From: Feature-enriched author ranking in incomplete networks

Feature |
Initialisation: (RA_{i})
| Description | |
---|---|---|---|

Productivity | Volume (P) | \(\frac {\sum \limits _{(P_{j} \in \mathcal {P}_{A_{i}})}\frac {1}{|\mathcal {A}_{P_{j}}|}}{\sum \limits _{(A_{i'} \in \mathcal {A})}\sum \limits _{(P_{j} \in \mathcal {P}_{A_{i'}})}\frac {1}{|\mathcal {A}_{P_{j}}|}}\) | Favours publishing many papers with few co-authors. |

Recency (A) | \(e^{\frac {-\delta (A_{i})}{\tau }}\) | Favours publishing recently. | |

Venues (V) | \(\Big (\sum \limits _{(P_{j} \in \mathcal {P}_{A_{i}})}v(P_{j})\Big) \times |\mathcal {P}_{A_{i}}|^{-1}\) | Favours publishing in prestigious venues. | |

Outsiders Influence | Individuality (W) | \(\sum \limits _{(A_{i'} \rightarrow A_{i}, P_{j})}\frac {\lambda (A_{i'}) \times w(A_{i'}\rightarrow A_{i},P_{j})}{w_{out}(A_{i'})}, A_{i'} \in \mathcal {O}\) | Favours being cited by outsiders that cite few authors. |

Recency (A) | \(\sum \limits _{(A_{i'} \rightarrow A_{i}, P_{j})}\frac {\lambda (A_{i'}) \times a(A_{i'}\rightarrow A_{i},P_{j})}{a_{out}(A_{i'})}, A_{i'} \in \mathcal {O}\) | Favours being cited by outsiders more recently. | |

Venues (V) | \(\sum \limits _{(A_{i'} \rightarrow A_{i}, P_{j})}\frac {\lambda (A_{i'}) \times v(A_{i'}\rightarrow A_{i},P_{j})}{v_{out}(A_{i'})}, A_{i'} \in \mathcal {O}\) | Favours being cited by outsiders in prestigious venues. |