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Introduction
Spreading dynamics has played a crucial role in shaping humankind since it emerged, 
as it led to the biggest human discoveries and societal transformations. Understanding 
the dynamics of spreading processes has thus been a topic of great interest in various 
scientific fields, such as diffusion of religion (Fousek et al. 2018) in humanities, rumor 
spreading (Daley and Kendall 1964) in social sciences and virus spreading in epidemiol-
ogy (Hethcote 2000). Different types of models have been developed in order to study 
dynamics of spreading on various spatio-temporal scales based on available data-sets 
(Colizza and Vespignani 2008; Krause et al. 2018; Carrignon et al. 2020; Hethcote 2000).
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Typical data from real-world spreading processes includes observations of e.g. the 
number of infected individuals at different time points. More detailed information 
needed for understanding and predicting the spreading dynamics, such as the under-
lying contact structure between individuals and dynamical properties of the spreading, 
e.g. the spreading rate α , are usually unknown. For large population numbers, it can 
be assumed that the considered population is well-mixed. Then, the spreading can be 
modelled by the so-called compartmental models with deterministic dynamics given by 
the system of ordinary differential equations (ODEs) (Kermack and McKendrick 1927; 
Hethcote 2000). These models are shown to be able to reproduce the data coming from 
real-world observations (Beira and Sebastião 2021; Maier and Brockmann 2020; Wulkow 
et  al. 2020). Using appropriate parameter estimation methods, the spreading dynam-
ics can be easily recovered by solving the ODE system. Due to their simple formulation 
and cheap computational cost, compartmental ODE models are often a model of choice 
for various spreading processes. However, these models don’t offer detailed information 
about the dynamics on a resolution of each individual.

Recently, new models have been introduced with a focus on heterogeneous spatio-
temporal interactions of individuals with realistic mobility and behavioral patterns. 
These models assume an underlying network structure that determines the possible 
interactions between individuals (Kiss et al. 2017; Karunakaran et al. 2017; Prasse et al. 
2020; Schlosser et al. 2020; Volz 2008; Wu et al. 2020; Barthélemy et al. 2005; Newman 
2002).

Additionally, by taking into account the mobility of individuals, e.g. using the airline 
travel data (Brockmann and Helbing  2013; Pei et al. 2018) or cell-phone data (Schlosser 
et  al. 2020; Wesolowski et  al. 2012), the underlying network naturally becomes time-
evolving (Koher et  al. 2019). A structure of such networks has been shown to have a 
strong impact on the dynamics of the spreading (Colizza et  al. 2006; Brockmann and 
Helbing  2013).

Developing formal mathematical models for such systems has been a topic of many 
recent publications (Kiss et al. 2017). For example, ODE equations for compartmental 
models have been extended to account for the network structure, but the resulting ODE 
systems can usually not be analytically solved. When a network G is known, then the 
ODE systems can be solved numerically, however, in many real-world examples these 
networks are not known and need to be inferred together with other dynamical param-
eters, e.g. α, of the process. The inference of both α and G, based on partial observations 
poses a new parameter inference challenge (Prasse and Van Mieghem 2019; Brugere 
et al. 2018; Di Lauro et al. 2020; Ma et al. 2019). The difficulty arises due to the fact that 
different combinations of α and G can produce very similar overall spreading patterns. 
Hence, the inference method has multiple valid parameter configurations to choose 
from. In this work, we shed light on the challenges of inferring the network and the 
dynamical parameters together, using a concrete real-world example.

In this paper, we study the historical process of Romanization spreading in Northern 
Tunisia during the period 146  BC–350  AD. Romanization is a complex meta-process 
with different interacting layers, e.g. on a social, political, and economic level. Processes 
of change on these different levels govern cultural change and are therefore considered 
to be important indicators of the Romanization. However, very little is known about 
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these processes and their complex interaction mechanisms, which makes modelling of 
Romanization spreading a challenging task. Here, we will focus on the changes in the 
civil administration system of Northern Tunisia and thus consider a city status to be the 
main indicator of the Romanization process. Cities with established roman administra-
tive status will be considered to be romanized. Thus, we will model the Romanization 
process as an SI epidemic process, where susceptible will refer to non-romanized cities 
and infected to romanized cities. The spreading parameters and the underlying connec-
tions between these cities that govern the SI process are unknown. Observation data 
on this process was obtained from archaeological evidence about the cities in Northern 
Tunisia in the period 146 BC–350 AD. However, due to a limited amount of archaeologi-
cal traces, available data is sparse, incomplete and uncertain. This makes the problem of 
inferring the unknown connections on a city-level infeasible.

