web caching (Bestavros 1995), or purchase prediction in eCom-
merce  (Kraus and Feuerriegel 2019). Uniquely, MOGen considers both the underlying 
network and the sequential patterns in path data. As a result, MOGen outperforms 
state-of-the-art sequence modelling algorithms in next-element prediction tasks.

Given a prefix of n nodes (vt−n−1, ..., vt−1) traversed by a path, we predict the next step 
of the path. This next step can either be the next visited node vt , or the end of the path 
† . We include the prediction of path ends in our evaluation as the prediction of terminal 
nodes is crucial in variable-length path data, e.g., to predict where users exit a website, 
where passengers end their itinerary, or whether a purchase is made in an online shop.

We compare the performance of MOGen to state-of-the-art sequence modelling algo-
rithms. Specifically, we compare against the higher-order Markov chain based method 
AKOM  (Pitkow and Pirolli 1999), which has shown the highest performance in the 
review paper (Tax et al. 2020). In addition, as the authors of (Gueniche et al. 2015) show 
that CPT+ outperforms AKOM in terms of prediction accuracy, we also include CPT+ 
in our set of baselines methods. Further, we consider predictions based on a higher-order 
network with a single layer (NET), the multi-order graphical model (MOM) introduced 
in Scholtes (2017), and a naive random baseline (RND) that predicts the next node based 
on the relative frequency of nodes in the training data.

Table 1 Summary statistics for the six data sets used to validate MOGen.

BMS1: online retailer clickstreams (Brodley and Kohavi 2000); FIFA: FIFA World Cup 98 server logs (Arlitt and Jin 2000); 
MSNBC: news website clickstreams (Cadez et al. 2000); WIKI: Wikispeedia clickstreams (West and Leskovec 2012); AIR: US 
flight itineraries (RITA 2014); TUBE: London Tube itineraries (Transport for London 2014)

Paths Nodes on path Network topology

Total Unique Mean Median Min Max Nodes Links Density (%)

BMS1 59,601 18,473 2.51 1 1 267 497 15,387 6.24

FIFA 20,450 20,053 36.24 31 9 100 2990 73,530 0.82

MSNBC 31,790 30,247 13.33 11 9 100 17 270 93.43

WIKI 76,193 68,784 6.25 5 1 435 4179 69,800 0.40

AIR 286,810 60,228 4.19 5 2 14 175 1598 5.24

TUBE 4,295,731 32,313 7.86 7 2 36 276 663 0.87

2 We obtained the data sets BMS1, FIFA and MSNBC from Fournier-Viger et  al. (2014). All other data sets were 
obtained from the cited publications.



Page 5 of 20Gote et al. Applied Network Science            (2023) 8:68  

To compare the models, we create a 90%/10% train-validation split for each set of path 
data. We fit the models based on the training paths. From the validation paths, we gener-
ate all possible prefix-target combinations up to prefix length N = 6 . Specifically, given 
a target vt on path (v1, ..., vl , †) in the validation data, we enumerate all possible prefixes 
{(vt−n, ..., vt−1)}n∈[1,6] , where n is the length of the prefix. Repeating this procedure for 
all targets on all paths in the validation data yields a set of prefix-target combinations 
against which we evaluate next-element prediction performance in terms of the cross-
entropy loss function. We provide further details on the experimental setup for the next-
element prediction, including additional information regarding the baseline models, the 
parameter selection, and the cross-entropy loss function in the Materials and Methods 
section.

In Table 2a, we report the mean cross-entropy loss (in bits) for the six empirical data 
sets and the six prediction methods described above averaged over five train-validation 
splits. For each algorithm, we report the performance for the parameters that yield the 
smallest cross-entropy loss. The results show that MOGen outperforms all other meth-
ods. In most of the data sets, we further observe a considerable difference in the cross-
entropy loss function. We conjecture that this large difference in performance is due to 
the fact that, different from other methods, MOGen (i) explicitly models varying-length 
paths in a network, and (ii) is able to predict the termination of paths. This highlights 
the main contribution of our work, which is a modelling framework that accounts spe-
cifically for the characteristics of data on paths in networks. We observe the smallest 
cross-entropy loss for MSNBC, AIR, TUBE, which we obtain thanks to the—relative to 
the size of the underlying network—large number of observed paths. FIFA, WIKI, and 
BMS1 generally yield the largest cross-entropy loss across all methods, which come from 
the large network topologies and a relatively small number of observations, which hin-
ders a reliable detection of generalisable sequential patterns. Table 2 reports the predic-
tion performance of methods across multiple prefix lengths.

