Skip to main content

Table 2 Key features of customised attachment rules used in literature

From: Network science approach to modelling the topology and robustness of supply chain networks: a review and perspective

Customised attachment Rule Key features
Ad hoc attachment rules based on the military supply chain example, used by Thadakamalla et al. (2004) Three types of nodes can enter the system in a pre-specified ratio. Each type of node has a specific number of links. Attachment rule depends on the type of node entering the system. The first link of a new node entering the system attaches to an existing node preferentially, based on the degree. The subsequent links, entering the system with each new node, attach randomly to a node at a pre-specified topological distance (also referred to as the ‘hop count’, which denotes the least number of links required to be traversed in order to reach a given node from another).
Degree and Locality based Attachment (DLA), used by Zhao et al. (2011a). A node entering the system considers both the degree and the distance of an existing node, when establishing connections. In particular, attachment preference for the first link arriving with each new node is calculated preferentially based on the degree of the existing nodes. If the node is allowed to initiate more than one link, the subsequent links will attach preferentially to existing nodes based on topological distance. Tunable parameters are used to control the responsiveness of attachment preference to both the degree and the topological distance.
Randomised Local Rewiring (RLR), used by Zhao et al. (2011b) This model is applied to an existing network, by iterating through all links and considering the nodes at either end of each link. With a predetermined rewiring probability, to control the extent of rewiring, each link will disconnect from the highest degree node it is currently connected with and reconnect with a randomly chosen node within a pre-specified maximum radius (which can either be geographical or topological).
Evolving model used by Zhang et al. (2012) and Li and Du (2016) Start with a random network that consists of a pre-specified number of supply nodes with randomly assigned (x, y) coordinates. Supply and demand nodes are sequentially added to the system, according to a pre-specified supply-demand ratio. If the new node is a supply node, the first link will connect to an existing supply node in the system while other links are connected randomly to existing nodes. If the new node is a demand node, all links will connect with existing supply nodes in the system, with connection probability based on the product of degree and the geographical distance. Similar to DLA discussed above, tunable parameters are used to control the responsiveness of attachment preference to both the degree and the geographical distance.