To overcome this, we study the Romanization spreading on a mesoscale, i.e. between 
different regions in Tunisia. Grouping of cities into regions will have two main advan-
tages compared to modelling on a city-level. Firstly, it will reduce the effect of data spar-
sity by considering several cities together instead of each city individually. Secondly, it 
will account for complex spreading mechanisms of cultural transmission, as an inter-
regional model will essentially substitute two-city interactions by interactions between a 
number of cities from different regions. Aggregation of cities into regions will result in a 
model reduction, and the new dynamics on a mesoscale will be an SI epidemic process 
on an interregional network. Our model builds on standard epidemic spreading models 
on networks (Prasse et  al. 2020) and extends these by considering time-evolving net-
works. The aim of this paper is to infer possible interregional networks underlying the 
Romanization spreading that could have produced the observed spreading patterns.

The remainder of the paper is organized in following way: In “Background” section, 
we discuss the historical background of the Romanization process in ancient Tunisia 
and present the main characteristics of the available dataset. In “Modeling romanization 
spreading between regions” section, we introduce our model, an SI epidemic model on 
an interregional network for the romanization process, and the respective inverse prob-
lem to infer its model parameters. In “Methods” section , we present the general meth-
odology of the numerical methods used to perform the numerical experiments in the 
paper. In “Results” section, we collate the multitude of networks and dynamic param-
eters which exhibit very similar overall spreading behaviour. From these, we shortlist 
three contrasting networks, and show how these networks induce a similar spreading 
but over different edges in the networks. In “Validation” section, we cross-validate our 
inferred model with another historical data source. Lastly, we discuss the significance of 
our inferred model in understanding the romanization spreading in northern Tunisia, 
and discuss open problems with respect to the solving of such mixed–network param-
eters and dynamic parameter–based inverse problems.

Background
Romanization process of northern Africa started in 146 BC when the region known 
nowadays as Tunisia was annexed by Rome in the aftermath of the Third Punic War. In 
the following centuries the African province expanded further with its greatest extend 
around 117 AD. During this period, cultural exchange, spreading of socio-economic and 
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technological innovations led gradually to adaptation to the Roman influence. The most 
import indicators of the cultural change, can be observed in the Romanization of towns, 
cities and entire settlement systems on an administrative level. Romans established a set-
tlement hierarchy with a tripartite taxonomy of status: colonia, municipium and civitas. 
Colonias were cities with the highest ranks and initially these cities were strategically 
located. Municipia had a lower rank than colonias and their inhabitants did not have all 
Romans civil rights, but still had a certain amount of autonomy. In comparison to muni-
cipia, civitates had a lower rank and they were only semi-autonomous.

During the period 146 BC–350 AD cities in ancient Tunisia gradually got roman-
ized, which was reflected in their administrative status, that often changed mostly to a 
higher rank. The data-base we are working with is publicly available on the server of 
the German Archaeological Institute (iDAI. geoserver German Archaeological Insti-
tute 2022). This data-base contains the administrative status of 88 cities from 146 BC 
until 350, AD collected through an extensive literature review and by querying archae-
ological online research databases (Babelon et  al. 1893, iDAI. objects/Arachne; iDAI. 
gazetteer:Deutsches Archäologisches Institut). For a number of cities, the Roman 
administrative status is known through historical sources. In our database, preserved 
Latin documents were used as the only source of city status. In Fig.  1a we plot the 
romanized cities and mark them according to their status at 350 AD. Status of some cit-
ies (marked with *) is assumed, but could not be confirmed by archaeological records, 
so for these cities we plot only the last confirmed status. This reflects the uncertainty of 
already sparse data we have at hand. Note that in the following, we will focus only on the 
notion of a city being romanized or not and not on the particular status.

