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Abstract 

Inferring the source of a diffusion in a large network of agents is a difficult but feasible 
task, if a few agents act as sensors revealing the time at which they got hit by the diffu‑
sion. One of the main limitations of current source identification algorithms is that they 
assume full knowledge of the contact network, which is rarely the case, especially 
for epidemics, where the source is called patient zero. Inspired by recent implemen‑
tations of contact tracing algorithms, we propose a new framework, which we call 
Source Identification via Contact Tracing Framework (SICTF). In the SICTF, the source 
identification task starts at the time of the first hospitalization, and initially we have 
no knowledge about the contact network other than the identity of the first hospital‑
ized agent. We may then explore the network by contact queries, and obtain symptom 
onset times by test queries in an adaptive way, i.e., both contact and test queries can 
depend on the outcome of previous queries. We also assume that some of the agents 
may be asymptomatic, and therefore cannot reveal their symptom onset time. Our 
goal is to find patient zero with as few contact and test queries as possible. We imple‑
ment two local search algorithms for the SICTF: the LS algorithm, which has recently 
been proposed by Waniek et al. in a similar framework, is more data‑efficient, but can 
fail to find the true source if many asymptomatic agents are present, whereas 
the LS+ algorithm is more robust to asymptomatic agents. By simulations we show 
that both LS and LS+ outperform previously proposed adaptive and non‑adaptive 
source identification algorithms adapted to the SICTF, even though these baseline 
algorithms have full access to the contact network. Extending the theory of random 
exponential trees, we analytically approximate the source identification probability 
of the LS/ LS+ algorithms, and we show that our analytic results match the simulations. 
Finally, we benchmark our algorithms on the Data‑driven COVID‑19 Simulator (DCS) 
developed by Lorch et al., which is the first time source identification algorithms are 
tested on such a complex dataset.

Keywords: Adaptive source identification, Contact tracing, Sensor selection, 
Epidemics

Introduction
During the COVID-19 pandemic, we have seen a revolution of the contact tracing tech-
nology, which helped track and contain the epidemic (Braithwaite et al. 2020; Kretzsch-
mar et  al. 2020). Some contact tracing programs were conducted by governmental/
health agencies (Park et  al. 2020), while others relied on decentralized approaches 
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(Troncoso et al. 2020). Most contact tracing approaches work by notifying people who 
could have received the infection from known infectious patients, i.e., they trace “for-
ward” in time. However, some advocate that a “bidirectional” tracing, where the past his-
tory of the infection is also tracked, can be more effective (Bradshaw et al. 2021; Endo 
et al. 2020; Kojaku et al. 2021; Raymenants et al. 2022). In this paper we focus on the 
“backward” direction of the problem; the task of identifying the first patient who carried 
the disease, also called patient zero, or the source of the epidemic. The identification of 
patient zero can either be limited to a smaller population cluster, in which case it can 
be a first step towards “bidirectional” tracing, or it can be more ambitious; finding the 
first patient who developed the mutation of a certain disease. The identification of the 
source of an epidemic can be useful while planning our response as a society, since any 
information on the disease is crucial in uncertain times (Ingraham and Ingbar 2021). For 
example, source identification can aid contact tracing efforts (Carinci 2020; Russo et al. 
2020; Feng et al. 2021), and identify superspreading events (Chen et al. 2022), moreover, 
understanding how the mutation occurred can give information on how dangerous the 
outbreak is (Kandeel et al. 2021; Kupferschmidt 2021; Zhang et al. 2020).

Until the COVID-19 epidemic, source identification algorithms had rarely been been 
applied beyond proof of principle studies. Our goal in this paper is to examine the appli-
cability of the source identification models in the literature (which we call frameworks 
from now on), and then propose a new framework, which improves them in several 
aspects. See Fig. 1 and Table 1 for a visual and a table representation of our literature 
review of the previous frameworks. Originally, source identification was introduced in 
the context of rumor spreading instead of epidemics by Zaman and Shah in their pio-
neering paper (Shah and Zaman 2010, 2011). Translating to the language of epidemics 
for clarity, in the framework of (Shah and Zaman 2011), an epidemic spreads over a net-
work of agents that is completely known to us, and we observe a snapshot of the net-
work, which means that every agent reveals if they are infected or not at some given time 
(not too early, because then the problem is trivial, nor too late, because then the problem 
is impossible). Shortly after (Shah and Zaman 2011), Pinto et  al. proposed a different 
framework, in which agents (also called sensors) reveal, in addition to their state, the 
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Fig. 1 Illustration of three source identification frameworks. In all three cases, the epidemic process starts 
from a single source, which needs to be estimated based on different observations. a In the snapshot 
framework, every node reveals whether it had been infected (marked in orange) by some time t, when the 
snapshot is taken (in this case at time t = 6.7 , where time is measured in days, relative to some arbitrary 
initial time, since the infection time of the source is unknown in all cases). b In the sensor‑based framework, 
each node is assumed to have already been infected, and a few sensor nodes (marked in orange) report 
their infection time ti . c In the Source Identification via Contact Tracking Framework (SICTF), the source 
identification task starts when the first node is hospitalized (marked in solid black), and initially most of the 
network is unknown to the algorithm (marked in grey). Then, in each step, the algorithm proceeds to explore 
the network and query the infection state of the nodes in an adaptive way, and queried nodes reveal their 
symptom onset time
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time when they became infected, but where only a few of them do so and act as sensors 
(Pinto et al. 2012); indeed, the problem is trivial if all agents are sensors. This framework 
is better tailored to epidemics, as it is reasonable that obtaining any information from all 
the agents is much harder than asking one more question about the starting time of the 
symptoms of the disease to only some of them. Pinto et al. found that in their framework, 
if the sensors are already selected, the maximum likelihood estimator of the source has a 
closed form solution when the underlying network is a tree, and the time it takes for an 
agent to infect one of its susceptible contacts follows a Gaussian distribution. For gen-
eral graphs, it is difficult to find an algorithm with any theoretical guarantees, although 
we note that many heuristics have been developed (Hu et al. 2018; Li et al. 2019; Paluch 
et al. 2018, 2020b; Shen et al. 2016; Tang et al. 2018; Xu et al. 2019; Zhu et al. 2016). The 
only exception is on very simple contact networks (Lecomte et  al. 2020), or when the 
epidemic spreads deterministically between the agents (Zejnilovic et al. 2013), which is 
not a realistic assumption for epidemics, but at least the estimation algorithm is trivial, 
and more emphasis can be put on the question of how the sensors should be selected for 
good performance (Spinelli et al. 2017c, 2018), which again is studied by heuristics in the 
general case (Paluch et al. 2020a). For recent reviews of source identification algorithms, 
see (Shelke and Attar 2019; Odor 2022). Besides epidemics, related applications of 
source identification are rumor spreading between individual humans (Shah and Zaman 
2011), a virus spreading in a computer network (Xie et al. 2005), train delay propagation 
(Manitz et al. 2014a), and food-borne disease outbreaks (Manitz et al. 2014b).

One of the main criticisms of the original framework of Pinto et  al. is that, even 
though the contact network is fully known, it is very difficult to find the source exactly 
unless a large fraction (20–50%) of the population act as sensors, which is unrealistic 
in the case of an epidemics, when the source is searched in a large population. An 
alternative recently proposed is to compute confidence sets for the source instead of 
finding it (Dawkins et al. 2021). But if our goal is to locate the source exactly, a prom-
ising approach is to allow the sensors to be selected adaptively to previous observa-
tions (Zejnilović et  al. 2015, 2017), which we call adaptive sensor placement. When 
the contact network is known, adaptive strategies have been studied by simulations 
(Spinelli et  al. 2017a, b) and by theoretical analysis (Lecomte et  al. 2020), and they 
show a large reduction in the number of required sensors in real networks. In this 
paper, we will also allow the sensors to be placed adaptively.

Table 1 Classification of cited papers based on the framework they operate in

The SICTF is a sensor-based framework with contact tracing data. The differences between SICTF and Waniek et al. (2022), 
are explained in “The source identification via contact tracing framework” section

Data Snapshot-based
(binary information)

Sensor-based
(time information)

Full network Shah and Zaman (2010, 2011),
and subsequent works

Pinto et al. (2012); Hu et al. (2018); Li et al. (2019); Paluch 
et al. (2018, 2020b); Shen et al. (2016); Tang et al. (2018); 
Xu et al. (2019); Zhu et al. (2016); Lecomte et al. (2020); 
Zejnilovic et al. (2013); Spinelli et al. (2017c, 2018); 
Paluch et al. (2020a); Shelke and Attar (2019); Odor 
(2022)

Contact tracing Yu et al. (2022) Waniek et al. (2022), and current paper (SICTF)
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We believe that the most problematic assumption that is still present in source iden-
tification papers, is the full knowledge of the contact network of agents, which is unre-
alistic (let alone because of privacy concerns). Due to this lack of data-availability, 
algorithms in the source identification literature have not been tested on realistic epi-
demic real large-scale contact networks. Moreover, while governmental/health agen-
cies might have access to private datasets, such as cellular location data, from which a 
contact network may be estimated, these networks may be very noisy, and are poten-
tially unfit for the source identification task. We only know of a few papers that study the 
effect of imperfections in the network data on the source identification task (Mashkaria 
et al. 2020; Zejnilović et al. 2016), but these papers study epidemics that spread deter-
ministically between the agents. Recently, a few papers suggested to use contact tracing 
data instead of assuming full knowledge about the network both in the snapshot-based 
(Yu et al. 2022) and in the sensor-based frameworks (Waniek et al. 2022). In this paper, 
we propose the Source Identification via Contact Tracing Framework (SICTF), which 
shares some similarities with the sensor framework of (Waniek et al. 2022), but while the 
latter framework is focused on the tradeoff between the contact tracing and source iden-
tification, our framework is focused only on the feasibility of source identification (see 
“The source identification via contact tracing framework” section for a more detailed 
comparison). In SICTF, algorithms can have two types of queries: contact queries, which 
can be used to explore the network, and sensor (test) queries, after which agents reveal 
their symptom onset time as before. The goal of the algorithm is to find the source as 
accurately as possible, while minimizing the number of contact and sensor queries. 
The SICTF is a way to formalize the source identification task; it determines the goal of 
the algorithm and how information can be gained about the epidemic, but it does not 
specify the underlying epidemic and mobility data models (simulated or real). In this 
paper, we analyse different algorithms in the SICTF with various epidemic and mobility 
models.

Besides specifying the possible queries that algorithms can make, the SICTF also 
determines the way the outbreak is detected, which marks the starting time of the 
source identification task. In sensor-based source identification, the source identifica-
tion task often starts long after the outbreak, when essentially all agents in the network 
are infected (Pinto et al. 2012), which can be seen as a limitation of source identification 
frameworks. The SICTF is also closely related to contact tracing frameworks, where it is 
standard to assign a probability that each node spontaneously self-reports after develop-
ing symptoms, which triggers the activation of contact tracing algorithms (Kretzschmar 
et al. 2020; Bradshaw et al. 2021). In the SICTF, we adopt the idea of self-reporting with 
a slight modification. We believe that the most interesting time to perform the source 
identification task is when a new disease (or a new mutation of the disease) appears, 
and therefore we tie these self-reporting events to hospitalizations, where infections are 
properly diagnosed by healthcare professionals. This means that the SICTF can only be 
applied to epidemic data where hospitalizations are well-defined, which makes find-
ing an appropriate dataset very challenging. Indeed, due to privacy concerns, there are 
no publicly available mobility and epidemiological datasets at the individual level (Ahn 
et al. 2020). We must note that given the appropriate resources, it is possible to collect 
individual level datasets for academic purposes. In Raymenants et al. (2022), backward 
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contact tracing was shown to be more efficient compared to forward contact tracing in 
a real COVID-19 dataset collected from university students residing in the city of Leu-
ven. However, the dataset in Raymenants et  al. (2022) was collected when the disease 
was present throughout the entire population with contact tracing as the primary goal, 
whereas we focus on early phase of the epidemic, and we aim to identify the source 
as accurately as possible. Collecing a dataset similar to Raymenants et  al. (2022) with 
source identification in mind would be ideal, but it is outside the scope of the current 
paper. Instead, inspired by recent advances in the COVID-19 modelling literature, we 
restricted ourselves to agent-based epidemiological simulators that use aggregate data-
sets to generate individual synthetic mobility traces and simulate epidemic processes on 
them (Chang et al. 2021; Lorch et al. 2022; Müller et al. 2021). We emphasize that we can 
only use agent-based epidemic models in our study; in mean-field or meta-population 
models such as GLEaM (Balcan et  al. 2010), it is not possible to identify patient zero 
due to the lack of fine-grained network structure. Among the mentioned agent-based 
models, we chose to work with the epidemiological simulator implemented by Lorch 
et al. (2022), which we refer to as the Data-driven COVID Simulator (DCS) from now 
on, because we found that the program code of the DCS strikes a good balance between 
complexity and extensibility. Because of its complexity, we only use the DCS to motivate 
the definition of simplified models and to validate our findings, and we perform our the-
oretical analysis on the simplified models, which we introduce in “The DDE model and 
Household network model” sections. In other words, our goal in this paper is to com-
plete a full mathematical modeling cycle (Perrenet and Zwaneveld 2012), with the caveat 
that since we do not have access to real epidemiological datasets, we use one of the most 
complex and realistic epidemiological simulators (Lorch et al. 2022), which is based on 
real aggregate datasets.

In the SICTF, we propose a simple algorithm called LocalSearch (LS), which adaptively 
traces back the transmission path from the first hospitalized patient to the source. The 
LS algorithm is a natural candidate in the context of source identification with contact 
tracing data; the recently and independently proposed source identification algorithm of 
Waniek et al. (2022) is almost identical to the LS algorithm with a few minor differences 
arising from the differences between the two frameworks (see “The LocalSearch Algo-
rithms LS and LS+” section). The LS algorithm is quite efficient at finding the source; 
the number of contact and sensor queries that it uses does not depend on the size of the 
network, but only on the local neighborhood of the source. Moreover, the LS algorithm 
provably finds the source with 100% accuracy, because of our assumption that every 
contact and sensor query is answered without noise. However, it is well known that data-
availability is a major issue in contact tracing (BeidasRinad et al. 2020), either because 
the agents do not comply with contact tracing efforts, or possibly (and in particular 
in the current COVID-19 epidemic) because they do not develop symptoms, and are 
unaware that they have the disease. In this paper, we model the effect of asymptomatic 
agents. When queried and tested, these agents do not reveal their time of infection, only 
whether they have or had the disease at some point. We show that the accuracy of the LS 
algorithm drops in the presence of asymptomatic agents, because the algorithm can get 
stuck while tracing back the transmission path from the first hospitalized patient to the 
source. Therefore, we propose an improved version of LS called LS+, which accounts for 



Page 6 of 53Ódor et al. Applied Network Science            (2023) 8:53 

the presence of asymptomatic agents by placing more sensors. We are not aware of any 
previous work in the source identification literature that models the effect of asympto-
matic patients, but the resulting model can be seen as a mix between the snapshot and 
the sensor-based models. We mention that non-complying agents or agents who provide 
noisy observations have been studied by Altarelli et al. (2014); Hernando et al. (2008); 
Louni et al. (2015). Non-complying agents could also be included in our framework by 
treating them as asymptomatic agents (even though in this case we have no information 
about whether the agent had the disease or not), without jeopardizing the correctness of 
our algorithms.