To better understand where the prediction performance originates, we provide addi-
tional results comparing the performance separately for each individual prefix lengths 
n. In Fig. 2, we show a ranking of methods for the different prefix lengths used for the 

Table 2 Next-element prediction performance of all models

(a) Mean and standard deviation of the cross-entropy loss over five train-validation splits. For each data set, the result of 
the best performing model is highlighted in bold. (b) Maximum order of the best performing MOGen model and the order 
detected by model selection

BMS1 FIFA MSNBC WIKI AIR TUBE

(a) Cross-entropy loss [bit] for prefixes up to length 6

MOGen 6.14±.07 7.32±.12 2.85±.02 7.90±.06 4.20±.01 1.81±.00
AKOM 19.60±.30 8.53±.11 6.01±.04 14.40±.05 13.27±.01 7.09±.00

CPT+ 19.33±.28 10.66±.02 7.33±.04 17.42±.02 14.84±.01 10.42±.00

NET 19.60±.30 8.69±.11 6.13±.04 14.40±.05 13.34±.01 7.57±.00

MOM 19.60±.30 8.51±.12 6.01±.04 14.40±.05 13.20±.01 6.34±.01

RND 19.68±.24 9.63±.04 6.73±.03 15.79±.03 14.11±.01 11.94±.00

(b) MOGen: detected and best performing maximum order

detected 1 1 2 1 2 6

best 1 1 2 1 2 6
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MSBNC data set. For MOGen, we show the performance of models with maximum 
order K between 1 and 3. The best performing model ( K = 2 , printed in bold) is the 
one identified as most suitable by our AIC-based model selection discussed below. We 
report the model parametrisation results for the remaining methods that yield the best 
performance (shown in brackets). MOGen outperforms the other methods not only 
across all prefix lengths, but also for each prefix length individually.

Selection of optimal maximum order from data

Second, we assess MOGen’s model selection approach (see the Materials and Methods 
section). The aim of model selection is to identify the model that provides the optimal 
balance between model complexity and explanatory power, allowing such a model to 
generalise to unseen data. Existing works use either heuristic techniques (Xu et al. 2016; 
Rosvall et al. 2014; Pitkow and Pirolli 1999; Gueniche et al. 2015) or analytical methods 
that require additional model characteristics like, e.g., a nested structure or convergence 
properties (Scholtes 2017; Casiraghi 2021). MOGen’s model selection approach, instead, 
avoids computationally expensive parameter search algorithms that are used by compet-
ing methods.

In the case of MOGen, the only free parameter is the maximum order K of the multi-
order transition matrix. Theorem  1 provides an AIC-based model selection approach 
that enables us to estimate the optimal value K̂  of this free parameter directly from 
the data. Using this approach, MOGen balances the explanatory power of the resulting 
model with its complexity, captured by the degrees of freedom.

In Table 2b, we report the output of this model selection for the six empirical data set 
(top row), comparing it to the maximum order K that yields the best prediction per-
formance (bottom row). For the clickstream data BMS1, FIFA, and WIKI, we obtain an 
optimal maximum order of K = 1 . For MSNBC, AIR, and TUBE, we obtain optimal 
values of K = 2 and K = 6 , respectively, highlighting the need for higher-order models. 
For all analysed data sets, the optimal order detected by the model selection provides 
the best prediction performance in cross-validation. With this, we confirm that MOGen 
yields models neither underfitting nor overfitting sequential patterns in paths, effectively 
making it parameter-free.
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Out‑of‑sample prediction of paths

Third, we assess MOGen’s ability to predict full variable-length paths. Existing works 
have focused on modelling patterns in the sequence of traversed nodes, rather than gen-
erative models allowing the out-of-sample prediction of paths  (Lambiotte et  al. 2019). 
MOGen constrains only those transition sequences for which the underlying path data 
provides sufficient statistical evidence. The model allows all other transitions, enabling 
us to generate new unseen paths. In other words, given a set of paths, MOGen allows us 
to predict which other paths are likely to be observed and at which frequency.

Path prediction opens new opportunities and applications, e.g., in the management of 
travel disruptions, product recommendation, or online purchase prediction. We show 
that MOGen allows for the accurate out-of-sample prediction of full variable-length 
paths, even when trained on small samples of observations.