We will use the romanization data on a city level to uncover the interregional inter-
actions and how these changed over time under Roman influence. Since we are inter-
ested in interpretation of the resulting interaction patterns based on archaeological 

Fig. 1  Visualization of available data and division of cities into regions. a Map of Roman roads and cities with 
Roman status in Northern Tunisia at 350 AD. City statuses marked with * denote cities with at least this status. 
(Map was made by Fleur Schweigart) b Geographical position of Roman cities and their division into four 
regions. Color of a city indicates a region it belongs to. c Observed number of romanized cities in the period 
0–350 AD for each region corresponding to the division from Fig. (b). Sources Natural Earth; Ancient World 
Mapping Center (2012); iDAI. geoserver German Archaeological Institute (2022). Licensed under CC BY-NC 3.0. 
and Open Data Licence
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information, we used a spatial division in 4 regions obtained from the expert knowledge, 
see Fig. 1b. These regions were shaped by features of the landscape, climate, economy, 
culture and politics. In particular, they cover areas that have different geographical prop-
erties, natural resources and socio-economic characteristics. The regions differ in size, 
as well as in the number of cities contained in the data-set, with a range between 7 and 
33 cities per region. Additionally, we aggregate the temporal data, such at that at time 
point 0 we account for cities that obtained a roman status before 0AD; at time point 
50 we aggregate information about cities that got romanized in the period [0,  50)AD 
and so on. For each region, we plot the number of romanized cities in these discrete 
time points, see Fig. 1c. We see diverse spreading curves for the four regions. For exam-
ple, Region 1 is characterized by an almost constant number of romanized cities until 
150 AD with a steep increase in the period 150–250 AD. On the contrary, the spreading 
curve of Region 2 is almost flat, since most of the cities got romanized in the first time-
frame. Regions 3 and 4, both have a fast accelerating number of romanized cities. In the 
next sections, we will introduce an approach for inferring interregional interactions that 
could have produced spreading curves shown in Fig. 1c. Remark: The process of tempo-
ral aggregation explained above, was governed by the quality of available data. Namely, 
most of the considered data points cannot be dated directly with great precision. How-
ever, approximate time-spans during which a Roman municipality was inhabited can be 
extracted from the published literature. The choice of 50 year time intervals is made as 
the thinnest time slices that are still reasonably well supported by the data.

Modeling romanization spreading between regions
Model formulation

We model the Romanization spreading in ancient Tunisia by an SI epidemic model 
(Allen 1994) on a network of connected regions. In our context, this means that a city is 
considered to be infected if it has a Roman city status1. Likewise, a city is susceptible if 
it doesn’t have a Roman status. Susceptible cities can become romanized through a cul-
tural influence from already romanized cities. On a mesoscale, every region m is char-
acterized by the fixed number of cities inside this region Pm and a regions state at time 
t given by a pair (sm(t), im(t)) denoting the number of susceptible and infected cities in 
m at time t ∈ [0,T ] . Formally, we model the Romanization spreading over a contact net-
work of NR nodes.

The contact network is defined by

where Wm,n represents the connectivity between regions m and n and Wm,n/Pm denotes 
the contact rate between cities in region m and cities in region n. Our definition of 
the contact network G builds on the idea that the Romanization process is driven by 
complex mechanisms of cultural influence and assumes symmetric contact patterns 

(1)Gm,n :=

Wm,n

Pm
+

Wn,m

Pn
form �= n,

Wm,m

Pm
form = n,

1  Here we do not distinguish which Roman status a city has.
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Wm,n

Pm
+

Wn,m

Pn
 . Then for every region m = 1, . . . ,NR a change of its state is given by the 

following set of ordinary differential equations:

where α : R → R denotes the spreading rate function. This model builds on existing 
work for SIR epidemic spreading on networks (Prasse et al. 2020; Wang et al. 2018), and 
extends these approaches by considering spreading rate function α(t) instead of a con-
stant spreading rate. Using the definition of G,  we can write a more detailed description 
of our model:

This model was build considering the following types of interactions: 

1	 The first term in equation (3), namely sm(t) α(t)
NR
∑

n=1,n�=m

(

Wm,n

Pm
+

Wn,m

Pn

)

in(t) , 

accounts for the change in the number of romanized cities in m caused by interac-
tions with other regions.

2	 The second term in equation (3), i.e. sm(t) α(t) Wm,m

Pm
im(t) models self-infections, i.e. 

influence that cities within the same region have on each other. Note that often the 
rate of self-infections are not considered (Wang et al. 2018). Here, like in Prasse et al. 
(2020), we assume that infections inside regions can have different dynamics and 
therefore we account for Wm,m as well.

3	 Finally, the second equation of our model (4) stands for the so-called conservation of 
population numbers in every region m, such that it holds sm(t)+ im(t) = Pm.