We benchmark the LS and LS+ algorithms in both our data-driven and our synthetic 
epidemic and mobility models, and we compare them to state-of-the-art adaptive (Spi-
nelli et al. 2017b) and non-adaptive (Jiang et al. 2016; Lokhov et al. 2014) algorithms tai-
lored to the SICTF, whenever possible. We find that both LS and LS+ outperform these 
baseline algorithms in accuracy (probability of finding the correct source).

While the LS/LS+ are designed to be simple algorithms, their theoretical analysis is 
quite challenging. Nevertheless, we are able to provide rigorous results about the source 
identification probability of both algorithms after a series of simplifications to the epi-
demic and mobility models, by extending some recent results on the theory of exponen-
tial random trees (Feng and Mahmoud 2018; Mahmoud 2021), which have previously 
not been connected to the source identification literature. We present these theoretical 
results in “Theoretical results” section, after formally introducing the SICTF, our models 
and the LS/LS+ algorithms in “Models, methods, algorithms” section. By simulations, 
we show that our analytic results approximate the accuracy of the algorithms well, even 
in the most realistic setting in “Simulation results” section. Our analytic results provide 
additional insight into how the parameters of the epidemic and mobility models affect 
the performance of the algorithms. We discuss these insights along with some non-rig-
orous computations that mirror our main proof ideas in Appendix A. Reading Appen-
dix A before Sects. Models, methods, algorithms–Simulation results is useful to build 
intuition, but is not necessary to understand the paper.

Models, methods, algorithms
Epidemic models

The DCS model

We call DCS the model implemented by Lorch et al. (2022). We only use this model for 
validation, but we find it informative to introduce it first, because it inspired many of our 
modelling choices. Since the DCS model is fairly complex, we only give a brief overview.

Each agent in the agent set V can be in one of 8 states: susceptible, exposed, asymp-
tomatic infectious, pre-symptomatic infectious, symptomatic infectious, hospitalized, 
recovered or dead. Transitions between different states are characterized by counting 
processes described by stochastic differential equations with jumps. The most impor-
tant, and also most complicated of these counting processes is the exposure counting 
process Ni(t) , which is modeled by a Hawkes process for each agent i. Hawkes processes 
are point processes with a time-dependent, self-exciting conditional intensity function 
�
∗

i (t)
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where the kernel Ki,j(τ ) indicates whether j has been at time τ at the same site where 
i is at time t, and whether j is in the infectious state. Parameters γ and δ are the decay 
of infectiousness at sites and the non-contact contamination window, respectively, and 
they account for the fact that j can infect i even if they are never at the same site, as j can 
leave some pathogens behind (airborne for instance). Parameter β is the transmission 
rate for symptomatic and asymptomatic individuals, and it comes in two versions: βc 
accounts for infections outside the household and βh accounts for infection in the house-
hold. Parameters βc and βh are fitted to the COVID-19 infection data of Tubingen from 
12/03/2020 to 03/05/2020 using Bayesian Optimization. The model also has a param-
eter for the relative asymptomatic transmission rate built into the function Ki,j(τ ) , which 
scales down the infectiousness of asymptomatic agents (to 55% of the infectiousness of 
symptomatic agents by default).

Once a susceptible agent becomes infected, the disease can take three possible courses 
(see Fig. 2a). With probability pa , the agent becomes asymptomatic infectious after time 
TE , and then recovers after time TI . With probability 1− pa , the agent becomes pre-
symptomatic infectious after time TE , next symptomatic infectious after time TP , and 
then recovers with probability 1− ph after time TI − TP , or becomes hospitalized with 
probability ph after time TH . Agents in the DCS are also assigned age values based on 
demographic data, and the hospitalization probability ph of each agent is determined 
based on its age (following COVID-19 infection data). The times TE ,TP ,TI and TH are 
drawn from an appropriately parametrized (using values from the COVID-19  lature) 
lognormal distribution as shown in Table 2.

The DDE model

Our main model of study is inspired by the DCS model (Lorch et al. 2022), but it is sig-
nificantly simpler to make the theoretical analysis more feasible. In the Deterministically 
Developing Epidemic (DDE) model, continuous time (used in DCS) is replaced by dis-
crete time-steps: we refer to one time-step in the DDE as one day. Instead of model-
ling the infection propagation as a Hawkes process, an infectious agent (symptomatic or 

(1)�
∗

i (t) = β

j∈V \{i}

t

t−δ

Ki,j(τ ) γ e
−γ (t−τ) dτ

Fig. 2 a The flow diagram of the DCS and DDE epidemic models. b A possible epidemic outbreak in the 
Tubingen mobility model, and c the Household network model. The large grey circles mark households, 
and the purple nodes mark places, otherwise we use the same coloring as in a. In both cases b and c, the 
transmission paths are (v2, v4, v5, v8) . In subfigure b, time (t) is measured in days, relative to some arbitrary 
initial time, since the infection time of the source is unknown
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asymptomatic) can infect its susceptible neighbor with probability pi each day. Thereaf-
ter, the disease progresses the same way as in the DCS, except that in the DDE model the 
transition times are deterministic (the infection events and the severity of the disease 
(i.e., the (a)symptomatic and hospitalized states) are still determined randomly), and we 
have a single parameter ph for the hospitalization probability (agents in this model do 
not have an age parameter). We discuss how we set the parameters of the DDE model in 
“Parameters” section.

Simulating mobility

Tubingen mobility model

We briefly review the mobility model introduced in Lorch et al. (2022), and illustrated 
in Fig. 2b. The population is partitioned into households of possibly varying size (usually 
between 1 and 5). The households are assigned a location, and we also place some exter-
nal sites (shops, offices, schools, transport stations, recreating sites) on the map, which 
the agents may visit. The location of the households and the number of agents in them 
is sampled randomly based on demographic datasets. Initially, each agent is assigned a 
few favorite sites (randomly based on distance), and will only visit these throughout the 
simulation. Each agent decides to leave home after some exponentially distributed time, 
visits one of its (randomly chosen) favorite sites, and comes back home after another 
(usually much shorter) exponentially distributed time. If two agents visit the same site 
at the same time, or within some time δ , we record them as a contact, which gives an 
opportunity for the infection to propagate. We denote the Tubingen mobility model as 
TU, and the DCS epidemic model that runs on the TU mobility model as DCS+TU.

Household network model

The Household network model (HNM) was inspired by Lorch et  al. (2022), however 
we note that similar models have been studied in the theoretical community by Ball 
et  al. (2009). As in the Tubingen mobility model, in HNM N nodes are assigned into 
households, but of constant size dh + 1 . Every pair of nodes in the same household are 

Table 2 Default values for the infection parameters in the DCS+TU and the DDE+HNM models

Interpretation Parameter DCS+TU DDE+HNM

Exposed time TE Lognormal distribution with µ = 3.22 , σ = 2.3 3

Pre‑symptomatic time TP Lognormal distribution with µ = 2.3 and σ = 1 2

Infectious time TI Lognormal distribution with µ = 14.0 and σ = 1 14

Hospitalization time TH Lognormal distribution with µ = 7.0 and σ = 1 7

Probability of asymptomatic pa 0.4 0.4

Probability of hospitalization ph Age dependent (mean is 0.0817) 0.083

Probability of infection pi Hawkes process with various parameters
on average ≈ 0.02 for a contact

0.1

External contacts dc From mobility simulation, on average 15 each 
day

3

Number of external infections
caused by a single agent each day

dcpi On average around 0.3 0.3

Household contacts dh From data, on average 1.51 2

Number of nodes (agents) N 9054 400 or 1000
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connected by an edge, forming therefore cliques of size dh + 1 . Additionally, each node 
is assigned dc half edges, which are paired uniformly at random with other half-edges in 
the beginning. Some half-edge pairings can result in self-loops or multi-edges, which 
are discarded. This construction defines a random graph generated by a configuration 
model, which shares a lot of similarities with Random Regular Graphs (RRG) (Wormald 
et al. 1999). In fact, if we join nodes in the same household into a single node in the HNM 
(which we refer to as the network of households of the HNM), then the resulting graph 
is equivalent to the pairing model of RRGs with degree dc(dh + 1) . It is well-known that 
in the pairing model of RGGs of degree d, the local neighborhood (of constant radius, 
as the number of nodes tends to infinity) of a uniformly randomly chosen vertex is a 
d-regular tree (with probability tending to 1), which implies that locally there are asymp-
totically almost surely no self-loops, multi-edges or any cycles in the graph. This result 
has various names; in random graph theory the result is usually proved by subgraph 
counting (Wormald et al. 1999), in probability theory it is the basis of branching process 
approximations (Ball et al. 2009), and in graph limit theory it is called the local conver-
gence to the infinite d-regular tree (Benjamini and Schramm 2011). In our theoretical 
analysis, this result motivates the approximation of the neighborhood of the source in 
the network of households of the HNM by an infinite dc(dh + 1)-regular tree. The HNM 
itself is then approximated by replacing each (household) node of the infinite dc(dh + 1)

-regular tree of households by a (dh + 1)-clique, and by setting the edges so that each 
(individual) node has degree exactly dc + dh , while keeping the connection between 
cliques unchanged (see Fig. 2c for a visualization).

Since the HNM is a time-independent graph, we adopt the standard notations from 
graph theory. Formally, the HNM is given by the set of nodes and edges G = (V ,E) . Let 
us denote by H(v) the set of nodes that are in the same household as node v. The distance 
between two nodes u, v ∈ V  (denoted by d(u, v)) is defined as a number of edges of the 
shortest path between u and v. We denote the DDE epidemic model that runs on the 
HNM network as DDE+HNM.

The source identification via contact tracing framework

We present the Source Identification via Contact Tracing Framework (SICTF), which 
can be applied to both epidemic and mobility models presented so far. The framework 
determines how the government/health agency, which conducts the source identifica-
tion task, learns about the outbreak, and how it can gather further information to locate 
the source. In the SICTF, as in “A simple network and epidemic model and a simple 
algorithm” section, the agency learns about the outbreak when the first hospitalization 
occurs, and it also learns the identity of nodes when they become hospitalized (including 
the identity of the first hospitalized node).

After the outbreak is detected, the agency can make three types of queries. 

(1) The household query with parameter v reveals the agents that live in the same 
household as v. The household query works the same way in both the TU and the 
HNM models, and we do not limit the number of times it can be called (these que-
ries are considered as cheap in the SICTF).
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(2) The contact query reveals the agents who are direct contacts of v. It works differ-
ently in the TU and the HNM models. For the TU model, a contact query has two 
parameters: an agent v and a time window [t1, t2] . As a result, all agents that have 
been in contact with v (and therefore could have infected v or could have been 
infected by v) at an external site between t1 and t2 are revealed. In the HNM, no 
time window is needed for the contact query (which we also call edge query), and 
all neighbors of v in graph G are revealed. Contact (and edge) queries are consid-
ered expensive in the SICTF. While in this paper we do not limit the number of 
available queries, we track the number of contacts and edges that are revealed as 
the algorithm runs. Note that in the TU model if two agents v1 and v2 have been 
in contact during the time window [t1, t2] and also during a different time window 
[t3, t4] , then those are counted as separate contacts, whereas in the HNM an edge 
between v1 and v2 is only counted once. Although contact queries are considered 
expensive, both household and contact queries are answered instantly in the SICTF.

(3) The third kind of query is the test query with parameter v, which reveals informa-
tion about the course of the disease in the queried agent (see Fig.  2a). Sympto-
matic patients reveal the time of their symptom onset (which exactly determines 
their time of infection in the DDE due to the deterministic transition times) if they 
are past the pre-symptomatic state (i.e., if they are either infectious or recovered). 
Asymptomatic and pre-symptomatic patients do not reveal any information about 
their infection time; they just reveal that they have the disease or had the disease at 
some point and have recovered (this assumption is based on the finding that anti-
body tests can detect asymptomatic patients (Lei et al. 2021; Kopel et al. 2021)). 
For all algorithms we assume that asymptomatic patients do not reveal whether 
they have the infection at the time they are queried. Finally, agents who have not 
been exposed, or are still in their exposed state, give a negative test result. Test 
queries are again considered expensive in the SICTF, we even limit the popula-
tion that can be tested on any given day to at most 1% of the total population, due 
to the capacity of testing facilities. However, since in this paper we do not limit 
the number of days that the algorithm can use to locate the source, the limit on 
the number of tests does not play an important role. As opposed to household 
and contact queries (and the model in “A simple network and epidemic model 
and a simple algorithm” section), test results are only answered the next day in the 
SICTF, which means that the algorithms must operate in “real-time”, while the epi-
demic keeps propagating.

We note that the SICTF shares many similarities with the recently proposed framework 
of Waniek et al. (2022), with a few notable exceptions: (i) there are no hospitalizations in 
Waniek et al. (2022), and source detection starts from 10 random nodes after 28 days, 
(ii) in Waniek et al. (2022) asymptomatic patients reveal their infection time, (iii) there 
is no household structure in Waniek et al. (2022), (iv) there is only one type of query in 
Waniek et al. (2022), which is equivalent to our test query, and instead of contact que-
ries, each node reveals 10 of its uniformly random neighbors.



Page 11 of 53Ódor et al. Applied Network Science            (2023) 8:53  

Parameters

The DCS+TU model has many parameters, most of which are fitted to COVID-19 data-
sets of Tubingen from 12/03/2020 to 03/05/2020 by Lorch et  al. (2022) (we show the 
most relevant parameters in Table 2). We determined the parameters of the DDE+HNM 
model so that they fit the parameters of the DCS+TU as closely as possible (see the 
precise values in Table 2). We determine the values of TE ,TP ,TI in the DDE+HNM by 
rounding the expected value of the corresponding distribution in the DCS+TU to the 
nearest integer. Since pa is simply a constant in both models, we keep the same numeri-
cal value in the DDE+HNM. The parameter ph is more complicated, because in the 
DCS+TU model there is a different hospitalization probability for each age group. We 
take the average hospitalization probability across the population to be ph . The most 
complicated parameter to fit is pi , because in the DCS+TU model, infections are mod-
elled by a Hawkes process, which depends on many parameters, including whether the 
infectious agent is symptomatic or asymptomatic, the length of the visit, the site where 
the infection happens, etc (see Eq. (1)). We empirically observe the probability of infec-
tion in every contact in several simulations, and we find that an agent has on average 
15 contacts outside the household each day, and that the average probability of infec-
tion during such a contact is around 0.02. However, since we use smaller networks for 
the DDE+HNM ( N = 400 or 1000, because running the baselines on larger networks is 
not feasible) than the DCS ( N = 9054 ), setting dc to be as high as 15 would violate the 
assumption that the network of households of the HNM can be locally approximated 
by a tree (see “Household network model” section). Therefore we chose dc = 3 for the 
HNM and we scale pi so that dcpi (the expected number of external infections caused 
by a single agent each day) is the same in the DCS+TU and the DDE+HNM models. 
Finally, we choose dh in the DDE+HNM by rounding the average household connec-
tions in the DCS+TU. Note that the average number of household connections is not 
the same as the average number of household members, because the number of con-
nections grows quadratically in the size of the households, and thus fitting to the num-
ber of connections results in a higher dc (due to the Quadratic Mean-Arithmetic Mean 
inequality).

In this paper, we always work with fixed parameters. We believe this is an acceptable 
assumption in our scenario, since we focus on identifying the source within a few days 
after the outbreak is detected, and we do not expect the disease parameters to change so 
quickly (see also Appendix B.1).