We evaluate MOGen’s performance in an out-of-sample path prediction task for the 
following scenario. We aim to predict passenger itineraries in the London Tube based on 
a training set consisting of 1000 observed paths as we would obtain, e.g., from a survey 
study. Based on the training set, we fit a MOGen with K = 6 , which we then use to gen-
erate a new set S′ of 100,000 paths of variable lengths. We rank paths in the generated set 
S′ based on their frequencies and use the top-N paths to predict the top 10% most fre-
quent paths in the validation set. We interpret this prediction as a binary classification 
and repeat the prediction for different discrimination thresholds N. We then compute 
true-positive/false-positive rates for different values of N and compute the area under a 
ROC (receiver operating characteristic) curve.

In Fig. 3, we show ROC curves (and averages) for the out-of-sample path prediction 
experiment repeated for 100 train-validation splits. We report prediction results for 
MOGen and a model-less baseline based directly on the training paths. The baseline 
assumes that the path frequencies in the validation data are identical to the path fre-
quencies in the training data. These two frequencies converge as the size of the training 
set grows. To make the baseline predictions, we resample 100,000 paths from the train-
ing set according to the observed frequencies.

Predicting the top-N paths using MOGenyields an AUC of 0.87± 0.01 . In contrast, 
predicting directly from the training set based on their observed frequencies results in 
a significantly lower average AUC score with a higher standard deviation ( 0.76± 0.02 ). 
The ROC curve for the baseline contains linear segments because most paths are 
observed only once or twice, i.e., the training path counts alone do not provide enough 
information to compute relative rankings between them. MOGen is able to recover 
the information about paths’ probabilities from transition- and subpath-frequencies 
observed in the training data resulting in the higher AUC scores seen in Fig.  3. Thus, 
using MOGen yields a better and more consistent prediction.

In an additional experiment, we compare the path frequencies generated from MOGen 
and the baseline against the ‘true’ path frequencies observed in the validation set. We do 
so by computing Kendall’s τ rank correlation coefficients for the two generated path sets 
against the validation set. Kendall’s τ correlation measures the similarity of the rankings 
obtained by ordering the paths according to the generated frequencies with the ranking 
obtained according to the ‘true’ frequencies in the validation data. The average baseline’s 
correlation coefficient is 0.11± 0.02 . A low correlation is expected as the training set 
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contains only 1000 out of over 4 million total paths. Notably, the correlation based on 
MOGen’s generated paths is significantly higher, averaging 0.40± 0.01 . This result shows 
that the new paths generated by MOGen and their distribution are compatible with the 
validation data. Thus, the remarkable improvement in predictive performance originates 
from MOGen generating new paths not present in the training data but compatible with 
the observed transitions and the underlying network topology.

Scalability

Fourth, we show that MOGen is highly scalable to large sets of path data both in terms 
of time and memory requirements. The scalability results from the modular multi-layer 
formulation of the method (see the Materials and Methods section), which allows for an 
efficient sparse representation and a parallel implementation.

Our implementation parallelises the training of a multi-order model by splitting paths 
into multiple sets and simultaneously computing entries of the multi-order adjacency 
matrix A(K ) and transition matrix T(K ) for each of the sets, and finally aggregating those 
entries. We speed up the computation of the model likelihood (cf. Eq. 4) by computing 
the probabilities of paths in parallel. The left panel of Fig. 4 shows the time (in seconds) 
that is required to (i) train multi-order models for multiple parameters K, and (ii) select 
the optimal parameter K̂  using the method described in Eq. 2 for different numbers of 
processing cores.3 The resulting model sizes (in MegaBytes) for different orders K are 
shown in the right panel of Fig. 4.
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Fig. 3 Out-of-sample path prediction with MOGen. ROC for 1000 training and 4,294,731 validation paths for 
TUBE

3 The results were obtained using a 16-core Intel Core i9-7960X processor, 128 GB of memory, and Ubuntu 18.04.
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The results show that the time required to fit an optimal model primarily depends 
on the number of unique paths as well as their length (cf. Table 1). We also observe a 
near-linear reduction of the training time as we increase the number of processing cores 
(grey line refers to an optimal linear speedup). The deviation from the linear reduction 
originates from the non-parallel implementation of the matrix powers of A , required 
to compute the degrees of freedom. The size of the models generally increases super-
linearly with the maximum order K. The scaling of model size depends on the size and 
algebraic connectivity of the underlying topology, which determines the growth of the 
degrees of freedom with the parameter K. This is illustrated by the TUBE data set, where 
the increase in model size is lowest as the order increases due to a sparsely connected 
network topology. All models selected by MOGen are below 1 MB in size.