Since analytical solutions of the model given in  (3) are not known, we solve the ODE 
numerically with the first order Runge-Kutta scheme (Alexander 1990). We parametrize 
the model (3) by the tuple containing the contact network and the spreading rate function, 
σ := (G,α). One can interpret the tuple (G,α) as a time-evolving network α(t)G , that can 
be even time-continuous or time-discrete.

We fix our initial value to be i(0) = (im(0))
NR

m=1. Using these, here on in, we denote the 
approximate solution to (3) for the given parameter set σ and initial value i(0) at time t by,

The function φ(• | σ , i(0)) describes a spreading curve through time determined by the 
parameter set σ . With this we can formulate the inverse problem, where given a set of 

(2)
dsm(t)

dt
= −sm(t) α(t)

NR
∑

n=1

Gm,n in(t),

im(t) = Pm − sm(t),

(3)

dsm(t)

dt
= −sm(t) α(t)

NR
∑

n=1,n �=m

(

Wm,n

Pm
+

Wn,m

Pn

)

in(t)− sm(t) α(t)
Wm,m

Pm
im(t),

(4)im(t) = Pm − sm(t).

(5)φ(t | σ , i(0)) =

(

Pm −

∫

t

0

dsm(τ )

dτ

∣

∣

∣

∣

σ ,Pm−i(0)

dτ

)

m=1,...,NR

.
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observations we need to infer the possible parameters σ which most likely produced the 
data.

Inferring model parameters from data

Our main goal is to infer σ , i.e. the weights of the underlying contact network G and 
the spreading rate function α(t) given observations of the spreading in the discrete 
time points of the interval [0,  T]. For a particular choice of σ , we can generate the 
corresponding spreading curves by solving the equation (2). Comparing these results 
to the given data via a distance measure, we obtain an error between the two results. 
Naturally, the parameter set which induces the smallest error to the data, is consid-
ered a viable candidate for a good fit. This idea is at the core of the so-called Gen-
eral Inverse Infection Model (Bóta and Gardner  2017), which in this way translates 
the inference problem to an optimization problem of finding the parameter set that 
minimizes the error between the corresponding spreading curves and the available 
data. We follow this methodology and adapt it to using an error function that takes 
the variance of data into account. This step is needed to due the nature of our data 
and model, as the number of cities in different regions varies strongly. Otherwise the 
method would tend to fit regions with larger populations more, than regions with 
smaller populations.

More formally, we formulate our parameter inference problem as follows: Let 
NT ∈ N be the total number of time points at which observation were made. We 
denote ti, for i ∈ [0, . . . ,NT ], to be the ith time point and the vector (ωm,ti)

NR

m=1 ∈ Z
NR

+  
to be the observed number of romanized cities in the mth region during the ith time 
interval. in the NR regions at this time, respectively. Considering all the data points, 
we define the loss function by Wulkow et al. (2020)

where Cm,ti := max{ωm,ti , STD(ωm,•)} is the maximum between the data and the stand-
ard deviation for region m observed in time. The loss function in (6) consists of two 
sums, which summing over the regions and the data-points. For each region m and 
data-point ti, we calculate the square distance between the data, ωm,ti , and the predicted 
spreading time ti w.r.t. the parameter, φ(ti|σ ,ω•,0), weighted by Cm,ti , as used in Wulkow 
et al. (2020). If the data wm,ti is larger than the standard deviation, than the inner fraction 
in (6) is simply the relative distance. Otherwise the inner fraction is smaller for regions 
with a faster spreading.

Then, the constrained minimisation problem reads

(6)ℓ(σ ) :=

NT
∑

i=1

NR
∑

m=1

(ωm,ti − φ(ti|σ ,ω•,0))
2

C
2
m,ti

,

(7)

min
σ=(G,α)

ℓ(σ ),

subject to:

∀m �= n, 0 ≤ Gm,n ≤ 2, and 0 ≤ Gm,m ≤ 1

∀ t ≥ 0, 0 ≤ α(t) < ∞,
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which we use to find candidate contact networks and spreading functions. In the par-
ticular example considered in this paper, we have four regions of interest, i.e. NR = 4. 
We fit eight observations from 0 AD and 350 AD, with equidistant sampling of 50 years. 
Given we do not have a resolution below the 50 year period, we choose our spreading 
rate function to be a piece-wise constant function, with seven equidistant left clopen 
intervals between [0, 350]. We assume the spreading rate function has a range between 
[0, 0.1]. We only infer G,  as only these terms are needed to solve for the spreading (2). 
Given G is symmetric and the spreading rate function is piecewise constant function, in 
total, we have 17 unknown parameters which we minimize over in (7). In the context of 
this work we refer to problem (7) as a minimization problem or a parameter inference 
problem interchangeably.