Finding the default values for the parameters is useful to create a realistic model. How-
ever, we are also interested in the effect of each of the parameters on the performance of 
our algorithms. Therefore, in the DDE+HNM, we vary the parameters pa, ph, pi, dh and 
dc , while keeping the other ones unchanged. For the DCS+TU model, we also keep the 
mobility model fixed and we focus on varying the parameters pa, ph and pi . As noted 
above, there is no single parameter ph or pi in the DCS+TU model, therefore we change 
all hospitalization probabilities and all intensities of the Hawkes processes so that the 
hospitalization probability averaged across the population and the infection probability 
averaged across contacts equal the desired values.
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The LocalSearch algorithms LS and LS+
The LS algorithm finds patient zero by local greedy search. It keeps track of a candi-
date node, which is always the node with the earliest reported symptom onset time. We 
denote the candidate of the algorithm at iteration i > 0 by sc,i . We think of sc as a list, 
which is updated in each iteration of the algorithm, and we use the notation sc,−1 for the 
last element of the list (i.e., the current candidate). In each iteration of the algorithm, we 
compute a new candidate denoted by s′c , and we append it at the end of the list sc at the 
beginning of the next iteration, unless s′c = sc,−1 , in which case the algorithm terminates.

Since we consider the SICTF, the outbreak is detected when the first hospitalized case 
is reported. At that time, s′c is initialized to be the hospitalized patient, the test queue is 
initialized to be empty, and the algorithm is started. In the beginning of an iteration, if 
the test queue is empty, the household members and the “backward” contacts of the cur-
rent candidate sc,−1 are queried and are added to the test queue (see Fig. 3a). We define 
“backward” contacts as the set of nodes that have been in contact with sc,−1 in the inter-
val [tsc,−1 − (TE + TP)− (σE + σP), tsc,−1 − (TE + TP)+ (σE + σP)] , where tsc,−1 is the 
symptom onset time of current candidate sc,−1 . The terms σE and σP model the standard 
deviation of the transition times, and they are set to zero for the DDE and to σE = 2 and 
σP = 1 for the DCS based on Table 2. We note that the notion of “backward” contacts is 
only meaningful in the case of time-dependent network models; for the HNM, all neigh-
bors are counted as backward contacts.

After the test queue is initialized, the agents inside the queue are tested (see Fig. 3b). 
Not all nodes can be tested on the same day because of the limitation on the number of 
tests available per day in the SICTF, however, this has little effect because we do not pro-
ceed to the next iteration until the test queue becomes empty. Once the test results come 
back to the agency, if any of the (symptomatic) nodes v reports an earlier symptom onset 
time than the current candidate sc,−1 , then we update our next candidate s′c to be v (see 
Fig. 3c). We note that the iteration does not stop immediately after s′c is first updated; 
the iteration runs until the test queue becomes empty, and until then, s′c can be updated 
multiple times. This is important in the theoretical results to prevent the algorithm from 

Fig. 3 Pseudocode and graphical explanation for the LS algorithm. We use the same coloring as in Fig. 2a. 
Black edges show the queried edges, a node with black cross (X) marks a negative test result, and red stroked 
node marks the node currently maintained as source candidate by the LS algorithm. We denote by tv the 
symptom onset time of symptomatic node v and by H(v) the household of a node v similarly to the main text
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getting sidetracked (see Fig. 10). We also experimented with a version of the LS and LS+ 
algorithms where the iteration stops immediately once s′c is updated; we call these algo-
rithms LSv2 and LS+v2.

We note that if we tried to adapt the source identification algorithm of Waniek et al. 
(2022) to the SICTF, we would get back the LS algorithm. Indeed, Waniek et al. (2022) 
keeps track of a testing queue, and for parameters βtr and ωtr , they test the neighbors of 
the βtr earliest nodes v of the testing queue, in the time window [tv + ωtr − 6, tv + ωtr] . 
They find that for the best source identification results, one should choose both βtr 
and ωtr as low as possible. In our case, these minimal values amount to βtr = 1 and 
ωtr = −(TP + TE) , and for these parameters, the algorithm of Waniek et  al. (2022) is 
essentially the same as the LS algorithm.

The main drawback of the LS algorithm is that is gets stuck very easily if there is even 
one asymptomatic node on the transmission path. For this reason, we introduce the LS+ 
algorithm, in which we enter the backward contacts of the asymptomatic household 
members of sc,−1 , and the household members of any asymptomatic node into the test-
ing queue (see Fig. 4d–f). Since the symptom onset times of asymptomatic nodes v are 
not revealed, we define backward contact in this case as any contact in the time win-
dow [tsc,−1 − (TP + 2TE + TI ), tsc,−1 − (TP + 2TE)] , where tsc,−1 is still the symptom onset 
time of the current candidate sc,−1 . Indeed, in the DDE model, since sc,−1 was infected 
at tsc,−1 − (TP + TE) , if v infected sc,−1 , agent v must have been infectious at that time, 
which implies that v could not have been infected later than tsc,−1 − (TP + 2TE) or earlier 
than tsc,−1 − (TP + 2TE + TI ) . In the DCS model, the terms σE and σP can be subtracted 
and added to the two ends of the queried time window to account for the randomness in 
the transition times.

Theoretical results
In this section we present theoretical results for the LS and LS+ algorithms described 
in “The LocalSearch Algorithms LS and LS+” section. We follow a similar approach as 
in the non-rigorous computation in “Back of the envelope calculation” section, which is 
useful but not necessary for understanding this section. All the statements are rigorously 

Fig. 4 Pseudocode and graphical explanation for the LS+ algorithm, similarly to the LS algorihtm in Fig. 3. 
The difference between the two algorithms is only in the innermost for loop, after the first if statement
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established, and whenever we reach a point where the computations would become 
intractable, we propose a simpler approximate model to study. One of the main con-
tributions of this paper is to identify which computations can be done on more general 
models, and which computations need more simplified ones (see Fig. 5 for an overview 
of the different models used for the computations in this section). In fact, none of our 
theoretical results hold for the HNM and the DDE models. Already in a first step, we 
need to approximate the HNM model with a tree graph, because finding the exact infec-
tion probabilities of nodes in epidemic models on loopy networks is notoriously difficult 
(Auffinger et al. 2015).

We compute the source identification probability of the LS and LS+ algorithms in 
two steps. First, we consider a tree approximation of the HNM called the Red-Blue 
(RB) tree (defined in “Red-Blue tree models” section), and a slightly modified version 
of the DDE model called DDENR , and we compute the source identification probabili-
ties conditioned on the length of the transmission path in “Source identification prob-
ability of LS and LS+ algorithms on the RB tree” section. This simplification allows 
us to provide analytical results, while still preserving most of the properties of the 
original models.

For the second step, we would need to compute the distribution of the transmis-
sion path on the RB tree. However, finding a closed form expression is still intracta-
ble. Instead, we combine the network and epidemic models into a growing random 
tree model, and we consider a d-ary Random Exponential Tree (RET). The d-ary RET 
model has only been studied for d = 2 (Feng and Mahmoud 2018); we extend the 
results on their expected profile for general d in “dr, d-ary random exponential tree” 
section. Nevertheless, working on d-ary RETs still remains difficult, and therefore, in 
our last modeling step, we introduce a Deterministic Exponential Tree (DET) model, 

Fig. 5 The different approximation methods (a) and the distribution of the length of transmission path 
in the different models (b) proposed in “Theoretical results” section. Panel b also shows the length of the 
transmission path in the DCS model on the TU dynamics, to highlight the fit of our model
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whose profile is close to the expected profile of the RET, and we compute the distribu-
tion of the transmission path on this model in “Deterministic exponential tree with 
parameters pa,ph and (ct,I)t,I∈N” section.

To summarize all models considered in this paper, we have a data-driven and a syn-
thetic model for simulations (DCS+TU and HNM+DDE), an analytically tractable 
model (RB-tree+ t DDENR ) where we can compute the source identification probabil-
ity if the length of the transmission path is known. In a second stage, we compute the 
distribution of a transmission path on a deterministic tree (DET), which has a similar 
profile as a random tree (RET) that approximates our analytically tractable model. We 
visualize these five different models in Fig. 5a, and we show by simulations in Fig. 5b 
that the distribution of the transmission path is similar in all of the considered models 
with appropriately scaled parameters. We compare our analytic results on the source 
identification probabilities of the LS and LS+ algorithms with our simulation results 
in “Comparison of simulations and theoretical results” section in Fig. 7.

Source identification probability of LS and LS+ algorithms on the RB tree

In this section we introduce the Red-Blue (RB) tree model (which is a tree approxima-
tion to the HNM), and we calculate the exact probability that the LS and LS+ algorithms 
find the source, if the length of the transmission path is known.

Red–blue tree models

In short, a RB tree is a two-type branching process with a deterministic offspring distri-
bution that depends on dh and dc . The lack of randomness in this distribution makes us 
adopt the formalism of deterministic rooted trees.

Definition 3.1 Let a rooted tree, denoted by G(s), be a tree graph with a distin-
guished node root node s. Let u and v be two nodes connected by an edge in G(s). If 
d(u, s) < d(v, s) , we say that u is a parent of v, otherwise u is a child of v. Moreover, if 
d(s, v) = l we say that v is on level l. An RB tree with parameters (dc, dh) is an infinite 
rooted tree, such that the nodes also have an additional color property. The root is always 
colored red and the rest of the nodes are colored red or blue. The root has dc red and dh 
blue children. Every other red node has dc − 1 red and dh blue children, and every blue 
node has dc red children and no blue child. Red nodes and their dh blue children partition 
the nodes of the RB tree G(s) into subsets of size dh + 1 , which we call households.

Remark 3.1 In the RB tree, each blue node has degree dc + 1 , and each red node has 
degree dc + dh , including the root of the tree s (which is the source of the epidemic, 
when the RB tree is combined with an epidemic model).

The RB tree can be seen as a local tree approximation of the HNM. Let G = (V ,E) 
be an HNM with parameters (dc, dh) , and let s ∈ V  be the distinguished source node. 
In “Household network model” section we noted that the HNM can be approximated 
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locally around the source node by replacing each node of an infinite dc(dh + 1)-regular 
tree by a (dh + 1)-clique, and setting the edges so that each node has degree exactly 
dc + dh , while keeping the connection between cliques unchanged. Let us call this infi-
nite graph G∗ . Although G∗ is not a tree, all cycles in G∗ must be contained entirely 
inside the households, which implies that in each household there exists exactly one 
node that has the minimal distance to the source. We will refer to these nodes with 
minimal distance to the source as the red nodes, and we color the rest of the nodes blue. 
In other words, the red nodes will be the first ones in their households to be infected. 
Let us now delete the edges between the blue nodes in G∗ to obtain graph G′ . We claim 
that G′ is isomorphic to the RB tree G(s) rooted at the source s. Indeed, since the edges 
between blue nodes have been deleted in G∗ to form G′ , each blue node has dc + 1 red 
neighbors and no blue neighbor, and since the edges incident to red nodes have been 
unchanged, each red node has dc red and dh blue neighbors, exactly as in the definition 
of RB tree above.

Note that a household in G∗ is completely characterized by only specifying the colors 
of the nodes: a household always consists of one red node and of its dh blue children. We 
use this characterization as a definition for households in the RB tree G′ , because it does 
not depend on the edges from G that are deleted in G∗ , whereas this deletion makes the 
original definition of a household as a clique in G unusable.

Next, we make some important observations the behavior of the LS and the LS+ algo-
rithms on RB trees, which we prove in Appendix C.1. We start by formalizing the notion 
of transmission path.

Definition 3.2 Let h be the first hospitalized node and s be the source. We call the path 
(s = v0, v1, ...vl = h) , where vi is the infector of vi+1 for 0 ≤ i < l , the transmission path. 
Also we call the path (vl , vl−1, ...v1) the reverse transmission path.

Remark 3.2 Note that in an RB tree, each household traversed by a transmission path 
shares one (the red node in the household) or two (the red node of the household and 
one of its dh children in the household) nodes with this path. Moreover, the red node 
of a household traversed by a transmission path is followed by another red node on the 
path (in another household) if it is the only node of that household on the transmission 
path, whereas it is followed by a blue node (in the same household) if two nodes of that 
household are on the transmission path.

Lemma 3.3 In the RB tree network, the LS algorithm finds the source if and only if all 
nodes on the transmission path are symptomatic, and the LS+ algorithm finds the source 
if among the nodes of the transmission path, there exists a symptomatic node in each 
household, and the source is symptomatic.
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Remark 3.3 We note that the statement for LS+ in Lemma 3.3 cannot be reversed, 
i.e., it is possible that LS+ finds the source even if among the nodes of the transmission 
path, there is a household with no symptomatic node (see Fig. 10a). Also, the proof of 
Lemma 3.3 does not hold if the LS+ algorithm proceeds to the next iteration at the first 
time s′c is updated (see Fig. 10b). Finally, in the proof of Lemma 3.3, we do not make 
any assumptions about asymptomatic patients having had the disease previously or 
not, which implies that we could treat non-complying agents as asymptomatic patients 
without jeopardizing the correctness of the algorithms.

The DDENR model

Focusing on tree networks is an important step towards making our models tractable 
for theoretical analysis, but it will not be enough; we will make two minor simpli-
fications to the DDE model as well: we eliminate (i) the pre-symptomatic state and 
(ii) the recovered state, and we call the new model DDENR (where NR stands for No 
Recovery). (i) The first assumption can be made without loss of generality, because 
the pre-symptomatic state does not have any effect on the disease propagation, nor 
on the success of the LS and LS+ algorithms. Indeed, according to Lemma 3.3, the 
success of the LS and LS+ algorithms depends only on the information gained about 
the transmission path, and by the time of the first hospitalization, every node on the 
transmission path must have left the pre-symptomatic state (since we always have 
TP < TE + TH ), even if we include it in the model. (ii) The second assumption on the 
absence of recovery states amounts to take TI → ∞ , which does have a small effect 
on the disease propagation, however, this effect is minimal because TI = 14 is already 
quite large, and because only the very early phase of the infection is interesting for 
computing the source identification probabilities of the algorithms. Finally, this 
last assumption has no effect on the information gained by the algorithm since we 
assumed that recovered patients (who were symptomatic) can remember and reveal 
their symptom onset time in the same way as symptomatic infectious patients.

Source identification probability of LS

Assuming that the distribution of length of the transmission path is provided for us 
(we give an approximation in “Approximating the depth of the path to the first hos-
pitalized node” section), the source identification probability of LS can be computed 
succinctly. We need a short definition before stating our result.

Definition 3.4 Let p be the probability that a node is asymptomatic conditioned on the 
event that it is not hospitalized.

A simple computation shows that

(2)p = P(v is asy | v is not hosp) =
pa

pa + (1− pa)(1− ph)
.
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Lemma 3.5 For the DDENR epidemic model with parameters (pi, pa, ph) on the RB tree 
with parameters (dc, dh) , and with p computed in Eq. (2), we have

We defer the proof of the lemma to Appendix C.2.

Remark 3.4 Since we approximate the HNM with an infinite tree, we have an infinite 
sum in Eq. (3). However, since in a real network d(s, h) is upper bounded by the 
diameter of the network, and since the contributions of the terms drop very fast with n, 
for all practical purposes the sum can be taken until a small finite number instead.

