Adhikari, B, Zhang Y, Ramakrishnan N, Prakash BA (2017) Distributed representations of subgraphs In: DaMNet.
Akoglu, L, McGlohon M, Faloutsos C (2010) Oddball: Spotting anomalies in weighted graphs In: PAKDD.
Bengio, S, Vinyals O, Jaitly N, Shazeer N (2015) Scheduled sampling for sequence prediction with recurrent neural networks In: NIPS.
Berlingerio, M, Koutra D, Eliassi-Rad T, Faloutsos C (2012) NetSimile: a scalable approach to size-independent network similarity. arXiv.
Borgwardt, KM, Kriegel H-P (2005) Shortest-path kernels on graphs In: ICDM.
Borgwardt, K, Ong C, Schönauer S, Vishwanathan S, Smola A, Kriegel H (2005) Protein function prediction via graph kernels. Bioinformatics 21.
Bruna, J, Zaremba W, Szlam A, LeCun Y (2013) Spectral networks and locally connected networks on graphs. CoRR.
Bunke, H (2000) Graph matching: Theoretical foundations, algorithms, and applications In: Vision Interface.
Chang, C-C, Lin C-J (2011) Libsvm: a library for support vector machines. ACM TIST 2.
Chen, J, Xu X, Wu Y, Zheng H (2018) Gc-lstm: Graph convolution embedded lstm for dynamic link prediction. arXiv preprint arXiv:1812.04206.
Debnath, A, Lopez de Compadre R, Debnath G, Shusterman A, Hansch C (1991) Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. J Med Chem.
Defferrard, M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs with fast localized spectral filtering. arXiv.
Duchi, J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. JMLR.
Duvenaud, D, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-Guzik A, Adams RP (2015) Convolutional networks on graphs for learning molecular fingerprints In: NIPS.
Floyd, RW (1962) Algorithm 97: shortest path. Commun ACM.
García-Durán, A, Niepert M (2017) Learning graph representations with embedding propagation In: NIPS.
Gärtner, T, Flach P, Wrobel S (2003) On graph kernels: Hardness results and efficient alternatives In: COLT.
Gilmer, J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural message passing for quantum chemistry. CoRR.
Grover, A, Leskovec J (2016) node2vec: Scalable feature learning for networks In: KDD.
Haussler, D (1999) Convolution kernels on discrete structures. Technical report.
Henaff, M, Bruna J, LeCun Y (2015) Deep convolutional networks on graph-structured data. arXiv.
Hinton, GE, Zemel RS (1993) Autoencoders, minimum description length, and helmholtz free energy In: NIPS.
Hochreiter, S, Schmidhuber J (1997) Long short-term memory. Neural Comput.
Kipf, TN, Welling M (2017) Semi-supervised classification with graph convolutional networks In: ICLR.
Kriege, NM, Giscard P-L, Wilson R (2016) On valid optimal assignment kernels and applications to graph classification In: NIPS.
Kurant, M, Markopoulou A, Thiran P (2011) Towards unbiased bfs sampling. IEEE J Sel Areas Commun.
Lee, JB, Rossi RA, Kim S, Ahmed NK, Koh E (2018a) Attention models in graphs: A survey. arXiv preprint arXiv:1807.07984.
Lee, JB, Rossi R, Kong X (2018b) Graph classification using structural attention In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 1666–1674.. ACM.
Li, J, Luong M, Jurafsky D (2015a) A hierarchical neural autoencoder for paragraphs and documents In: ACL.
Li, G, Semerci M, Yener B, Zaki MJ (2011) Graph classification via topological and label attributes In: MLG.
Li, Y, Tarlow D, Brockschmidt M, Zemel R (2015b) Gated graph sequence neural networks. arXiv.
Maaten, Lvd, Hinton G (2008) Visualizing data using t-SNE. JMLR.
Macindoe, O, Richards W (2010) Graph comparison using fine structure analysis In: SocialCom.
Morris, C, Kersting K, Mutzel P (2017) Glocalized weisfeiler-lehman graph kernels: Global-local feature maps of graphs In: ICDM.
Narayanan, A, Chandramohan M, Chen L, Liu Y, Saminathan S (2016) subgraph2vec: Learning distributed representations of rooted sub-graphs from large graphs. MLG.
Narayanan, A, Chandramohan M, Venkatesan R, Chen L, Liu Y, Jaiswal S (2017) graph2vec: Learning distributed representations of graphs In: MLG.
Newman, ME (2003) The structure and function of complex networks. SIAM Rev.
Niepert, M, Ahmed M, Kutzkov K (2016) Learning convolutional neural networks for graphs In: ICML.
Nikolentzos, G, Meladianos P, Vazirgiannis M (2017) Matching node embeddings for graph similarity In: AAAI.
Perozzi, B, Al-Rfou R, Skiena S (2014) DeepWalk: Online learning of social representations In: KDD.
Riesen, K, Jiang X, Bunke H (2010) Exact and inexact graph matching: Methodology and applications In: Managing and Mining Graph Data.
Rossi, RA, Zhou R, Ahmed N (2018) Deep inductive graph representation learning. IEEE Trans Knowl Data Eng.
Scarselli, F, Gori M, Tsoi C, Hagenbuchner M, Monfardini G (2009) The graph neural network model. IEEE Trans Neural Netw 20.
Shervashidze, N, Schweitzer P, Leeuwen EJv, Mehlhorn K, Borgwardt KM (2011) Weisfeiler-Lehman graph kernels. JMLR.
Shervashidze, N, Vishwanathan S, Petri T, Mehlhorn K, Borgwardt KM (2009) Efficient graphlet kernels for large graph comparison In: AISTATS.
Sutskever, I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks In: NIPS.
Tang, J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) Line: Large-scale information network embedding In: WWW.
Toivonen, H, Srinivasan A, King R, Kramer S, Helma C (2003) Statistical evaluation of the predictive toxicology challenge. Bioinformatics 19.
Tsitsulin, A, Mottin D, Karras P, Bronstein A, Müller E (2018) Sgr: Self-supervised spectral graph representation learning. arXiv preprint arXiv:1811.06237.
Trivedi, R, Dai H, Wang Y, Song L (2017) Know-evolve: Deep temporal reasoning for dynamic knowledge graphs In: ICML.
Van Wijk, BC, Stam CJ, Daffertshofer A (2010) Comparing brain networks of different size and connectivity density using graph theory. PLoS ONE 5.
Veličković, P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2018) Graph attention networks In: ICLR.
Vishwanathan, S, Schraudolph N, Kondor R, Borgwardt K (2010) Graph kernels. JMLR.
Wale, N, Watson IA, Karypis G (2008) Comparison of descriptor spaces for chemical compound retrieval and classification. KAIS 14.
Weisfeiler, B, Lehman A (1968) A reduction of a graph to a canonical form and an algebra arising during this reduction. Nauchno-Technicheskaya Informatsia.
Yan, X, Han J (2002) gspan: Graph-based substructure pattern mining In: ICDM.
Yanardag, P, Vishwanathan S (2015) Deep graph kernels In: KDD.
Ying, Z, You J, Morris C, Ren X, Hamilton W, Leskovec J (2018) Hierarchical graph representation learning with differentiable pooling In: Advances in Neural Information Processing Systems, 4805–4815.
Zhang, M, Cui Z, Neumann M, Chen Y (2018) An end-to-end deep learning architecture for graph classification In: AAAI.