Methods
The parameter inference problem (7) is inherently ill-posed, that is, we have multiple 
parameter candidates which minimize the loss function of observing the data. Hence, 
we used the fast minimisation method prescaled Metropolis-adjusted Langevin algo-
rithm (PMALA) with thousands random starts and collected the local minima. The 
inferred parameter tuple (G,α) characterises a time evolving network and the spreading 
on top of it, which we find eludes to give a simple visual interpretation. Therefore, to 
visualise what the landscape around the minima looks like, we projected the data using 
t-SNE method, with the distance function which discriminated parameters based on the 
spreading curves (sol. to (5)) they generated. This then gave an embedding where prox-
imity between embedded parameter points produced similar trajectories in time. We 
give details of these steps below.

Finding local minima with PMALA

The minimization problem (7) has multiple local minima. Common optimization meth-
ods, like, the stochastic gradient descent (Ketkar  2017), follow the gradient of the land-
scape. This makes the methods fast, but they tend to get stuck in a local minima. To 
avoid this issue, it is recommended to run the algorithm from different starting points 
or to change the learning rate during the iterations (Klein et al. 2009). Alternatively one 
can use Bayesian methods, which are appealing in their ability to capture uncertainty in 
parameters and avoid overfitting (Welling and Teh  2011).

In a Bayesian method we define the probability of parameters conditioned on the data, 
the so-called posterior distribution, and then sample from this distribution, to find the 
most likely parameters. This can be done efficiently with a controlled random walker 
exploring the parameter space, like the Metropolis-Hastings algorithm. The class of 
Metropolis-Hastings algorithms (Robert et al. 1999), is based on Markov chain proper-
ties. A Markov chain is constructed by defining a conditional density and having a prop-
erty to converge to the desired distribution. The choice of the conditional density, that 
determines the rules of the walker, is crucial for the performance of the algorithm.

The Metropolis-adjusted Langevin algorithm (MALA) replaces the random walker 
with a walker following the Langevin diffusion, to make him more efficient (Kroese and 
Rubinstein 2012). Especially in high-dimensional spaces, the appropriate step-size can 
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vary a lot in different dimensions. This makes an appropriate choice of the step-size 
difficult.

In light of this, the prescaled Metropolis-adjusted Langevin algorithm (PMALA) is a 
method that was developed for parameter estimation with parameters arising in differ-
ent orders of magnitude. The scalar step-size of the walker in MALA is replaced by a 
diagonal matrix, which is prescribed beforehand, and is dependent on the average length 
of the gradient and the average length of a step in each of the parameter directions τ . In 
this work, we only refer to how PMALA was used in the context of our minimization 
problem, for technical aspects we refer to Wulkow et al. (2021).

The advantage of PMALA is that it can find quickly many local minima even for prob-
lems with strong scale separation between parameters. Therefore, we treat the samples 
of each run of the PMALA algorithm as individual local minima of the loss function. We 
don’t use any statistics of the samples, but simply utilize the larger variety of solutions 
found in comparison to other gradient descent approaches.

In the PMALA method has two free parameters which need to be tuned: the average 
length of a step in each parameter-direction τ and the number of iterations nPMALA . We 
chose the parameter values to be τ = 0.03 and nPMALA = 2000 . Given there are multiple 
minina, we chose 5000 random starts in the valid parameter space and ran the minimi-
sation for 2000 steps.

Projecting into low dimensional space

Each PMALA run gives a parameter, σ , which consist of a contact network G and the 
spreading rate function α, which together form a time evolving network. We picked the 
best 20 parameters w.r.t. the values of the loss function, see Fig. 2 b). However, it does 

Fig. 2  Distribution of the inferred parameters. a Histogram of the inferred parameters with respect to the loss 
function. Shaded green shows the best 20 inferred parameters. b Zoomed axes of the histogram showing 
only the density of the best 20 inferred parameters. c t-SNE embedding of the top 500 inferred parameters, 
with the loss function colour overlay. The best 20 inferred parameters are marked with green stars
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not necessarily imply that these 20 solutions exhibit similar contact network and spread-
ing rate function. Given any two parameters, σ1 and σ2, it is difficult to measure the simi-
larity between σ1 and σ2 using a simple distance function which captures similarity in 
both the contact networks and the spreading rate function. Hence, we opted to use the 
distance between the predicted spreading curves of the parameters as the distance func-
tion, that is,

This distance function considers all points in between the observed time periods and 
should not to be confused by the loss function, which is a function of the data. Here the 
distance function is only a function of the difference in the respective spreading curves.