Discussion
Path data, i.e., time-ordered ordered sequences of nodes that are traversed, e.g., by pas-
sengers in a transportation network, users navigating in a network of hyperlinked arti-
cles, or processes propagating in a complex network are increasingly available in a wide 
range of scientific disciplines. Modelling and understanding sequential patterns in such 
data, especially those that cannot be explained by the underlying network’s topology, 
promises to fundamentally advance our understanding of complex systems. Such pat-
terns not only capture how the elements of a system indirectly influence each other, they 
also enable us to predict paths in networks, with applications, e.g., in the design of rec-
ommender systems, smart mobility services, or eCommerce. To do so, we must simul-
taneously account for three characteristics of real-world path data: (i) we typically have 
large collections of (short) paths with variable lengths, (ii) each of those paths consists 
of a time-ordered node sequence, and (iii) possible node sequences are constrained by 
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an underlying network topology. Despite their importance, the modelling of sequential 
patterns in such data remains an open challenge as state-of-the art methods, at most, 
account for two of those characteristics at the same time.

Closing this gap, we introduced MOGen, a generative modelling framework to learn 
compact higher-order models of sequential patterns in paths that account for both 
the temporal ordering and variable-length of paths, as well as underlying network 
constraints. Addressing the challenge of overfitting, MOGen provides an integrated 
model selection that yields compact and generalisable graphical models for patterns 
in variable-length paths. Our results confirmed that the selected models are indeed 
those that generalise best to unseen data, effectively making our method parameter-
free. Using empirical data, we showed that MOGen enables both next-element pre-
diction and out-of-sample prediction of full variable-length paths with high accuracy 
and consistency. Moreover, it outperforms state-of-the-art sequence modelling algo-
rithms and higher-order network models when predicting the next visited element, 
as we showed for six empirical path data sets. We finally showed that we can use it 
to generate surrogate data, i.e., new unseen paths that are compatible with patterns 
observed in the data. MOGen’s formalisation allows for a highly efficient and scalable 
representation as a sparse multi-order transition matrix. By simultaneously model-
ling sequential and topological patterns in empirical data on paths in networks, the 
resulting models further advance our understanding of complex systems. We provide 
a parallel implementation of MOGen as an Open Source project.

In future work, we will further evaluate the novel opportunities that path genera-
tion and multi-order network analysis with MOGen open in real-world applications. 
We will further explore the link between MOGen and related methods from the 
domain of language modelling.

Materials and methods
MOGen formalisation

We first formally define path data and present the generative modelling framework and 
model selection algorithm that are the main contributions of our work. We assume 
that we are given a multi-set of m paths S = {t1, . . . , tm} on a network G = (V ,E) 
with nodes V and (directed) links E ⊆ V × V  . Each path ti = v1 → v2 → · · · → vli 
is an ordered sequence of traversed nodes under the constraint that (vj , vj+1) ∈ E for 
j ∈ [1, li − 1] . We assume that paths in S have varying lengths li , and we denote the 
maximum path length as lmax . If we were to use a simple network-based model for the 
sequences of nodes traversed by paths, we would assume that paths were generated by 
a memoryless random walk corresponding to a first-order Markov chain. The nodes 
v ∈ V  correspond to the state space of such a Markov chain, while links (v,w) ∈ E 
are associated with transition probabilities capturing the probability of the transition 
from v to w. This assumes that the next node vi+1 traversed by a path only depends 
on (i) the currently visited node vi , and (ii) the links that determine which state tran-
sitions are possible. To capture higher-order dependencies in the sequence of tra-
versed nodes that are not due to the network topology, we can generalise this model 
to a k-th order Markov chain, where the next node vi+i depends on the k previously 
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visited nodes vi−k , ..., vi . We can view this model as a memoryless random walk in a 
k-th order network Gk = (V k ,Ek) , where (i) each k-th order node (v1, ..., vk) ∈ V k is 
a sequence of k nodes where consecutive nodes are connected by links, and (ii) each 
k-th order link connects two higher-order nodes (v1, ..., vk) and (w1, ...,wk) such that 
wi = vi−1 ∈ V .

Multi‑order models of paths

The modelling approach above has several limitations with respect to the unique char-
acteristics of variable-length paths in S. (i) Using a k-th order model, we can neither use 
the first k nodes in each path to fit the transition probabilities of the model nor can we 
use the model to perform a next-element prediction for the first k nodes on a path. (ii) 
The fact that the number of observations used to fit the transition probabilities of a k-th 
order model differs across different orders k complicates model selection, i.e., the selec-
tion of the optimal order k to model a data set. (iii) The model neglects information on 
the start- and endpoint of paths, hindering its application to an out-of-sample predic-
tion of full variable-length paths, i.e., from start to end. (iv) Finally, a model with a single 
order k is limited to capture sequential patterns of a single length k, which is why recent 
works argued for variable- and multi-order modelling techniques (Scholtes 2017; Xu 
et al. 2016; Pitkow and Pirolli 1999).

