Skip to main content

Table 2 Characteristics of networks gX corresponding to distinct periods X=i,…,vi and GX of aggregated periods X=I,…,IV

From: Network cartography of university students’ knowledge landscapes about the history of science: landmarks and thematic communities

Netw. Sizes Fitted parameters Correlations Global invariants Fragility
  N M γ σ R 2 τ B C C C L Q A Φ
gi 239 356 1.0 ±0.3 1.23 ±0.07 0.90 0.51 0.24 0.40 0.66 -0.09 0.04
gii 311 392 1.5 ±0.4 1.17 ±0.07 0.74 0.45 0.18 0.43 0.80 -0.10 0.10
giii 326 424 1.5 ±0.2 1.13 ±0.07 0.75 0.34 0.16 0.39 0.80 -0.09 0.18
giv 158 190 0.9 ±0.6 1.13 ±0.07 0.77 0.57 0.18 0.35 0.78 -0.12 0.17
gv 208 254 1.6 ±0.3 1.13 ±0.07 .77 0.51 0.16 0.38 0.79 -0.12 0.14
gvi 308 375 0.7 ±0.3 1.16 ±0.07 0.77 0.44 0.19 0.44 0.80 -0.11 0.20
GI 826 1212 1.7 ±0.2 1.27 ±0.05 0.71 0.51 0.18 0.37 0.78 -0.06 0.03
GII 858 1149 2.0 ±0.2 1.26 ±0.04 0.75 0.42 0.16 0.39 0.83 -0.08 0.03
GIII 796 1053 2.3 ±0.2 1.26 ±0.03 0.69 0.46 0.15 0.37 0.84 -0.08 0.07
GIV 757 992 1.6 ±0.2 1.27 ±0.05 0.76 0.48 0.17 0.39 0.83 -0.09 0.16
GTOT 1613 2306 2.1 ±0.1 1.60 ±0.04 0.62 0.53 0.16 0.36 0.83 -0.07 0.03
  1. Power γ is for fitted inverse power law distributions fitted to degree (D) centrality distributions. The (logarithmic) width σ is for lognormal distributions fitted to Katz (K) centrality distributions. The relative errors of fits are estimated from the standard deviation of residuals. The correlations between values D and K are for Pearson (R2) and Kendall- τB ranking (τB) correlations. The summarised global invariants are average values of Closeness centrality (CL), Local Clustering coefficient (CC), Modularity (Q) and Assortativity (A). For each network, the number of nodes N and links M are provided, as well as the fragility Φ