Source identification probability of LS+
Computing the source identification probability of the LS+ algorithm is far more chal-
lenging compared to the LS algorithm, even if the distribution of the length of the trans-
mission path is provided to us. Indeed, since the LS+ algorithm does further testing on 
the contacts and household members of asymptomatic nodes, it is essential to have addi-
tional information about the number of households on the transmission path. We give 
our main result on the LS+ in the next theorem, which we prove in Appendix C.3.

Theorem  3.6 Let p be as in (2) and let S(n,α,β) be the set of k integer values such 
that k and n have different parity and n+ 1− 2(α + β) ≥ k ≥ 2− (α + β) . Then, for 
the DDENR epidemic model with parameters (pi, pa, ph) on the RB tree with parameters 
(dc, dh) , we have

where

The formula in Theorem  3.6 still assumes that the distribution of the length of the 
transmission path P(d(s, h) = n) is provided for us. We approximate this distribu-
tion analytically in the next section, and we give an interpretation of Theorem  3.6 

(3)P(LS finds the source) =

∞
∑

n=0

(1− p)nP(d(s, h) = n).

(4)

P(LS+ finds the source) ≥ P(d(s, h) = 0)+ (1− p)P(d(s, h) = 1)

+

∞
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2D(dc − 1+ D)

(7)�2 =
(D − dc − 1)(2dh + dc − 1− D)

2D(dc − 1− D)
.
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afterwards in Remark 3.6, “Comparison of simulations and theoretical results” section 
and Appendix A.

The additional complexity in (4) compared to (3) comes from the fact that unlike LS, 
the LS+ algorithm makes use of the household structure of the network, and we need 
to count of the number of paths of a given length n in the RB tree separately depend-
ing on how the path is embedded in the household structure. This requires us to intro-
duce some binary parameters α (resp, β ) that indicate whether the source node (resp, 
the last node of the path) is in the same household as another node on the path, and an 
integer k counting the number of nodes not sharing a household with another node on 
the path. The precise definition of these parameters can be found in Definition C.5 in 
Appendix C.3.

Approximating the depth of the path to the first hospitalized node

(dr , d)‑ary random exponential tree

When we introduced the DDENR model in “The  DDENR model” section, we removed 
both parameters TP and TI from the DDE model (by removing the presymptomatic and 
the recovered states, respectively), but we kept the parameter TE . In this step we will 
rescale the time parameter to make T ′

E = 1 by changing p′i to be 1− (1− pi)
TE . Since we 

had TE = 3 by default, using T ′

E and p′i instead of TE and pi means that we choose 3 days 
to be our time unit, and the probability of infection is scaled to be the probability that 
the infection is passed in at least one of three days (since the RB tree is time-independ-
ent, if two nodes are connected, the infection can spread on it every day). We drop the 
prime from p′i and T ′

E for ease of notation. As a second approximation, instead of keep-
ing track of two types of nodes (red and blue) as it is done in the RB tree, we propose to 
change our network model to an infinite d-regular tree, where d is set to be the average 
degree of an RB tree.

By making these two changes (tracking time at a coarser scale and simplifying the 
network topology to a d-regular tree), the growth of the epidemic becomes equiva-
lent to a known model, the d-ary Random Exponential Tree (d-RET). Binary RETs 
have been introduced in Feng and Mahmoud (2018). We give the definition below for 
completeness.

Definition 3.7 A d-ary Random Exponential Tree (d-RET) with parameters d, pi at 
time day t, denoted by Gt(s) , is a random tree rooted at node s. At day 0, the tree Gt(s) 
only has its root node s. Let Ḡt(s) be the closure of Gt(s) , which is obtained by attach-
ing external nodes to Gt(s) until every internal node (a node that was already present in 
Gt(s) ) has degree exactly d in the graph Ḡt(s) . Then, Gt+1(s) is obtained from Ḡt(s) by 
retaining each external node with probability pi , and dropping the remaining external 
nodes.

Indeed, each node of a d-RET infects a new node with probability pi each day, and 
after a sufficiently long time, the d-RET becomes close to a large d-ary tree. Of course, 
we do not want to let the d-RET grow for a very long time, we only want it to grow 
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until the first hospitalization occurs. So far we have not talked about the course of the 
disease of the nodes in the d-RET model because we could define the spread of the 
infection without it. Since we still need to do one final simplification to compute the 
distribution of the transmission path, we defer the discussion about hospitalizations, 
and how the parameters pa and ph are part of the model, to “Deterministic exponen-
tial tree with parameters pa,ph and (ct,I)t,I∈N” section. Note that by considering the d-
RET, we deviate from the idea of separating the epidemic and the network models; we 
only have a randomly growing tree, which is stopped at some time, when the tree is 
still almost surely finite.

So far we only did simplifications to the model, which resulted in further and fur-
ther deviations from the original version. Now we will make a small modification that 
brings our model back closer to the RB tree, without complicating the computations too 
much. We still make almost all maximum degrees of the RET uniform d, but we make an 
exception with the root, which will have maximum degree dr = dc + dh . This makes the 
maximum degree of the root the same as the degree of the root of the RB tree. We call 
the resulting model a (dr , d)-RET with parameter pi . Since the close neighborhood of 
the source has a high impact on the source identification probability, we found that this 
solution gives the best results while keeping the computations tractable.

In our computations, only the profile the infection tree will be important, which 
motivates the next definition.

Definition 3.8 In the (dr , d)-RET model with parameter pi , let At,l be the number 
of nodes during day t at level  l, and let at,l = E[At,l] . Moreover, we define the random 
variable

with A−1,l = 0 for all l, and its expectation at = E[At ].

As noted earlier, the d-RET model has only been analyzed for d = 2 to this date. We 
provide the expected number at,l of nodes at level l in day t for the general case in the 
next theorem and corollary, which we prove in Appendices  C.4 and C.5.

Theorem 3.9 In the (dr , d)-RET with parameter pi , let at,l be as in Definition 3.8. Then

(8)At =

+∞
∑

t=0

At,l

(9)at,0 = 1

(10)at,l = drpi

t−1
∑

m=l−1

(

m
l − 1

)

(1− pi)
m−l+1dl−1pl−1

i , for t ≥ l ≥ 1

(11)at,l = 0, for l > t.
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Corollary 3.10 In the RET(pi, dr , d) , let at be the expectation of (8), as in Definition 3.8. 
For t ≥ 0,

Deterministic exponential tree with parameters pa, ph and (ct,l)t,l∈N
In the (dr , d)-RET model it is still complicated to calculate the distribution of the depth 
of the first hospitalized node. For this reason, we approximate the RET model by a deter-
ministic time-dependent tree with a prescribed profile.

Definition 3.11 Let (ct,l)t∈N⋃

{−1},l∈N be a two-dimensional array with ct,l = 0 for 
t ∈ {−1, 0} and l ∈ N , except for c0,0 = 1 , and with ct,l ≥ ct,l−1 for any t and any l ≥ 1 . 
Additionally, if we define ct =

∑

l ct,l , then the array (ct,l) must satisfy ct > ct−1 for 
t ≥ 0 . Then, we define the Deterministic Exponential Tree (DET) with parameter 
(ct,l)t∈N

⋃

{−1},l∈N , as a time-dependent rooted tree, that has exactly ct,l nodes on level l at 
time t. The edges between the adjacent levels are drawn arbitrarily so that the tree struc-
ture is preserved.

The formal assumptions on the array (ct,l) are simply made to ensure that the DET 
starts with a single node at t = 0 , that it never shrinks on any level ( ct,l ≥ ct,l−1 ), and that 
it grows by at least one node in each time step ( ct > ct−1).

We have defined the DET at any given time t, however, to determine the length of the 
transmission path, we are not interested in the DET at any given time, but only when the 
first hospitalization occurs.

To compute the distribution of the first hospitalized node, we would like to have an 
absolute order on the times when the nodes are added, which we do by randomization. 
We say that on day t, nodes are added one by one to the DET, their order given by a uni-
formly random permutation, and each node is hospitalized with probability (1− pa)ph 
(as in the original DDE model). When the first hospitalization occurs, we stop growing 
the tree, and we call the resulting (now random) model a stopped DET with parameters 
(ct,l), pa, ph . We find the transmission path length distribution on the stopped DET in 
the next lemma, which we prove in Appendix C.6.

Lemma 3.12 Let us consider the stopped DET model with parameters (ct,l), pa, ph , and 
let h denote the first hospitalized node. Then

(12)at = 1+ dr
(1− pi + dpi)

t
− 1

d − 1
.

(13)

P(d(s, h) = l) =

+∞
∑

t=0

ct,l − ct−1,l

ct − ct−1
(1− (1− pa)ph)

ct−1
(

1− (1− (1− pa)ph)
ct−ct−1

)

.
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We would like to set ct,l so that the DET is close to the RET described in “dr,d-ary 
random exponential tree” section. For Eq. (13) to make sense, we should substitute inte-
ger values for ct,l , however, for an approximation, the equation can also be evaluated for 
fractional values as well.

Remark 3.5 If we substitute ct,l = at,l and ct = at in Eq. (13), where at,l is given in 
Theorem 3.9 and at is computed in Corollary 3.10, then we get the expression

which approximates the distribution of the transmission path length in the (dr , d)-ary 
RET stopped at the first hospitalization.

Remark 3.6 To arrive to the source identification probabilities of LS and LS+, Eq. 
(14) needs to be substituted into Lemma 3.5 and Theorem 3.6. We perform this task 
numerically in Fig. 7 to see how close our analytic approximations are to the original 
HNM+DDE model. However, the main value of these theoretical tools is that by 
studying the analytical expressions, we can gain insight into the mathematical properties 
of the source identification probability function (see Sects. Comparison of simulations 
and theoretical results and Appendix A).

Simulation results
Baseline algorithms

Non‑adaptive baseline: dynamic message passing

Besides Waniek et al. (2022), which is essentially equivalent to the LS algorithm (see “The 
LocalSearch Algorithms LS and LS+” section), there are few source identification algo-
rithms that are compatible with time-varying networks in the literature (Huang 2017; Jiang 
et al. 2016; Fan et al. 2020; Chai et al. 2021). The most promising one among these algo-
rithms (Jiang et al. 2016) has a close resemblance to the a previous work of Lokhov et al. 
(2014) on Dynamic Message Passing (DMP) algorithms. Given the initial conditions on the 
identity of the source node and its time of infection, the DMP algorithm approximates the 
marginal distribution of the outcome of an epidemic at some later time t. The algorithm 
is exact on tree networks, and it computes a good approximation when there are not too 
many short cycles in the network. Therefore, the DMP algorithm can be used to approxi-
mate the likelihood of the observed symptom onset times for any (source,time) pair. Due to 
its flexibility, we were able to adapt the DMP algorithm to the SICTF (see Appendix D for 
more details).

Originally, the DMP was applied to the source identification problem by computing 
the likelihood values for all possible (source,time) pairs, and then choosing the source 
node from the most likely pair as the estimate (Lokhov et al. 2014). However, testing all 
(source,time) pairs increases the time complexity of the algorithms potentially by a factor 

(14)

drp
l−1
i dl−1

+∞
∑

t=l

(

t − 1

l − 1

)

(1− pi)
t−l

(1− pi + dpi)t−1
(1− (1− pa)ph)

1+dr
(1−pi+dpi )

t−1
−1

d−1

(

1− (1− (1− pa)ph)
dr (1−pi+dpi)

t−1)
)

,
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Fig. 6 The performance of the algorithms LS, LS+, R and SG if the metric is the probability of finding the 
source (solid curves) or the first symptomatic patient (dashed curves). The simulations were computed on a 
population of n = 400 individuals in the DDE model on the HNM, and each datapoint is the average of 4800 
independent realizations except for the SG algorithm, which was run with 192 independent realizations. The 
confidence intervals for the source identification probabilities are computed using the Wilson score interval 
method, and for the tests and the queries using the Student’s t‑distribution

Fig. 7 The source identification probability of the LS and LS+ algorithms (solid curves) and their theoretical 
estimate (dash‑dotted curves) with the source identification probabilities computed in Lemma 3.5 and 
Theorem 3.6, while the transmission path distribution computed in Eq. (14) until path length d(s, h) = 20 
(which is larger than the diameter of the simulated networks, see Remark 3.4). The simulation results were 
generated using the DDE model on HNM networks of size n = 1000 with 4800 independent samples. The 
95% confidence intervals are computed using the Wilson score interval method
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of N 2 , which makes the algorithm intractable in many applications. Jiang et al. (2016) pro-
posed a very similar algorithm to the DMP equations (which is unfortunately not exact 
even on trees), and solved the issue of intractability by a heuristic preprocessing step to 
the DMP algorithm. This preprocessing step identifies a few candidate (source,time) pairs, 
by spreading the disease backward from the observations in a deterministic way (called 
reverse dissemination). Since we already approximate our data-driven model (DCS) by an 
epidemic model with deterministic transition times (DDE), it is natural for us to also imple-
ment the deterministic preprocessing step proposed by Jiang et al. (2016). We produce 5 
(source,time) pairs which are feasible for the 5 earliest symptom onset time observations 
(see Appendix  D.3 for more details). It would have been ideal to run the algorithms for 
more than 5 pairs, but this was made impossible by the runtimes becoming very high. We 
run therefore our implementation of the DMP algorithm with the previously computed fea-
sible (source,time) pairs as initial conditions to find the most likely source candidate.

The source estimation algorithms developed using the DMP algorithm do not specify 
how the sensors should be selected, and therefore place these non-adaptive sensors ran-
domly. We refer to the resulting algorithm as random+DMP. The number of sensors is set 
so that it always exceeds the number that LS/LS+ would use. The simulation results are 
shown in Fig. 6 for the DDE+HNM model. Importantly, the deterministic preprocessing 

Fig. 8 The performance of the algorithms LS, LS+ and random+DMP on the DCS model with the Tubingen 
dynamics if the metric is the probability of finding the source (solid curves) or the first symptomatic 
patient (dashed curves), together with the theoretical results (dash‑dotted lines), as shown in Fig. 7. The 
simulations were computed on a population of n = 9054 individuals, and each datapoint is the average 
of 2400 independent realizations for the LS/LS+/LSv2/LS+v2 algorithms, and 48 independent realizations 
for the random+DMP algorithm. The default population and infection parameters were selected to match 
the population and COVID‑19 infection datasets of Tubingen. As in all of the experiments, the algorithms 
were allowed to test 1% of the population (in this case 90 individuals) each day, and the algorithms finished 
(successfully or not) after 3–8 days after the first hospitalization occured
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step of Jiang et al. (2016) is compatible with time-varying networks, which allows us to run 
the algorithm for the DCS+TU model as well (see Fig. 8).

Adaptive baseline: size‑gain

The Size-Gain (SG) algorithm was developed for epidemics which spread deterministically 
(Zejnilović et al. 2015), and has been later extended to stochastic epidemics (Spinelli et al. 
2017b). It works by narrowing a candidate set based on a deterministic constraint. If v1, v2 
are symptomatic observations, then sc is in the candidate set of SG if and only if

where σ is the standard deviation of the infection time of a susceptible contact. If one 
of the observations, say v2 , is negative, then SG uses a condition almost identical to Eq. 
(15), except that the absolute value is dropped, since a negative observation at time tv2 
is only a lower bound on the true symptom onset time of v2 . These deterministic con-
ditions are checked for every symptomatic-symptomatic or symptomatic-negative pair 
(v1, v2) to determine if sc can be part of the candidate set. Next, SG places the next sensor 
adaptively at the node which reduces the candidate set by the largest amount in expecta-
tion (assuming a uniform prior on the source and its infection time), and it terminates 
when the candidate set shrinks to a single node. Note that the SG algorithm can fail if at 
least one of the deterministic conditions in Eq. (15) is violated for some (v1, v2) because 
of the randomness of the epidemic.