To overcome those limitations, we introduce a generative modelling framework that 
combines (i) transitions between higher-order models of multiple orders up to a maxi-
mum order K and (ii) special transitions that capture the start and endpoints of paths. 
For this, we introduce a special initial state ∗ , with transitions ∗ → v to first-order nodes 
v ∈ V  that mark the start of a path in node v. For all orders 1 ≤ k ≤ K  , we further add 
transitions from k-th order nodes (v1, ..., vk) → † to a special terminal state † , which cap-
tures the termination of a path. With this extension, a path v1 → v2 → · · · → vl corre-
sponds to l + 2 transitions in a multi-order network with maximum order K, which gives 
rise to the following sequence of l higher-order nodes

with two additional transitions from/to the special states ∗ and † to model the start and 
end of the path. Considering the coding of memory prefixes in the extended state space 
of higher-order Markov chains, we note that each transition in this multi-order model 
with maximum order K increases the memory prefix by one node, up to a maximum 
memory of length K. In addition to transitions within a K-th order model, we obtain a 
multi-order model that includes transitions between the nodes of a k-th order model 
and the nodes of a k + 1-th order model for all orders k < K  . Transitions from/to the 
initial state ∗ and terminal state † explicitly model the start- and endpoints of paths, 
which is the basis for an end-to-end, out-of-sample prediction of full paths.

We can mathematically represent such a multi-order network with maximum order 
K through a multi-order adjacency matrix A(K ) , whose overall structure is shown in 
Fig.  5a. This representation is inspired by so-called supra-adjacency matrices, which 
have recently been proposed to represent the interconnected topologies of multi-layer 
networks (Kivelä et al. 2014). A multi-order adjacency matrix consists of blocks Ak−1,k , 
whose entries count the observed transitions between k − 1-th and k-th order nodes in a 

∗ → v1 → (v1, v2) → · · · → (vl−K+1, ..., vl) → †
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given multi-set S of paths. The entries in the top-left block A0,1 ∈ R
1×n count transitions 

(∗, v) for all nodes v ∈ V  , i.e., the distribution of start nodes for all paths. The entries 
of the bottom-right block A† count terminal transitions (v1, ..., vk) → † for all orders 
1 ≤ k ≤ K  . For paths with lengths li > K  , the entries in the bottom matrix AK ,K  count 
the transitions between the nodes in a K-th order network model. Figure 5a shows an 
example for a multi-order adjacency matrix that corresponds to a toy example where 
each path shown in Fig. 1a is observed ten times. We note that structural zeros in A(K ) 
(greyed out in Fig. 5b) represent transitions that are impossible based on the underly-
ing network topology, which are different from zero entries that represent possible but 
unobserved transitions (see zeros in highlighted blocks in   Fig.  5b). Considering these 
structural zeros allows for a sparse memory-efficient representation of our method. 
The only model parameter K determines the maximum order of the multi-order model, 
which resembles the maximum memory length in a Markov chain. We note that, under 
the assumption that the paths in a multi set S = {t1, . . . , tm} with maximum path length 
lmax are generated independently of each other, the multi-order adjacency matrix A(K ) is 
a lossless representation of S iff K ≥ lmax . To facilitate prediction tasks, we use the multi-
order adjacency matrix to define a probabilistic generative model of variable-length 

Fig. 5 Multi-order matrix representation of MOGen. a shows the block structure of the multi-order adjacency 
matrix. b and c show A and T for MOGen with K = 3 on the example from Fig. 1a, where all paths occur 10 
times. d shows the K detected by model selection for varying observation counts. The observation from (b) 
and (c) is highlighted in white
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paths. This model is fully described by a multi-order transition matrix T(K ) , which we 
obtain by a row normalisation of A(K ) . This yields a stochastic matrix T(K ) , whose entries 
give the transition probabilities in a probabilistic model for paths.