The remaining task is to project the solutions onto the two dimensional-space with 
respect to the distance in (5), such that solutions having a similar spreading curve, are 
also close in the two-dimensional space. For this purpose, we choose t-Distributed Sto-
chastic Neighbor Embedding (t-SNE) (Zhou et al. 2018; Belkina et al. 2019). T-SNE pre-
serves the local structure, by minimizing the Kullback-Leibler divergence between the 
joint probabilities of the low-dimensional embedding and the high-dimensional data. It 
is the projection algorithm with minimal structural information loss (Zhou et al. 2018). 
An important parameter for the projection is the so called perplexity, which describes 
how to balance the attention between local and global features of the data. Perplexity 
needs to be choosen depending on the structure of the data-points and their amount. If 
the perplexity is too small, then little variations of the data dominate the projection. For 
example, if we project points that are building a circle with a too low perplexity, then the 
circle looks twisted. On the other side if the perplexity is too large, then the points look 
randomly distributed. In this work, we were interested in the proximity of the best 20 
inferred parameters, hence, we choose a perplexity of 30, to study them.

Results
We recall that, based on expert knowledge, we divided the roman cities from our data-
set into four regions (“Background” section), such that each represents a geographical 
region in Northern Tunisia, see Fig. 1. Available data spans the time period from 146 BC 
until 350 AD. We use the temporal information before 0 AD for initial conditions i(0) 
and the rest we divide into seven time-frames with equal lengths of 50 years. We assume 
within each time-frame, a constant spreading rate, ergo the spreading rate function, α(t), 
to be piece-wise constant. Hence, we numerically solved the parameter inference prob-
lem (7), for the 17 parameters, which were needed to fit our adapted Romanization SI 
model (5), to our data (Fig.  1c). To avoid extensive numerical computations when solv-
ing the ODE, we scale the time period from [0, 350] to [0, 3.5]. This scaling only effects 
the range of the spreading function α(t).

To find the parameters σ = (G,α) which best fit the data in our parameter inference 
problem we used the PMALA numerical scheme (4). We ran the algorithm from 5000 
different starting parameter configurations, to explore the parameter space and avoid 
local minima wells. We iterated the sampler over 2000 steps; we found this amount to 
be sufficient, as the average difference between the last two steps of the samplers were 

(8)d(σ1, σ2) :=

∫

T

0
(φ(τ | σ1, •)− φ(τ | σ2, •))

2
dτ .
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of the order 10−3 , and did not decrease with increased number of steps. We first inves-
tigated the distribution of the loss function of the 5000 parameter candidates given by 
PMALA, and found that the distribution had a long tail. We found that approximately 
1000 starting points had a loss function strictly above 0.08. The remaining 4000 param-
eters, which yielded a loss function below 0.08,  had the shape of a Log-normal distribu-
tion (see Fig.  2a). We did not observe multiple modalities in the distribution of the loss 
function, suggesting the landscape does not have multiple steep wells where the PMALA 
samplers would visit for a long period of time.

We wanted to investigate if the parameters found through PMALA came from a 
flat region or from a single well, hence, we studied if the parameters produced similar 
spreading curves. For this, we took the 500 best parameters with respect to the loss 
function and embedded them using the t-SNE projection with the spreading based dis-
tance measure (8) (see Fig. 2b–c). We observed very little visual correlation between a 
point’s loss function and that of its neighbouring points. This suggests, that the param-
eters may not belong to a single minima well. Furthermore, when we overlayed the best 
20 parameters, that is, the parameters yielding the smallest loss function, we observed 
them to be scattered over the t-SNE embedding (see Fig. 2c green star). Given that the 
t-SNE projection strongly preserves local distances and that we used a spreading based 
distance measure, implies that the 20 best parameters mostly induced distinctly different 
spreading curves.