We use the existing implementation of the SG algorithm by Spinelli et al. (2017b), 
and adapt it to the SICTF. We incorporate asymptomatic-symptomatic and asymp-
tomatic-negative observations (v1, v2) the same way as symptomatic-negative are 
incorporated; we drop the absolute value sign in Eq. (15), because an asymptomatic 
observation at time tv1 is only an upper bound on the true symptom onset time of v1 . 
We impose the same daily limit to the number of sensors that can be placed by the 
SG algorithm in a single day as for the LS/LS+ algorithm, and if the candidate set size 
does not shrink to one on the day when both LS and LS+ have already provided their 
estimates, then the SG algorithm must make a uniformly random choice from the 
current candidate set as its source estimate. The simulation results are shown in Fig. 6 
for the DDE+HNM model. We do not implement the SG algorithm for the DCS+TU 
model, because its runtime is too high, and because it is not clear how it should be 
implemented for time-varying networks.

Comparison with baselines

We show our simulation results comparing the random+DMP, SG, LS and LS+ 
algorithms in Fig.  6. In the first row of Fig.  6, we show the accuracy of the algo-
rithms with solid curves. Since the LS/LS+ algorithms cannot identify an asymp-
tomatic source, we also show what the accuracy would look like if the goal of the 
SICTF was to identify the first symptomatic agent with dashed lines. It is clear that 
in both metrics and across a wide range of parameters, the LS+ algorithm performs 
best, followed by LS, next random+DMP, and finally SG. The only exception is for 
high values of pi , where SG performs best. The good performance of SG for these 

(15)|(tv2 − tv1)− (d(v2, sc)− d(v1, sc))| < σ(d(v2, sc)+ d(v1, sc)),
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parameters is expected, because SG was originally developed for deterministically 
spreading epidemics (i.e., pi = 1 ). For the other parameter ranges, one could argue 
that the comparison is not fair, since the baseline algorithms were developed for dif-
ferent frameworks. Nevertheless, as any with new framework, we find it important 
to quantify the performance of the previously proposed algorithms in the SICTF, to 
motivate the need for the LS and the LS+ algorithm.

In the second row of Fig. 6, we show the number of test/sensor queries used by the 
algorithms. LS uses the fewest tests, followed by LS+ (except for large values of pi ). 
Finally, in the last row of Fig. 6 we show the number of contact (or in this case edge) 
queries used by the algorithms. Again, LS uses fewer queries than LS+, while both 
the random+DMP and SG algorithms query essentially the entire network.

Figure  6 shows that the LS/LS+ algorithms are fairly robust to changes in the 
parameters of the model, except for the parameter pa . Indeed, if there are many 
asymptomatic nodes in the network, then source identification becomes very chal-
lenging. It may be surprising that as pa grows, the number of tests that LS uses 
decreases, contrary to LS+. This is because as pa grows, the LS algorithm gets stuck 
more rapidly, while the LS+ algorithm compensates for the presence of asympto-
matic nodes by using more test/sensor queries.

Comparison of simulations and theoretical results

The analytic results from “Theoretical results” section are in good agreement with 
the simulation results in Fig.  7. We also experiment with changing the parameters 
dh , dc while keeping all the parameters fixed, and with changing dc while keeping the 
product dcpi fixed. We observe that LS is not affected by the parameter dh , whereas 
LS+ performs better with a higher dc , which is expected because LS+ leverages 
the household structure of the network to improve over LS. Surprisingly, we also 
observe that a higher dc also improves the performance of both algorithms. This 
can be explained by the fact that a larger dc implies that there are more nodes in 
the close neighborhood of the source, which results in shorter transmission paths, 
making source identification less challenging. Finally, if we increase dc but keep dcpi 
fixed, the performance of the algorithms does not change as much, which confirms 
the intuition that it is the number of infections caused by an infectious node in a 
single day that matters the most. These qualitative results are in agreement with our 
naive approximations in Appendix A and by the simulation results of Waniek et al. 
(2022) in a similar source identification framework.

Simulations on the DCS model

As validation, we show our simulation results on our most realistic DCS+TU model in 
Fig. 8. We make very similar observations on this model as the ones that we have made 
on the DDE+HNM model in “Comparison with baselines and Comparison of simula-
tions and theoretical results” sections, which shows that the LS/LS+ algorithms and our 
analysis of their performance is robust to changes in the epidemic and network models.

In the DCS+TU model, we used a fixed limit on the number of sensors that the 
random+DMP model selects, instead of setting the limit based on the LS+ algorithm. As 
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a result, for a few parameters the LS+ algorithm used more tests than the random+DMP 
model. However, we note that by updating the candidate node immediately after an ear-
lier symptom onset time is revealed (see “The LocalSearch Algorithms LS and LS+” sec-
tion), we can essentially cut the number of required tests for the LS+ algorithm by half 
(LSv2 and LS+v2), without sacrificing the performance of the algorithms.

Discussion
We introduced a new source identification framework, the SICTF, and two source iden-
tification algorithms, the LS and the LS+. We find that both LS and LS+ outperform 
baseline algorithms, even though the baselines essentially query all contacts on a trans-
mission path between agents, while LS and LS+ query only a small neighborhood of the 
source.

We showed that the LS/LS+ algorithms are robust to changes in the the parameters, and 
also changes in the epidemic and the mobility models. We supported our arguments by theo-
retical analysis, and by simulation results on a state of the art COVID-19 simulator developed 
in Lorch et al. (2022).

Theoretical analysis of source identification is a challenging mathematical task on 
loopy graphs. In this paper, we provide results on a series of tree approximations of the 
original graph. It is an interesting future direction to quantify how tight these approxi-
mations are, or to provide tight theoretical results without tree approximations.

Another interesting question is whether the LS/LS+ can be improved to also be robust 
to imprecise reporting, or the presence of multiple variants of the same disease. On the 
more applied side, we believe that the “low-tech” approach in the design of the LS/LS+ 
algorithms increases their potential to be implemented in real-world scenarios, similarly 
to contact tracing applications (Kendall et al. 2023; Troncoso et al. 2020).

Fig. 9 a–c shows the spread of the infection in the model considered in “A simple network and epidemic 
model and a simple algorithm” section, which is equivalent to the growth of the RERT, with d = 2 . Dark 
blue edges show the contacts on day t, and light blue edges show contacts present on previous days (and 
thus subfigures). Orange (resp., red; black) nodes mark symptomatic non‑hospitalized (resp, asymptomatic; 
symptomatic hospitalized) nodes. d–f shows the LS source identification algorithm introduced in “Back of 
the envelope calculation” section, which finds the source in this example because there are no asymptomatic 
nodes on the transmission path between the first hospitalized node and the source. Black edges show the 
queried edges, and black stroke marks nodes already discovered by the algorithm. A node with black X marks 
a negative test result, and red stroked node marks the node currently maintained as source candidate by the 
LS algorithm
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Appendix A: Warmup results
A.1: A simple network and epidemic model and a simple algorithm

Let us consider a time-dependent network model, where each agent meets d new agents 
each day in such a way that the contact network is an infinite tree (ignoring the label 
of the edges giving the propagation time along the edge). This network models homo-
geneous mixing in a very large population; we consider more realistic network models 
in “Models, methods, algorithms” section. On this network, we consider an epidemic 
model that starts at t = 0 with one infected agent, and then progresses as infected agents 
infect their d susceptible contacts each independently with probability pi each day. Since 
our goal is to study the epidemic process, it is sufficient to track only the agents who are 
already infectious (also called internal nodes), and the agents who are in contact with 
infectious agents at time t (also called external nodes), as shown in Fig. 9a–c. For d = 1 , 
the spread of the infection is then equivalent to the growth a random tree Tt rooted at 
the source of the infection, known under the name of Random Exponential Recursive 
Tree (RERT) and recently introduced in Mahmoud (2021). Because of the similarities 
of the models, we refer to the model with general d as RERT in the remaining of this 
section. We point out that the standard literature on elementary branching processes 
such as Galton-Watson trees or random recursive trees (Drmota 2009) is not applicable 
in our scenario, because these branching processes have no notion of global time (i.e., a 
node in such processes becomes infectious immediately after receiving the infection), 
whereas nodes in diseases commonly go through an exposed, non-infectious period 
before becoming infectious, which is well captured by the RERT model. We mention 
that there is literature on more advanced branching processes that do have a notion of 
global time, e.g. Crump-Mode-Jagers trees (Jagers and Nerman 1984), however we opt 
for the RERT because of its simple definition.

After a node (patient) becomes infected, the disease can take three courses (which 
for now do not affect Tt ): with probability pa the patient is asymptomatic, with prob-
ability (1− pa)ph the patient is hospitalized, and with probability (1− pa)(1− ph) 
the patient recovers without hospitalization. The governmental/health agency learns 
about the outbreak when the first hospitalization occurs (see Fig.  9c) and starts the 
source identification process right away. It can inquire about the contacts of each agent 
and it can test the agents. From patients that were symptomatic (at any point in time 
in the past), the agency learns about their symptom onset time (which, in this simple 
model, is always one day after the infection time), but from asymptomatic patients it 
only learns that they had (or have) the disease at some point when they are tested. 
The framework introduced in this paragraph (including both the identification of the 
outbreak through the first hospitalization, and the possible actions the agency can 
take) is a simplified version of the SICTF (Source Identification via Contact Tracing 
Framework), introduced in “The source identification via contact tracing framework” 
section.

The network and epidemic models introduced in this section have four parameters: 
d, pi, pa, ph , and it is important to understand how each of them affects the difficulty of 
source identification in the SICTF. We distinguish two important factors. First, if the 
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outbreak is not detected rapidly enough, the length of the transmission path to the first 
hospitalized agent is long, and source identification becomes then difficult, because a 
lot of information needs to be recovered. Therefore, a low pi , a low ph and/or a high pa 
parameter can hinder source identification (recall that the probability of hospitaliza-
tion was ph(1− pa) ). The second factor is related to the difficulty of recovering infor-
mation about the transmission path. If pa is high, then there are a lot of nodes who are 
asymptotic and therefore do not reveal their symptom onset time, making source iden-
tification very difficult. Since pa affects both the length of the transmission path and 
the amount of collected information, it is safe to expect that, of all parameters, pa has 
the largest effect on the difficulty of source identification. The parameter d is interest-
ing, because a large d can reduce the length of the transmission path, but it also makes 
the information about the transmission path less accessible as more agents need to be 
tested. Since in this paper we do not set a hard constraint on the total number of avail-
able tests, the advantage of a shorter path takes over the drawback of additional tests 
and a large d increases the source identification probability. These qualitative results 
are in agreement with the results of Waniek et al. (2022), and we also confirm them in 
the SICTF by simulation in “Simulation results” section.

To say anything quantitative about source identification in the SICTF, we must 
discuss specific algorithms that solve the source identification task. In this paper 
we propose a simple algorithm called LocalSearch (LS), shown in Fig. 9d–f. The LS 
algorithm maintains one candidate node sc at each iteration (initially, the first hospi-
talized node), which is always symptomatic, and it updates it in a greedy way: at the 
time of the infection of sc , all its d incident edges are queried, and all its d neighbors 
are tested. Then the agent with the lowest reported infection time will be the new 
candidate sc . The algorithm stops when sc does not change anymore between two 
consecutive iterations. For simplicity, we assume that the infection does not spread 
any further during these iterations, however, this assumption does not affect the 
ability of the algorithm to find the source or not. Indeed, it is not difficult to see 
that on tree networks, LS finds the source if and only if there are no asymptomatic 
nodes on the transmission path from the source to the first hospitalized agent. This 
observation leads us to enhance the LS algorithm by also searching within the neigh-
bors of asymptomatic nodes; we explore this idea in the LS+ algorithm introduced 
in “The LocalSearch Algorithms LS and LS+” section. We are not aware of this sim-
ple greedy algorithm being studied in the context of source identification, although 
similar ideas were implemented for non-adaptive source identification to lower the 
runtime of the algorithms (Paluch et al. 2018).

A.2: Back of the envelope calculation

Now, we have all the tools to estimate the source identification probability of the LS 
algorithm. First we condition on the course of the disease in the source. With proba-
bility pa , the source is asymptomatic and LS can never find the source. With probabil-
ity (1− pa)ph , the source itself becomes hospitalized, and LS always finds the source. 
Finally, with probability (1− pa)(1− ph) the source is symptomatic but not hospitalized, 
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which we call event A . If event A happens, then LS may or may not find the source 
depending on whether there are any asymptomatic nodes on the transmission path. 
More precisely, conditioned on event A and on the transmission path having length l, 
the source identification probability is (1− pa)

l−1 (since there are l − 1 nodes on the 
path which can be asymptomatic), which implies

The difficult part is to compute the distribution of the transmission path conditioned on 
event A ; indeed we already saw that all four parameters d, pi, pa, ph affect this distribu-
tion in a non-trivial way. Let us perform a back of the envelope computation to get more 
insight into the effect of these parameters. The exact structure of the infection tree will 
not matter for this computation, only its profile does. It is denoted by Tt(l) and defined 
as the number of (internal) nodes at level l (i.e., at distance l from the source of the infec-
tion). Remember that by definition the RERT has d · Tt−1(l − 1) external nodes on level 
l, and that at time t each external node is promoted to be internal with probability pi to 
form Tt . Consequently, the level of a node h added at time t > 0 has the same distribu-
tion (conditioned on the tree Tt−1 at the previous step) as the size (number of internal 
nodes) of the profile Tt−1(l − 1) , that is,

Working on the RERT directly can be a daunting task, therefore we propose to 
approximate the numerator and the denominator of Eq. (17) by E[Tt−1(l − 1)] and 
E|[Tt−1|] , respectively. It can be shown by a simple inductive argument, or by generat-

ing functions as in Mahmoud (2021), that for RERTs we have E[Tt(l)] =
(

t
l

)

(dpi)
l 

and E[|Tt |] = (1+ dpi)
t , which suggests a binomial distribution for the level of h. And 

indeed, we can approximate the distribution of the level of a node h added at time t as

with q = dpi/(1+ dpi).
One of the main challenges of this calculation is that we do not know the day of 

the first hospitalization t conditioned on event A , we only know that each node 

(16)

P(LS finds source)

= (1− pa)ph + (1− pa)(1− ph)

(

t
∑

l=1

P
(

transmission path has length l | A
)

(1− pa)
l−1

)

.

(17)P(level(h) = l | Tt−1 = Tt−1) =
Tt−1(l − 1)

|Tt−1|
.