The transition matrix of a generative multi-order model with maximum order 
K = 3 that corresponds to the toy example in Fig. 1a is shown in Fig. 5c. To illustrate 
our method in the toy example shown in Fig. 1a, we present here results for a simple 
experiment. Varying the observed frequencies of the five (colour-coded) paths shown 
in Fig. 1a, we report the different estimated optimal orders K̂  . Due to the topology of 
the network shown in Fig.  1a, paths that start in node A or B and continue to C and 
D either terminate in node E or node F. In order to model paths whose probability to 
terminate in E or F depends on whether they start in A or B, a MOGen with maximum 
order three is needed. Such a dependency exists if the paths A → C → D → E and 
B → C → D → F  occur more or less frequently than the paths B → C → D → E and 
A → C → D → F  . Figure 5d shows that our model selection algorithm yields the cor-
rect optimal order. If, however, the terminal node of a path is independent of the start 
node, a model with order two is sufficient. This is the case if the frequencies of all four 
paths are similar, in which case our model selection algorithm yields the correct value 
for K̂ = 2 (cf. Figure 5d). This is illustrated by the identical values in T(3)

3,3 in Fig. 5c. These 
results merely illustrate our method. We perform a thorough cross-validation experi-
ment in the Results section. With this, we confirm that the best prediction performance 
is obtained for the parameter K̂  estimated according to Theorem 1, which we introduce 
in the next section. This implies that, different from existing techniques, the parameter 
K can be directly estimated from the data, which effectively turns our method into a 
parameter-free approach.

Optimal maximum order detection
The unique formulation of MOGen allows the comparison of likelihoods across dif-

ferent maximum orders K. Thanks to this, we can utilise Akaike’s Information Criterion 
(AIC) (Akaike 1974) to choose MOGen’s optimal maximum order K̂  . AIC balances the 
explanatory power of a model, given by its likelihood function L(T(K )|S) , with its com-
plexity, measured in terms of the model’s degrees of freedoms d(T(K )) . Given a multi 
set S of m independent paths, L(T(K )|S) is simply the product of all path probabilities 
P(t|T(K )) . The probability P(t|T(K )) of a single observed path t in S is instead given by 
the probability of observing all its transitions in sequence, as specified by T(K ) . This for-
malisation is easily parallelisable. Therefore, as we show in our results, MOGen is highly 
scalable and memory efficient.

The degrees of freedom d(T(K )) need to account for (i) structural zeros in T (K ) result-
ing from paths being restricted to a network, (ii) the multi-layer structure of MOGen 
combining multiple orders k, and (iii) additional model parameters used to model transi-
tions from/to the initial and terminal states. Thus, d(T(K )) depends on the topology of 
the underlying network,4 encoded by A . Possible paths of length k in such a network are 
encoded by the non-zero entries of Ak . These specify which transition probabilities need 
to be estimated from the data S and which are structural zeros. The degrees of freedom 
of a MOGen/ with maximum order K are then:

4 If we assume that all possible transitions along the links of the underlying network have been observed at least once, 
we can directly derive A from the training data.
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Since the best model among a set of candidate models is the one that minimises the AIC, 
we can compute the optimal maximum order of a MOGen model given a set of paths as 
follows:

Theorem 1 Let S = {ti} be a multi-set consisting of m independent paths. Let T(K ) be 
the multi-order transition matrix defining the MOGen of maximum order K constructed 
from S. Let A be the binary adjacency matrix where Avw = 1 iff the transition v → w 
appears at least once in S. Then the optimal maximum order K̂  according to AIC is

where P(t|T(K )) denotes the probability of a path t ∈ S.

Formal Proof of Theorem  1 We split the formal proof of Theorem 1 in a series of 
small lemmas. Doing so, we go through all the steps needed to obtain Eq. 2. The first step 
consists of specifying the probability of observing a path t according to a multi-order 
model defined by a multi-order transition matrix T(K ).

Lemma 1 (Probability of a path) Let T(K ) be a multi-order transition matrix defining 
a multi-order model of maximum order K. Then, the probability P(t|T(K )) according to 
T
(K ) of observing a path t = v1 → · · · → vl is

Proof In the multi-order representation, a path t = v1 → · · · → vl corresponds to 
l + 2 transitions along the edges of a multi-order network with maximum order K, which 
gives rise to the following sequence of l higher-order nodes:

The probability of each of these transitions is (a) independent by definition and (b) 
completely specified by the multi-order transition matrix T(K ) . Thus, the probability 
P(t|T(K )) of observing a path t is given by the product of the l + 2 probabilities given in 
T
(K ) of observing each higher-order transition defining the path. �

Employing the results of Lemma 1, we can compute the probability of a multi-set S of 
independent paths.

(1)d(T(K )) =

K

k=1 i,j

A
k

ij
+ |V | − 1

(2)K̂ := arg minK

K
∑

k=1

∑

i,j

(

A
k
)

ij
−

∑

t∈S

ln P(t|T(K )),

(3)

P(t|T(K )) = T
(K )[∗, v1] ·

K−1
∏

k=1

T
(K )[(v1, ..., vk), (v1, ..., vk+1)]·

l
∏

i=K+1

T
(K )[(vi−K , ..., vi−1), (vi−K+1, ..., vi)]·

T
(K )[(vl−K+1, ..., vl), †].