P(level(h) = l) ≈
E[Tt−1(l − 1)]

E[|Tt−1|]

=

(

t − 1
l − 1

)

(dpi)
l−1

(1+ dpi)t−1

=

(

t − 1
l − 1

)(

dpi

1+ dpi

)l−1(

1−
dpi

1+ dpi

)t−l

= P(Bin(t − 1, q) = l − 1),
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is hospitalized with probability (1− pa)ph , which means that the index of the first 
hospitalized node follows a geometric distribution with mean 1/((1− pa)ph) . 
We approximate t − 1 by the first time that the expected size of the infection tree 
(excluding the source since we condition on event A ) exceeds the expected index of 
the first hospitalized node. Therefore we solve

for t (relaxing the constraint that t is an integer), which gives

Consequently, we approximate P
(

transmission path has length l | A
)

 by P(Bin(t − 1, q) = l − 1) . 
Continuing Eq. (16), and using the well-known expression of the probability generating 
function of the binomial distribution, we get

One can check that this expression agrees with our qualitative intuition. However, it 
is not at all clear whether it is valid because of the strong approximations made in some 
steps of the above computation. In “Theoretical results” section, we prove a rigorous 
upper bound on the source identification probability, and we also provide much more 
careful approximations by proving exact theorems about the simplified models that we 
use. Then, in “Simulation results” section we compare our results with simulation results 
on synthetic data, as well as with data generated by the DCS model.

Appendix B: Further remarks
B.1: Remarks on changing mobility parameters

In this paper, we always worked with fixed parameters. We believe this is an 
acceptable assumption in our scenario, since we focus on identifying the source 
within a few days after the outbreak is detected, and we do not expect the dis-
ease parameters to change so quickly. In a real scenario, a quickly reacting gov-
ernment could impose public health interventions, which could change the way 
the epidemic spreads after the first hospitalization, but this will not change the 
infection path from the source to the first hospitalized patient, which is the main 
factor that decides the success of our proposed algorithms. Moreover, if the epi-
demic spreads more slowly after the public health interventions, then we record 

E[|Tt−1| − 1] = (1+ dpi)
t−1

− 1 =

1

(1− pa)ph
= E[index of the first hospitalized node]

t − 1 =

log
(

1+ 1
(1−pa)ph

)

log(1+ dpi)
.

(18)

P(LS finds source) ≈ (1− pa)ph + (1− pa)(1− ph)

�

t
�

l=1

P(Bin(t − 1, q) = l − 1)(1− pa)
l−1

�

= (1− pa)









ph + (1− ph)

�

(1− pa)
dpi

1+ dpi
+ 1−

dpi

1+ dpi

�

log

�

1+ 1
(1−pa)ph

�

log(1+dpi)









.
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less asymptomatic cases, which makes contact tracing easier (the LS and LS+ algo-
rithms require fewer tests).

B.2: Remarks on the scalability of the LS and LS+ algorithms

Since both algorithms work locally by tracing back the source from the first hos-
pitalized patient, as long as the degree distribution stays the same, neither the 
source identification probability, nor the sample complexity, nor the runtime of 
the algorithms depend on the size of population (n). In other words, the com-
plexity of the LS and the LS+ algorithms is constant in n. We do not have pre-
cise results about the dependence of the sample complexity or the runtime on the 
degree distribution, however, we note that despite the relatively small population 
size ( n = 9054 ), the degree distribution (contact dynamics) of the DCS+TU model 
presented in Fig.  8 is chosen to match the degree distribution (contact dynam-
ics) of a real-world scenario (with no public health interventions). Therefore, even 
though real mobility networks consist of much more than 9054 individuals, we 
expect the performance of the algorithms to be similar to Fig.  8 in a real-world 
scenario as well.

Appendix C: Additional proofs
See Fig. 10.

Fig. 10 Illustration for Lemma 3.3 using the same coloring as Fig. 2a. a An example for an epidemic where 
among the nodes of the transmission path (v1, v2, v3, v5) , the middle household contains no symptomatic 
node (only the asymptomatic node v3 ), but the LS+ algorithm still finds the source. Indeed, at iteration 
0 we set sc,0 = v5 , after which we find that v3 is asymptomatic, and next that v2 is asymptomatic and v4 is 
symptomatic, with a lower symptom onset time then v5 . Hence, in iteration 1 we set sc,1 = v4 , and we find 
that v3, v2 are asymptomatic and v1 is is symptomatic, with a lower symptom onset time then v4 . Finally, in 
iteration 2 we set sc,2 = v1 , and we find s′c = v1 = sc,2 , which implies that the algorithm stops, and returns 
the correct source v1 . b An example for an epidemic where the LS+ algorithm would fail if we would update 
the candidate before the test queue becomes empty. Similarly to subfigure a, in iteration 0 of the algorithm 
first learns about asymptomatic node v3 and next about asymptomatic node v2 and symptomatic node v4 . 
If the algorithm updates the candidate to v4 and continues further, instead of scheduling the tests of the 
household members of v2 , then it is not hard to check that v4 will be the final estimate and the algorithm fails. 
However, if the algorithm waits until the test queue becomes empty and tests the household members of v2 , 
then v1 becomes the next candidate and the algorithm finds the source
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C.1: Proof of Lemma 3.3

We start by restating the lemma here for convenience.

Lemma C.1 In the RB tree network, the LS algorithm finds the source if and only if all 
nodes on the transmission path are symptomatic, and the LS+ algorithm finds the source 
if among the nodes of the transmission path, there exists a symptomatic node in each 
household, and the source is symptomatic.

Proof Throughout the proof we assume that there is no limitation on the number 
available tests. We can make this assumption because in the SICTF there is only a daily 
limit on the number tests, there is no limitation on the number of days, and neither the 
LS nor the LS+ algorithms proceed in an iteration until the test queue becomes empty, 
which implies that all nodes that enter the test queue get eventually tested.

Suppose that the LS algorithm finds the source. Then the list of candidate nodes sc at 
different iterations forms a path that consists entirely of symptomatic nodes between 
the source and the first hospitalized node. In tree networks, the transmission path is the 
only path between the source and the first hospitalized node, which yields the “only if ” 
part of the statement on the LS algorithm.

Next, suppose that all nodes on the transmission path are symptomatic. Then, we claim 
that the candidate node sc,i computed in the ith iteration of the LS algorithm is vl−i , the 
ith node of the reverse transmission path. Our claim is definitely true for i = 0 , because 
sc,0 is initialized to be the first hospitalized node vl . Then, the proof proceeds by induc-
tion. By the induction hypothesis, in the ith step, sc,i = vl−i , and since we are on a tree, 
the symptom onset time of vl−(i+1) (which is revealed because all nodes on the trans-
mission path are symptomatic by assumption) is the only symptom onset time among 
the neighbors of sc,i that have a lower symptom onset time than sc,i itself. Therefore 
s′c = vl−(i+1) , and sc,i+1 is updated to be vl−(i+1) in the beginning of the next iteration, 
which proves that the induction hypothesis holds until the source is reached.

Finally, suppose that among the nodes of the transmission path, there exists a sympto-
matic node in each household, and the source is symptomatic. Let us denote by wi the ith 
symptomatic node of the reverse transmission path. Then, we claim that the candidate 
list sc,i computed in the ith iteration of the LS+ algorithm equals wi . Similarly to the 
case of the LS algorithm, the i = 0 case holds by definition, and we proceed by induc-
tion. Suppose that sc,i = wi . It will also be useful to define the index of wi on the forward 
transmission path (without skipping asymptomatic nodes). Let j be this index, for which 
therefore wi = vj . Now we distinguish 3 cases: (i) vj−1 = wi+1 is symptomatic, (ii) vj−1 is 
asymptomatic and vj−2 = wi+1 is symptomatic, and (iii) vj−1 and vj−2 are asymptomatic 
and vj−3 = wi+1 is symptomatic. We claim that there are no more cases, and that in all 
three cases wi+1 is tested in the ith iteration of the LS+ algorithm. Case (i) is immediate 
because all neighbors of sc,i are tested. Case (ii) is only possible if either vj−1 ∈ H(sc,i) 
or vj−2 ∈ H(vj−1) , otherwise vj−1 would be a lone asymptomatic node in a household, 
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which contradicts the assumption that there is a symptomatic node in each household. 
Since all the contacts of asymptomatic nodes in H(sc,i) (see Fig. 3d) and all nodes in the 
household of asymptomatic nodes are tested in the LS+ algorithm (see Fig.  3e), vj−2 
must be tested too. Finally, case (iii) is possible only if vj−1 ∈ H(sc,i) and vj−3 ∈ H(vj−2) 
both hold, otherwise vj−1 or vj−2 would be a lone asymptomatic node in a household. 
Similarly to the previous case, vj−3 must be tested (see Fig. 3f ). There are no more cases 
because, by Remark 3.2, on the RB tree a transmission path can only have two nodes in 
each household, and we assumed that there exists a symptomatic node in each house-
hold among the nodes of the transmission path.

After we proved that wi+1 is tested in the ith iteration of the LS+ algorithm, we must still 
show that it will be the next candidate sc,i+1 for the induction hypothesis to hold. This 
is true because once the symptom onset time of wi+1 is revealed, none of its neighbors 
are scheduled for testing, and therefore all tested nodes have wi+1 on their path to the 
source, which means that wi+1 must have the lowest revealed symptom onset time, and 
therefore that it will be the next candidate sc,i+1 . 

C.2: Proof of Lemma 3.5

We start by restating the lemma here for convenience.

Lemma C.2 For the DDENR epidemic model with parameters (pi, pa, ph) on the RB tree 
with parameters (dc, dh) , and with p computed in Eq. (2), we have

Proof Let us reveal the randomness that generates the epidemic in a slightly modified 
way than in the definition (“The DDE model and The DDENR model” sections). As before, 
at the beginning only the source is infectious, and depending on course of the disease, 
the source can be symptomatic and hospitalized, symptomatic but not hospitalized, or 
asymptomatic with probabilities (1− pa)ph, (1− pa)(1− ph), pa , respectively. In each 
moment, each infectious node infects each of its susceptible neighbors with probability 
pi . If a node is infected, we reveal the information whether it will become hospitalized 
(which happens with the probability (1− pa)ph ), but if it does not become hospitalized, 
we do not reveal whether the node is asymptomatic or symptomatic yet. Indeed, this 
information is not necessary for continuing the simulation of the epidemic since we 
assumed that there is no difference between the infection probabilities of symptomatic 
and asymptomatic nodes. Thereafter, when the first hospitalized case occurs, we reveal 
for each infected node v on the transmission path (except the last node, which we know is 
hospitalised; see Definition 3.2) whether it is asymptomatic or not. The only information 
we have about these nodes is that they are not hospitalized, which implies that the 
probability that a node is revealed to be asymptomatic on the transmission path is exactly 
the probability p from Definition 3.4 computed in (2).

�

(19)P(LS finds the source) =

∞
∑

n=0

(1− p)nP(d(s, h) = n).
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By Lemma 3.3, LS finds the source if and only if each node on the transmission path is 
symptomatic. Conditioning on the length of the transmission path, we can compute the 
probability of each node being symptomatic by Eq. (2) as

from which (19) follows immediately. 

C.3: Proof of Theorem 3.6

We are going to need prove a few intermediate results before proving Theorem 3.6. A 
first step is to count all the possible paths from the source with a given length.

Definition C.3 Let G(s) be the RB tree with parameters (dc, dh) , and let s be the source. 
A Red-Blue (RB) path of length n is any path of nodes in (s = v0, v1, ...vn) such that 
(vi, vi+1) ∈ E′ for 0 ≤ i < n . Let Cn be the set of RB paths of length n.

Lemma C.4 In the RB tree with parameters (dc, dh) , |C0| = 1 , while for n ≥ 1,

where

Proof Let us keep track of the number of RB paths of length n depending on the color 
of the last node in the path. Let rn and bn be the numbers of RB paths of length n such 
that the last node is red and blue, respectively. A RB path of length 0 consists only of 
the source, which implies that r0 = 1 and b0 = 0 . The source has dc red and dh blue 
neighbours, which implies that r1 = dc and b1 = dh.

Suppose that P is an RB path of length n ≥ 2 . If the last node of P is red, then the node 
before the last node can be both blue or red. Red nodes other than the source have dc − 1 
red children, while blue nodes have dc red children, yielding

(20)P(LS suceeds|d(s, h) = n) =
(

1− P(v is asy|v is not hosp)
)n

= (1− p)n,

�

(21)|Cn| = �1

(

dc − 1+ D

2

)n

+ �2

(

dc − 1− D

2

)n

(22)D =

√

(dc − 1)2 + 4dcdh

(23)�1 =
(dc + 1+ D)(2dh + dc − 1+ D)

2D(dc − 1+ D)

(24)�2 =
(D − dc − 1)(2dh + dc − 1− D)

2D(dc − 1− D)
.

(25)rn = (dc − 1)rn−1 + dcbn−1, for n ≥ 2.
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If the last node of P is blue, then the node before has to be red. Since every red node, 
including the source, has dh blue children, we have

By substituting Eq. (26) into Eq. (25), we obtain the recurrence

We solve this recurrence equation by calculating the characteristic equation

whose roots are

yielding the the general solution

where c1, c2 are given by the initial conditions for n = 0, 1

which are

From Eqs. (25) and (26) we conclude that for n ≥ 1,

and therefore

where

(26)bn = dhrn−1, for n ≥ 1.

(27)rn = (dc − 1)rn−1 + dcdhrn−2, for n ≥ 2.

(28)t2 − (dc − 1)t − dcdh = 0,

(29)t1 =
dc − 1+

√

(dc − 1)2 + 4dcdh

2
=

dc − 1+ D

2

(30)t2 =
dc − 1−

√

(dc − 1)2 + 4dcdh

2
=

dc − 1− D

2

(31)rn = c1t
n
1 + c2t

n
2 ,

(32)c1 + c2 = r0 = 1

(33)c1t1 + c2t2 = r1 = dc,

(34)c1 =
1

2
+

dc + 1

2
√

(dc − 1)2 + 4dcdh
=

1

2
+

dc + 1

2D

(35)c2 =
1

2
−

dc + 1

2
√

(dc − 1)2 + 4dcdh
=

1

2
−

dc + 1

2D
.

(36)bn = dh(c1t
n−1
1 + c2t

n−1
2 )

(37)|Cn| = rn + bn = �1t
n
1 + �2t

n
2 ,

(38)�1 = c1

(

1+
dh

t1

)
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Inserting the values for t1, t2, c1, c2 we obtain the desired result. 

Since LS+ improves on LS by making use of the household structure of the network, 
we need further information about the household structure of the transmission paths. 
Recall that by Remark 3.2, households on transmission paths on an RB tree were charac-
terized either by a single red node (that is followed by a red node), or a pair of consecu-
tive red and blue nodes. The following definition and lemma refine our previous result 
on counting the number of RB paths by taking the household structure into account.

Definition C.5 Let P = {s = v0, v1, . . . , vn = h} be a RB path of length n. We say 
that a node v on the path P is in a P-single-household if no other node from P is in the 
same household as v. Otherwise, we say v is in a P-multi-household. Given a path P, 
let Ms : Cn → {0, 1} be the indicator function that the source is in a P-multi-household. 
Similarly, let Ml : Cn → {0, 1} be the indicator function that the last node of path P is in a 
P-multi-household. Finally, for 0 ≤ k ≤ n+ 1 and α,β ∈ {0, 1} , let

The set Cn,k ,α,β depends on 4 parameters, but only some combinations of these param-
eters make it non-empty. The following definition will be useful in this regard.

Condition 1 Let α,β ∈ {0, 1} and n ≥ 2 . We say k ∈ N satisfies Condition 1 if and only 
if k and n have different parity and n+ 1− 2(α + β) ≥ k ≥ 2− (α + β).

Lemma C.6 It holds that |C0,1,0,0| = 1 , |C1,0,1,1| = dh and |C1,2,0,0| = dc . Let α,β ∈ {0, 1} , 
let n ≥ 2 and let k ∈ N satisfy Condition 1. Then

In all other cases |Cn,k ,α,β | = 0.

Proof Since there are n+ 1 nodes on path P, with k in P-single households and thus 
n+ 1− k of them in P-multi-households, we must have

households along path P in total. Clearly, the numbers n and k cannot be of the same 
parity for any RB path P, which is thus assumed for the rest of the proof (this assumption 
is also part of Condition 1).

(39)�2 = c2

(

1+
dh

t2

)

.

�

(40)Cn,k ,α,β = {P ∈ Cn : (there are exactly k nodes in P − single-households) ∧ (Ms(P) = α) ∧ (Ml(P) = β)}.

(41)|Cn,k ,α,β | =

(

n+k−3
2

k − 2+ α + β

)

d
n−k+1

2
h d

n−k+3
2 −β−α

c (dc − 1)k+α+β−2.

k +

n+ 1− k

2
=

n+ k + 1

2
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If n = 0 , then the source is also the first hospitalized node, and it is in a P-single-
household, which implies that |C0,1,0,0| = 1 . If n = 1 , then there are two cases: either 
the source is in the same P-multi-household with the first hospitalized node, or both 
of them are in P-single-households. The former case is possible via dh edges from the 
source, which gives |C1,0,1,1| = dh , while the latter case is possible via dc edges, and gives 
|C1,0,1,1| = dc . Since these are the only possible RB paths of length n ≤ 1 , we must have 
|C0,k ,α,β | = |C1,k ,α,β | = 0 for any other choice of parameters k ,α and β.

Let us assume that n ≥ 2 . Then, the source and the first hospitalized node are not in 
the same household. Let us denote the household of the source by Hs and the house-
hold of the first hospitalized node by Hh . Note that (1− α) and (1− β) are the indica-
tors of Hs and Hh being P-single-households, and therefore k ≥ (1− α)+ (1− β) . If this 
inequality (which is also part of Condition 1) does not hold, then clearly |Cn,k ,α,β | = 0 . 

Similarly, the number of P-multi-households is n−k+1
2  and we must have n−k+1

2 ≥ α + β 
for |Cn,k ,α,β | > 0 , which implies the inequality n+ 1− 2α − 2β ≥ k . Therefore Cn,k ,α,β is 
empty if Condition 1 does not hold. For the rest of the proof we assume that Condition 
1 does hold.

There are n+k−3
2  households along path P, excluding Hs and Hh . Among them, there are 

k − (1− α)− (1− β) P-single-households, which can be chosen in 
(

n+k−3
2

k − 2+ α + β

)

 

ways. Once we know the color of each node along the path, the number of RB paths can 
be computed by multiplying the numbers of children with the appropriate color of each 
node. P-single-households have no blue nodes, and P-multi-households have exactly 
one, which implies that there are n−k+1

2  blue nodes. Since blue nodes are preceded by red 

nodes that have dh blue children, they give the multiplicative factor d
n−k+1

2
h  . Blue nodes, 

except from the first hospitalized node (if it is blue), have dc red children. So far we have 
accounted for all of the nodes in P-multi-households and none of the nodes in P-single-
households. If the source is in a P-single-household, then we must count its red children, 
whose number is dc . This implies that there exist n−k+1

2 − β + (1− α) nodes with dc red 
children. Finally, each P-single-household, except Hs and/or Hh in case they are P-single 
households, has dc − 1 red children. There are k − (1− α)− (1− β) such P-single-
households, which gives the final term in Eq. (41).  �

The sets Cn,k ,α,β define equivalence classes on the transmission paths based on their 
household structure. In the next lemma we show that once we know which equiva-
lence class we are in, it is possible compute the source identification probability of the 
LS+ algorithm.

Lemma C.7 Let P be the transmission path in the DDENR epidemic model with param-
eters (pi, pa, ph) on the RB tree with parameters (dc, dh) , and let p be as computed in (2). 
Then, it holds that

P(LS+ finds the source)|P ∈ C0,1,0,0) = 1
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and

Let α,β ∈ {0, 1} , let n ≥ 2 and let k ∈ N satisfy Condition 1. Then, it holds that

In all other cases P(LS+ finds the source)|P ∈ Cn,k ,α,β) is not defined.

Proof If n = 0 , then k = 1 and α = β = 0 . In that case, the source is the first 
hospitalized node and LS+ always finds the source. If n = 1 , then the first hospitalized 
node is in the neighbourhood of the source, and LS+ finds the source if and only if the 
source is symptomatic, which happens with probability 1− p.

Let us assume that n ≥ 2 and that k satisfies Condition 1 (otherwise |Cn,k ,α,β | = 0 and

is not defined). By Lemma 3.3 the LS+ algorithm finds the source in the DDENR model 
on the RB tree if, among the nodes of the transmission path, there exists a symptomatic 
node in each household, and the source is symptomatic, which means that we can prove 
a lower bound on the source identification probability of LS+. Let us assume that the 
source is indeed symptomatic. Since the first hospitalized node is symptomatic by defi-
nition, the households of the source and of the first hospitalized node cannot make the 
LS+ algorithm fail. Let us denote these two households by Hs and Hh , respectively. Also, 
let M and S be the sets of all P-multi- and P-single-households, respectively, excluding 
Hs and Hh . Then, LS+ finds the source if all nodes in the households of S are sympto-
matic, and if at least one node in the households of M is symptomatic, which has prob-
ability 1− p and 1− p2 for each type of household, respectively, by Eq. (2). These obser-
vations yield that

Finally, we are ready to state and prove Theorem 3.6 on the source identification prob-
ability of LS+, which we restate here for convenience.

Theorem C.8 Let p be as in (2) and let S(n,α,β) be the set of k values that satisfy Con-
dition 1. Then, for the DDENR epidemic model with parameters (pi, pa, ph) on the RB tree 
with parameters (dc, dh) we have

P(LS+ finds the source)|P ∈ C1,0,1,1) = P(LS+ finds the source)|C1,2,0,0) = 1− p.

(42)P(LS+ finds the source)|P ∈ Cn,k ,α,β) ≥ (1− p)
n+k−1

2 (1+ p)
n−k+1

2 −α−β .

P(LS+ finds the source)|P ∈ Cn,k ,α,β)

(43)

P(LS+ finds the source)|P ∈ Cn,k ,α,β) ≥ P(source is sym)(1− p)|S|(1− p2)|M|

= (1− p)(1− p)k−2+α+β(1− p2)
n−k+1

2 −α−β

= (1− p)k−1+α+β(1− p2)
n−k+1

2 −α−β .

�
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where D, �1 and �2 are terms depending on parameters dc and dh and are computed 
explicitly in Lemma C.4.

Proof Let us extend the domain of P(LS+ finds the source)|P ∈ Cn,k ,α,β) by function g 
defined as g : N× N× {0, 1} × {0, 1} → [0, 1] such that

Unlike P(LS+ finds the source)|P ∈ Cn,k ,α,β) , g is defined for every 4-tuple of parameters 
(n, k ,α,β) ∈ N× N× {0, 1} × {0, 1} . By the law of total probability we expand the source 
identification probability by conditioning on the path P being of length n as

Next, we exchange the sums over α,β and k. This allows us to sum over only those k 
values that satisfy Condition 1, which implies that P(LS+ finds the source)|P ∈ Cn,k ,α,β) 
is well-defined. As in Lemma C.6, we need to treat the n = 0 and n = 1 cases separately. 
Continuing Eq. (46), we arrive to

Substituting in the results from Lemmas C.4, C.6 and C.7 into Eq. (47) gives the desired 
result.  �

C.4: Proof of Theorem 3.9

We start by restating Theorem 3.9 for convenience.

Theorem C.9 In the (dr , d)-RET with parameters pi, pa, ph , let at,l be as in Definition 
3.8. Then

(44)

P(LS+ finds the source) ≥ P(d(s, h) = 0)+ (1− p)P(d(s, h) = 1)

+

∞
∑

n=2

∑

α,β ∈ {0, 1}

k ∈ S(n,α,β)

(

n+k−3
2

k − 2+ α + β

)

(dh(1− p))
n+k−1

2 (dc(1+ p))
n−k+1

2
−α−βdc(dc − 1)k+α+β−2

�1

(

dc−1+D
2

)n
+ �2

(

dc−1−D
2

)n P(d(s, h) = n),

(45)g(n, k ,α,β) =

{

P(LS+ finds the source)|P ∈ Cn,k ,α,β) if k ∈ S(n,α,β)
0 if k �∈ S(n,α,β).

(46)

P(LS+ finds the source) =

∞
∑

n=0

∞
∑

k=0

∑

α,β∈{0,1}

g(n, k ,α,β)P(P ∈ Cn,k ,α,β)

=

∞
∑

n=0

∞
∑

k=0

∑

α,β∈{0,1}

g(n, k ,α,β)P(P ∈ Cn,k ,α,β |P ∈ Cn)P(d(s, h) = n).

(47)

P(LS+ finds the source) =P(d(s, h) = 0)+ (1− p)P(d(s, h) = 1)

+

∞
∑

n=2

∑

α,β∈{0,1}

∑

k∈S(n,α,β)

P(LS+ finds the source)|P ∈ Cn,k ,α,β )
|Cn,k ,α,β |

|Cn|
P(d(s, h) = n)

(48)at,0 = 1
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Proof Similarly to Feng and Mahmoud (2018); Mahmoud (2021), the proof relies on 
generating functions. We start by addressing the boundary cases. For all t ≥ 0 , it holds 
that At,0 = 1 , and therefore at,0 = 1 . Similarly, for all l, t such that l > t , it holds that 
At,l = 0 , and therefore at,l = 0 . Suppose that t ≥ l = 1 . During day t − 1 , on the first 
level, there are At−1,1 infected (internal) nodes and dr − At−1,1 (external) nodes that may 
be infected with probability pi during day t. Thus,

Taking the expectation of both sides in Eq. (51) yields

By subtracting the appropriate recurrence equations for at,1 and at−1,1 for t ≥ 2 we 
obtain the homogeneous recurrence equation

and boundary conditions a0,1 = 0 and a1,1 = drpi . We solve for at,1 using the same 
methods as in the proof of Lemma C.4 and obtain

Next, let us consider the general case t ≥ l > 1 . On day t − 1 , there are At−1,l−1 nodes 
on level l − 1 . Since, each node on level l − 1 has d children, there are dAt−1,l−1 nodes on 
level l that have an infectious parent on level l − 1 . However, At−1,l of them are already 
infected. Therefore dAt−1,l−1 − At−1,l nodes of level l may be infected on day t, each with 
probability pi , which implies

Taking the expectation of both sides in Eq. (55) yields

For convenience, let us introduce � = 1− pi and µ = dpi , and also let

(49)at,l = drpi

t−1
∑

m=l−1

(

m
l − 1

)

(1− pi)
m−l+1dl−1pl−1

i , for t ≥ l ≥ 1

(50)at,l = 0, for l > t.

(51)At,1 = At−1,1 + Bin(dr − At−1,1; pi).

(52)at,1 = at−1,1(1− pi)+ drpi, for t ≥ 1.

(53)at,1 − at−1,1(2− pi)+ (1− pi)at−2,1 = 0, for t ≥ 2

(54)at,1 = dr
(

1− (1− pi)
t
)

, for t ≥ 0.

(55)At,l = At−1,l + Bin(dAt−1,l−1 − At−1;l, pi), for t ≥ l ≥ 2.

(56)
at,l = at−1,l + (dat−1,l−1 − at−1,l)pi

= at−1,l(1− pi)+ dpiat−1,l−1, for t ≥ l ≥ 2.

(57)f (x, y) =

∞
∑

t=1

∞
∑

l=1

at,lx
tyl =

∞
∑

t=1

t
∑

l=1

at,lx
tyl
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be the generating function for at,l with t, l ≥ 1 . By multiplying (56) by xtyl and summing 
it over t, l ≥ 2 we obtain

Since a1,l = 0 for l ≥ 2,

and by inserting (59) into (58), we obtain

Now, we can also decompose the sum (59) using geometric series as

By plugging (61) into (60), we obtain the expression

Then, we expand the fractions in (62) into a power series and we next apply the binomial 
theorem, we arrive to

Let t = 1+ n+m and l = j + 1 . In order to obtain an expression for at,l , we must 
change the variables in the sums of Eq. (63) from (n, m, k) to (t, m, l). Changing the inner 
sum from variable j to l is simple. Changing the variables in the two outer sums is more 

(58)

∞
∑

t=2

t
∑

l=2

at,lx
tyl = �

∞
∑

t=2

t
∑

l=2

at−1,lx
tyl + µ

∞
∑

t=2

t
∑

l=2

at−1,l−1x
tyl

= �x

∞
∑

t=1

t
∑

l=2

at,lx
tyl + µxy

∞
∑

t=1

t
∑

l=1

at,lx
tyl .

(59)
∞
∑

t=1

t
∑

l=2

at,lx
tyl =

∞
∑

t=2

t
∑

l=2

at,lx
tyl ,

(60)(1− �x)

∞
∑

t=1

t
∑

l=2

at,lx
tyl = µxy

∞
∑

t=1

t
∑

l=1

at,lx
tyl

(57)
= µxyf (x, y).

(61)

∞
∑

t=1

t
∑

l=2

at,lx
tyl =

∞
∑

t=1

t
∑

l=1

at,lx
tyl −

∞
∑

t=1

at,1x
ty

(54)
= f (x, y)− dry

∞
∑

t=1

(1− �
t)xt

= f (x, y)− drxy

(

1

1− x
−

�

1− �x

)

.

(62)f (x, y) = dr(1− �)xy
1

1− x

1

1− �x − µxy
.

(63)

f (x, y) = dr(1− �)xy

∞
∑

n=0

xn
∞
∑

m=0

xm(�+ µy)m

= dr(1− �)xy

∞
∑

n=0

xn
∞
∑

m=0

xm
m
∑

j=0

(

m
j

)

�
m−j(µy)j

= dr(1− �)

∞
∑

n=0

∞
∑

m=0

m
∑

j=0

(

m
j

)

�
m−jµjx1+n+myj+1.
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challenging because t, n and m depend on each other in a nontrivial way. More precisely, 
since m, n ≥ 0 we have t ≥ 1 and also m ≤ t − 1 , which means that we have to set the 
lower limit of t and the upper limit of m accordingly. As for the remaining limits, vari-
able t can be arbitrary large, and m can take any integer value starting from 0 indepen-
dently of t, which yields the expression

For the values of l with l ≥ m+ 1 , the binomial coefficient 
(

m
l − 1

)

 is 0, which implies 

that we can increase the upper limit of the inner sum from m+ 1 to t in Eq. (64). Then,

Finally we can read off the value of at,l from Eq. (65) as

C.5: Proof of Corollary 3.10

We start by restating Corollary 3.10 for convenience.

Corollary C.10 In the RET(pi, dr , d) , let at be the expectation of (8), as in Definition 3.8. 
For t ≥ 0,

Proof By using linearity of expectation, Eq. (8) and Theorem 3.9 we obtain:

(64)f (x, y) = dr(1− �)

∞
∑

t=1

t−1
∑

m=0

m+1
∑

l=1

(

m
l − 1

)

�
m−l+1µl−1xtyl .