∗ → v1 → (v1, v2) → · · · → (vl−K+1, ..., vl) → †
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Lemma 2 (Probability of a paths’ collection) Let T(K ) be a multi-order transition matrix 
defining a multi-order model of maximum order K. Let S = {ti} be a multi-set consisting 
of m independent paths. Then, the probability of observing S according to T(K ) is

where P(t|T(K )) is given by Eq. 3.

Proof All paths t in S are assumed to be independent. Thus, the probability T(K ) of 
observing S according to T(K ) is simply the product of the probabilities P(t|T(K )) of 
observing each path t ∈ S . �

These first two lemmas allow computing the likelihood of a multi-order model 
given some observed data in the form of a (multi-)set of paths. The final lemma allows 
defining the number of degrees of freedom of a multi-order model constrained by a 
graph G(V, E).

Lemma 3 (Number of possible transitions) Let A be the first-order binary adjacency 
matrix specifying a graph G(V,  E) over which a multi-order model T(K ) of maximum 
order K is defined. Then, the maximum number Nτ of possible transitions in T(K ) is given 
by

where V k denotes the set of connected k-th order nodes in T(K ).

Proof Because the multi-order model is defined over a graph G(V,  E), to all multi-
order transition probabilities in T(K ) correspond first-order edges in E. Similarly, for all 
edges e ∈ E , there is at least one non-zero multi-order transition probability in T(K ) that 
encompasses e. Thus, 

∑K
k=1

∑

i,j

(

A
k
)

ij
 gives the number of all transitions up to order K 

that are possible according to G(V, E). Furthermore, there possibly exist |V | transitions 
from the initial state ∗ to any node in V. Finally, there possibly exist |

⋃K
k=1 V

k | transitions 
from any higher-order node in 

⋃K
k=1 V

k to the terminal state † . Summing over all possi-
ble transitions, we get to Eq. 5. �

With the results provided by the above lemmas, we can proceed with a proof for 
Theorem 1.

Proof of of Theorem 1 For a multi-order model, we can calculate the AIC as follows:

where d(T(K )) denotes the number of degrees of freedom of the model identified by 
T
(K ) , and L(T(K )|S) its likelihood given the data S.

(4)P(S|T(K )) =
∏

t∈S

P(t|T(K )),

(5)Nτ = |V | +

K
∑

k=1

∑

i,j

(

A
k
)

ij
+ |

K
⋃

k=1

V k |,

(6)AIC(T(K )) = 2d(T(K ))− 2 ln
{

L(T(K )|S)
}

,
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The number of degrees of freedom d(T(K )) of a multi-order model corresponds to the 
number of multi-order transition probabilities in T(K ) that have to be estimated from the 
data. The elements of T(K ) can be divided into two classes: structural zeros and possible 
transitions. Structural zeros are those multi-order transitions that cannot be observed, 
and thus their probabilities are set to zero and do not contribute to the number of 
degrees of freedom of the model. The values of the remaining transition probabilities 
have to be estimated from the data. Thus, they contribute to the degrees of freedom of 
the model. For this reason, d(T(K )) can be computed by counting how many transitions 
are possible according to the observed data S. We denote with A the binary adjacency 
matrix whose elements Avw = 1 iff a transition v → w has been observed at least once in 
S. Given A , we can find the maximum number of possible transitions Nτ using Lemma 
3. Furthermore, we note that the multi-order transition matrix T(K ) is row-stochastic. 
The number of degrees of freedom d(T(K )) is then given by Nτ minus the number of 
rows r = |

⋃K
k=1 V

k | + 1 of T(K ) . The reason for this is that by accounting for the row-
stochasticity of T(K ) one transition probability per row need not be estimated:

This provides us with an explicit expression for the first term in Eq. 6.
To get to Eq.  2, we further need to compute the likelihood L(T(K )|S) of the model 
defined by T(K ) . As L(T(K )|S) = P(S|T(K )) , we can use Theorem  1,2 to express it in 
terms of the probabilities P(t|T(K )) of the paths t ∈ S.
Finally, we highlight that the best model among a set of candidate models is the one that 
minimises the AIC. Thus, plugging Eq. 7,4 in Eq. 6 and taking the argmin of the resulting 
expression gives us Eq. 2 (after ignoring constant terms), concluding this proof. �

Experimental setup for next‑element prediction

Selection of baseline models

We base our selection of baseline methods for next-element prediction on the recent 
review (Tax et al. 2020). The authors of Tax et al. (2020) find that AKOM (Pitkow and 
Pirolli 1999) outperforms all other algorithms in three out of four tested data sets. Con-
versely, in Gueniche et al. (2015) the authors of CPT+ show that their algorithm outper-
forms AKOM in terms of the accuracy of the next element prediction. We thus use both 
CPT+ and AKOM as baselines, utilising the implementations provided by the authors of 
Fournier-Viger et al. (2014). To enable a fair comparison for empty prefixes, we modified 
the implementation of AKOM to return a prediction based on the frequency of elements 
in the training data. This is described in Pitkow and Pirolli (1999). However, the imple-
mentation in Fournier-Viger et  al. (2014) returns an empty prediction instead. CPT+ 
predicts the next element in a sequence based on an internal assignment of weights to 

(7)

d(T(K )) = Nτ − r

= |V | +

K
∑

k=1

∑

i,j

(

A
k
)

ij
+ |

K
⋃

k=1

V k | − |

K
⋃

k=1

V k | − 1

= |V | +

K
∑

k=1

∑

i,j

(

A
k
)

ij
− 1.
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candidate elements, i.e., the prediction is not based on probabilities. We thus normalise 
the weights assigned by CPT+ to obtain a probabilistic prediction. While this allows us 
to compare the performance of CPT+ with the other (probabilistic) methods, we high-
light that the evaluation in Gueniche et al. (2015) is based on prediction accuracy. It is 
crucial noting that the authors of Tax et al. (2020) report that AKOM and state-of-the-
art RNNs achieved the highest and, at the same time, very similar levels of performance 
on four datasets. As our method is based on a Markov chain model, we thus opt to use 
the comparable method AKOM as a benchmark for our method and not RNNs. Based 
on the findings in Tax et al. (2020), we expect these results to hold also for RNNs.

In addition to those sequence modelling techniques, we compare our method to a 
probabilistic prediction derived from (i) a random walk in a higher-order network with 
a single order k (NET), and (ii) the multi-order graphical model (MOM) introduced in 
Scholtes (2017). For k = 1 , NET is identical to a prediction generated by a random walk 
in the underlying network. Note that, despite the similar name, the method proposed 
in the present work considerably differs from MOM. First, MOM does not model the 
endpoint of paths, limiting its ability to predict variable-length paths. Second, it uses 
a model-fitting approach that estimates transition probabilities based on sub-path fre-
quencies rather than the transition probabilities used in our approach. In addition to 
those network-based models, we use a naive (parameter-free) random baseline (RND) 
that simply predicts the next node based on the relative frequency of nodes in the train-
ing set, i.e., a prediction that neither uses a Markov chain nor the network topology.

Selection of model parameters

AKOM, MOM, NET, and MOGen are characterised by a single parameter, i.e., their 
(maximum) order. We search for the optimal order in terms of predictive performance. 
We obtain this optimal order by iteratively increasing the model order from one until 
a maximum in predictive performance is reached. For CPT+, we use the parameters 
proposed in Gueniche et al. (2015). Our naive random baseline (RND) is parameter-free. 
We report the optimal (maximum) orders for all models and data sets in Table 3.

Cross‑entropy loss

Following  (Bishop and Nasrabadi 2006), we define the cross-entropy loss function for 
next-element prediction as

(8)H(p, q) := −
∑

v∈V

p(v) log q(v)

Table 3 Best performing model parameters for all data sets

BMS1 FIFA MSNBC WIKI AIR TUBE

MOGen 1 1 2 1 2 6

AKOM 1 1 2 1 2 6

NET 1 1 2 1 1 1

MOM 1 1 2 1 3 6
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where for a given prefix (v1, ..., vk) , q(v) denotes the probability of the next element (i.e., 
target node) v obtained from a model trained on the training set and p(v) is the true dis-
tribution underlying the data. Since the true distribution is unknown for the empirical 
data set, we compute p(v) from the distribution of actual next nodes in the validation 
set. This yields the log-loss function commonly used in the cross-validation of proba-
bilistic multi-class prediction (Bishop and Nasrabadi 2006). We evaluate predictions for 
multiple prefix lengths up to a maximum length of six. Those are considered as multiple 
samples and assign equal sample weights such that sample weights for any given target 
node with different prefix lengths sum to one. For the resulting loss function, a value 
of zero corresponds to a perfect prediction, which would allow us to replace the true 
distribution in the data with the prediction without information loss. Non-zero values 
quantify the information loss in bits, i.e., larger values correspond to worse prediction 
performance.
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