(65)

f (x, y) = dr(1− �)

∞
∑

t=1

t−1
∑

m=0

t
∑

l=1

(

m
l − 1

)

�
m−l+1µl−1xtyl

=

∞
∑

t=1

t
∑

l=1

dr(1− �)

t−1
∑

m=0

(

m
l − 1

)

�
m−l+1µl−1xtyl .

(66)

at,l = dr(1− �)

t−1
∑

m=0

(

m
l − 1

)

µl−1
�
m−l+1

= drpi

t−1
∑

m=0

(

m
l − 1

)

(dpi)
l−1(1− pi)

m−l+1.

�

(67)at = 1+ dr
(1− pi + dpi)

t
− 1

d − 1
.

(68)

at =

+∞
∑

l=0

at,l

= 1+

+∞
∑

l=1

at,l

= 1+ drpi

t
∑

l=1

t−1
∑

m=l−1

(

m
l − 1

)

(1− pi)
m−l+1dl−1pl−1

i
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Before we use binomial theorem, we need to swap the sums. Boundaries from (68) 
are equivalent to t − 1 ≥ m ≥ l − 1 ≥ 0 , so we can rewrite this as 2 conditions: 
m+ 1 ≥ l ≥ 1 and t ≥ m ≥ 0.

Finally, by applying the binomial theorem and summing the geometric series, we obtain 
the desired equation:

 �

C.6: Proof or Lemma 3.12

We restate Lemma 3.12 here for convenience.

Lemma C.11 Let us consider the stopped DET model with parameters (ct,l), pa, ph , and 
let h denote the first hospitalized node. Then

Proof Recall that a node added at day t is uniformly distributed among the 
ct − ct−1 > 0 nodes added that day, and that the number of nodes added to level l is 
ct,l − ct−1,l on day t. If we condition on the time of the first hospitalized case, denoted by 
TIh , then

(69)

at,l = 1+ drpi

t−1
∑

m=0

m+1
∑

l=1

(

m
l − 1

)

(1− pi)
m−l+1dl−1pl−1

i

= 1+ drpi

t−1
∑

m=0

m
∑

l=0

(

m
l

)

(1− pi)
m−ldlpli

(70)
at,l = 1+ drpi

t−1
∑

m=0

(1− pi + dpi)
m

= 1+ dr
(1− pi + dpi)

t
− 1

d − 1
.

(71)

P(d(s, h) = l) =

+∞
∑

t=0

ct,l − ct−1,l

ct − ct−1
(1− (1− pa)ph)

ct−1
(

1− (1− (1− pa)ph)
ct−ct−1

)

.

(72)

P(d(s, h) = l) =

+∞
∑

t=0

P(d(s, h) = l|TIh = t)P(TIh = t)

=

+∞
∑

t=0

ct,l − ct−1,l

ct − ct−1
P(node is not hosp)ct−1(1− P(node is not hosp )ct−ct−1)

=

+∞
∑

t=0

ct,l − ct−1,l

ct − ct−1
(1− (1− pa)ph)

ct−1
(

1− (1− (1− pa)ph)
ct−ct−1

)

.

�
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Appendix D: Dynamic message passing for the DDE model

In this section, we explain how we derived and implemented the DMP equations for 
the DDE+HNM model. We start by reviewing the previous work on the DMP equa-
tions for the SIR model in Appendix D.1, and then we proceed to our derivations in 
Appendix D.2. In Appendix D.3, we explain how we find candidate (node,time) pairs 
for the DMP equations, and in Appendix D.4 we conclude by combining Appendices 
D.2 and D.3 into a source identification algorithm.

D.1: DMP equations for the SIR model

The DMP equations were first derived by Lokhov et al. (2014) for the SIR model in 
the context of source identification. Their goal is to compute the marginal prob-
abilities that node i is in a given state at time t (denoted by Pi

S(t),P
i
I (t) and Pi

R(t) 
for the susceptible, infected and recovered states, respectively), given initial condi-
tions Pi

S(t0),P
i
I (t0) and Pi

R(t0) at some initial time t0 . To solve this problem in tree 
networks, we may consider a dynamic programming approach, where we delete a 

node i, we compute the marginal probabilities of Pj
S(t − 1) for all neighbors j of i in 

the remaining subtrees, and use this information to compute Pi
S(t) (as the margin-

als are independent in each of the subtrees conditioned on the state of i). The DMP 
equations make the dynamic programming intuition explicit. Originally, the DMP 
equations were developed for static networks, but since the generalization to time-
varying networks is straightforward, and has already been foreshadowed in a simi-
lar heuristic algorithm (Jiang et al. 2016), we include it in this preliminary section. 
For time-varying networks, we define Ni(t) as the set of neighbors of node i in the 
time-window [t, t + 1).

To formalize the dynamic programming approach, Lokhov et al. (2014) introduces 
some new notation. Let � be the probability that an infectious node infects a suscep-
tible neighbor, and let µ be the probability that an infectious node recovers. Let Di 
be the auxiliary dynamics, where node i receives infection signals, but ignores them, 
and thus remains in the S state at all times. Let Pj→i

S (t) be the probability that node j 
is in the state S at time t in the dynamics Di , and let θk→i(t) be the probability that the 
infection signal has not been passed from node k to node i up to time t in the dynam-
ics Di . Finally, let φk→i(t) be the probability that the infection signal has not been 
passed from node k to node i up to time t, and that node k is in the state I at time t, in 
the dynamics Di . With these definitions, the dynamic programming approach is for-
malized by the following equations for t ≥ t0:

(73)P
i→j
S (t + 1) = Pi

S(t0)
∏

k∈Ni(t)\j

θk→i(t + 1),

(74)θk→i(t + 1)− θk→i(t) = −�φk→i(t),
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The marginal probabilities that node i is in a given state at time t are then given by

These equations are only exact on trees, but they can also be applied to networks 
with cycles as a heuristic approach. The heuristic gives good approximations to 
the true marginals if the network is at least locally tree-like (Karrer and Newman 
2010).

D.2: DMP equations for the DDE+HNM model

There are several differences between the SIR model on locally tree-like networks and 
the DDE+HNM model (see Fig.  2a). First, the DDE model has additional compart-
ments (exposed nodes, asymptomatic nodes), which motivates the introduction of sev-
eral new variables. Let �(a) (resp., �(s) ) be the probability that an asymptomatic (resp., 
symptomatic) node infects a susceptible node. Let φk→i(t)(a) (resp., φk→i(t)(s) ) be the 
probability that the infection signal has not been passed from node k to node i up to 
time t, and that node k is asymptomatic (resp., symptomatic) infectious at time t, in the 
dynamics Di.

The second important difference is that in the DDE model, the transition times 
between different compartments are deterministic instead of following a geomet-
ric distribution as in the standard SIR model. While deterministic transition times 
sound simpler at first, it turns out that they make the DMP equations more com-
plex, because the Markovian property that each marginal probability depends only 
on the previous timestep is lost if the transition times are larger than 1. Recall that 
the times for the transitions E → I  and I → R (with their default values) are TE = 3 
and TI = 14.

Let us incorporate these two differences into Eqs. (73)–(75) to derive the DMP equa-
tions for the DDE model. Equation (79) is essentially a copy of (73). Equation (80) follows 
Eq. (74), but we incorporate the two different variants of infected (asymptomatic and 
symptomatic) patients with their respective infection probabilities �(a) and �(s) . Equation 
(81) is a new equation, which is necessary because recovery times are no longer geo-
metric random variables; instead we need to check the probabilities of infection TE + TI 
timesteps earlier than the current time t. Finally, Eq. (82) (resp., (83)) is the asympto-
matic (resp., symptomatic) version of Eq. (75), while also incorporating the deterministic 
time for the transition E → I . For t ≥ t0 , this yields equations

(75)φk→i(t) = (1− �)(1− µ)φk→i(t − 1)+
(

Pk→i
S (t − 1)− Pk→i

S (t)
)

.

(76)Pi
S(t + 1) = Pi

S(t0)
∏

k∈Ni(t)

θk→i(t + 1) ,

(77)Pi
R(t + 1) = Pi

R(t)+ µPi
I (t) ,

(78)Pi
I (t + 1) = 1− Pi

S(t + 1)− Pi
R(t + 1) .
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We note that for early values of t, Eqs. (81)–(83) depend on Pk→i
S  before t0 , which we 

initialize to be 1 (all nodes are susceptible before the first node develops the infection). 
The marginal probability that node i is susceptible at time t is still computed by Eq. (76) 
as before. Equations (77)–(78) do not apply anymore; we explain it in Appendix D.4 how 
to take into account observations for nodes in the infectious compartments.

The third difference between the the SIR model on locally tree-like networks and 
the DDE+HNM model is that the HNM model contains many short cycles inside the 
households. Short cycles can cause unwanted feedback loops in the DMP equations 
where, loosely speaking, nodes are treated as if they could reinfect themselves. We 
solve this issue by modifying the underlying graph to be locally tree-like (only for the 
computation of the DMP equations). Specifically, we introduce a new central house-
hold-node for each household, and we replace the cliques inside the households by 
a star graph centered at this new household-node node. Introducing such a central 
household-node does of course alter epidemic process, in particular it makes house-
hold infections less independent and slower (all household infections need to pass 
through an extra node). To mitigate this issue, we assume that central household-
nodes have TE = 1 and that they are infected with probability 1 by any node in the 
same household. We tested the validity of the resulting DMP equations against simu-
lations of the epidemic progressions and we found the results to be quite accurate, in 
particular, more accurate than the version without the introduction of these central 
household-nodes.

Note that we derived the DMP equations for the DDE+HNM model, however, since 
(i) the compartments are the same, (ii) the equations support temporal networks, and 
(iii) we have separate infection probabilities �(a) and �(s) for asymptomatic and sympto-
matic nodes, our equations can also be applied to the DCS+TU model after a discretiz-
ing (rounding) the time observations.

(79)P
i→j
S (t + 1) = Pi

S(t0)
∏

k∈Ni(t)\j

θk→i(t + 1) =
Pi
S(t + 1)

θ j→i(t + 1)
,

(80)θk→i(t + 1)− θk→i(t) = −�(a)φ
k→i
(a) (t)− �(s)φ

k→i
(s) (t),

(81)Pk→i
R (t) = Pk→i

S (t − TE − TI − 1)− Pk→i
S (t − TE − TI )

(82)
φk→i
(a) (t) = (1− �(a))(1− Pk→i

R (t))φk→i
(a) (t − 1)

+ pa[P
k→i
S (t − TE − 1)− Pk→i

S (t − TE)].

(83)
φk→i
(s) (t) = (1− �(s))(1− Pk→i

R (t))φk→i
(s) (t − 1)

+ (1− pa)[P
k→i
S (t − TE − 1)− Pk→i

S (t − TE)].
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Finally, we touch upon the computational complexity of computing the DMP equa-
tions. In principle, we need to update O(dN) equations (for each edge) over tmax 
timesteps, where tmax is the maximum time during which the marginals can still change, 
which can be as large as O(N). However, since we are only interested in comput-
ing the likelihood of the 5 earliest observations, tmax is typically quite low. Moreover, 
since we assume to be in an early stage of the epidemic, most of the equations remain 
unchanged. For better computational scalability, we only compute Pi

S(t) and θk→i(t) for 
nodes k,  i that have Pk→i

I (t) > 0.01 , i.e., we only update nodes that are at least some-
what likely to have received the infection. Otherwise, we set Pk→i

I (t) = Pk→i
I (t − 1) , 

θk→i(t) = θk→i(t − 1) , and in the implementation we can perform these assignments 
implicitly using appropriate data structures. With these adjustments, the time-complex-
ity of the algorithm becomes independent of N, but remains dependent on the network 
parameters, the epidemic parameters and the number of sensors in a non-trivial way.

D.3: Feasible source-time pairs for source identification

In this section we explain how we implemented the feasible source identifica-
tion algorithm, which was suggested as a preprocessing step for a method very simi-
lar to the DMP equations by Jiang et al. (2016). Let us define the directed graph G2 on 
(node,infecton_time) pairs (we use “nodes” for the nodes of the original graph G and 
“pairs” for the nodes of G2 ), and draw an edge between two pairs (v1, t1) → (v2, t2) if v1 
and v2 are in contact at t2 , and t2 is in the interval [t1 + TE , t1 + TE + TI ] . Observe that in 
the DDE model there is an edge (v1, t1) → (v2, t2) if and only if v1 becoming infected at 
time t1 can infect v2 at time t2 . The definition of G2 is applicable to the DCS model as well 
after discretization (rounding), however, since the infection times are not deterministic 
anymore, not all possible infections (v1, t1) → (v2, t2) have a corresponding edge in G2.

Then, we perform a breadth-first search backwards on the directed edges of G2 , start-
ing from each pair (vi, ti − TE − TP) , where vi is a symptomatic sensor node, and ti is 
the symptom onset time of vi (for the DCS model, we start from integer times in the 
ti − TE − TP ± (σE + σP) interval to account for the randomness of the transition times). 
To limit the time complexity of the algorithm, we only consider the k1 earliest observations, 
which means that we start k1 breadth-first searches. With this construction, each pair ( v, t ) 
discovered by a breadth-first search started from (vi, ti − TE − TP) could have caused the 
infection in vi ; we say that (v, t) is an explanation for observation i. We perform the breath-first 
searches until we find k2 pairs that explain all of the k1 earliest observations. See the pseu-
docode in Algorithm D.1.

Claim 1 In the DDE model, Algorithm D.1 with σE = σP = 0 finds the k2 feasible expla-
nations with the latest starting time of the k1 earliest symptomatic nodes.

Proof By construction, a source node v that becomes infectious at time t can cause an 
observation (vi, ti) if and only if there is a directed path from (v, t) to (vi, ti − TE − TP) . 
Therefore, the breadth-first search algorithm finds all of the closest feasible sources in 
time. �
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D.4: Source identification via feasible source identification and DMP

In this section we explain how to combine Algorithm  D.1 with the DMP equations 
derived in Appendix D.2. See the pseudocode in Algorithm D.2.

We start by computing the DMP Eqs. (79)–(83) and (73) for the k2 tuples of node 
and time pairs that can explain the first k1 symptomatic observations returned by 
Algorithm  D.1. Next, our goal is to use these DMP equations to compute the like-
lihood of each of the k2 tuples using the k1 observations. Similarly to Lokhov et  al. 
(2014), we make the assumption that the first k1 observations are independent, and 
we can compute the likelihood by multiplying their respective marginals together. 
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For symptomatic observed nodes v, we know the time of symptom onset, which we 
denote by S(v). Then, the marginal probability of v developing symptoms exactly 
at time t can be computed by taking the difference of Pv

S(S(v)− TP − TE − 1) and 
Pv
S(S(v)− TP − TE) and multiplying the difference by (1− pa) . In Algorithm  D.2 we 

drop the multiplicative factor (1− pa) because it is present for all of the tuples, and 
it does not change the final order of their scores. For asymptomatic (resp., negative) 
observations, we only know that at the time of testing, denoted by A(v) (resp., NE(v) ), 
at least a time interval of length TE has passed (resp., TE has not passed) since the 
time of infection. Therefore, dropping the pa factor similarly to the symptomatic case, 
we compute the marginal of asymptomatic observations as 1− Pv

S(A(v)− TE) , and we 
compute the marginal of negative observations as Pv

S(NE(v)− TE) . Finally, the contri-
butions of the observations are multiplied together for each of the k2 tuples returned 
by Algorithm D.1, and the scores approximating the likelihoods are returned.
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