By manual inspection of the 20 solutions, see Additional file 1:  Fig. A, we observe that, 
according to their network structure and the shape of their spreading rate functions, the 
solutions can be divided into 3 main groups. From these groups we pick one representa-
tive solution each and analyze further properties of their contact networks A, B and C 
together with their corresponding spreading rate functions. We plot these in the top two 
plots of Fig. 3. Network edges are colored according to their weights in G, where light 
colors indicate small weights and dark red colors high weight. We observe that network 
patterns and shapes of spreading rate functions differ greatly between the three solu-
tions. Solution A is characterized by high spreading rates and low, similarly distributed 
edge weights in Network A. This means that no specific interregional patterns govern 
the spreading and that the dynamics is driven by the high spreading rate. On the con-
trary, in solutions B and C, network structure has a bigger effect on the spreading and 
the changes in alpha become prominent only in the last time-frame accounting for the 
abrupt increase of romanized cities in region 1 and 4. Thus, we see that networks of 
different structure and distinct spreading rate functions lead to similar solutions wrt. 
spreading dynamics. We study this effect in more details by looking at the actual spread-
ing curves. Namely, using the three networks A, B, C and the corresponding α(t) val-
ues, their spreading curves were obtained by solving equation (2), see the bottom plot 
of Fig. 3. We observe a good fit between the spreading curves and the available data, as 
the three solutions were chosen from the best 20 solutions and have the error bounded 
by 0.058. Furthermore, we see again that spreading curves with very different shapes, i.e. 
coming from distinct dynamics, can produce a good fit to available data.

Each solution (G,α) can be interpreted as a time-evolving network 
(α(0)G,α(50)G, . . . ,α(350)G) . This network contains information on the interregional 
connectivity and the spreading rate, but not the information on the romanization flux 
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between regions that is governed by the number of romanized cities. To this end, we 
introduce a time-evolving, directed network

that we will call the Romanization dynamics network.
Temporal evolution of the effective current between regions m and n stands for the 

amount of romanization influence and can be expressed by

In Fig. 4 we plot the temporal evolution of H∗(t) for the three selected networks A, B 
and C. Network edges are colored according to the value of the effective current H∗(t) 
and the arrows point in the direction of positive current. Resulting effective currents 
differ for networks A, B and C, due to the varieties in their structural properties and α . 
But, the main patterns are common in all three networks. Namely, we observe that in the 
beginning for all networks there is a high current from Region 1 to Region 3. Addition-
ally, for networks A and C we see high H∗ from Region 1 to Region 4. Both observations 
agree with historical narratives about the political and economical importance of Region 
1. Namely, a city Carthage that belonged to Region 1 was one of the largest cities of the 
Roman Empire, that certainly had a major influence on the cities close by. Also, Carthage 

(9)Hm,n(t) := α(t) sn(t)Gm,n im(t),

H
∗
m,n(t) := max(Hm,n(t)−Hn,m(t), 0).
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was the leading trade center and one of the major breadbaskets of the Empire. As such, 
it had a strong influence on other regions of Ancient Tunisia. From 150 AD, the effec-
tive current from Region 1 to Region 3 started strongly decaying. Furthermore, as most 
of the cities in Region 3 got romanized by 200 AD, the current from Region 3 to both 
Region 1 and Region 4 increases significantly, reaching its highest values before 350 AD. 
The early romanizaion of most cities in Region 2 determines the directionality of the 
current towards other regions. Additionally, it has an effect to other regions, e.g. a high 
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current from Region 2 to Region 4 in network B. Commonalities from the three solu-
tions discussed above, result in several dominant interregional connections that we will 
compare to archaeological traces as a method of validation, see “Validation” section.

Validation
One of the major inventions of the Roman Empire were Roman roads. As a crucial part 
of the Empire infrastructure, Roman roads were excessively used for the movement of 
armies and civilians, but also for trading goods and communications between Roman 
cities. In particular, Roman roads were important connectors of Colonias, many of 
which were influential regional hubs of trade, politics and culture. Even now, Roman 
roads are being intensively studied as they are closely connected to modern-day infra-
structures and economies (Flückiger et al. 2021). Thus, Roman roads can be considered 
to be carriers of cultural, political and economical influence.

We will use information about the Roman road network in ancient Tunisia to validate 
our results. The most reliable archaeological traces about the temporal evolution of the 
Roman road network that we found are collected in the data-set of milestones (iDAI. 
geoserver German Archaeological Institute 2022). Milestones are stone markers placed 
along Roman roads (Wilmanns  1881). Their inscriptions often indicated the distance 
to cities or other places, time reference to the road construction (or repair work) or 
commemoration to the ruling emperor. The data-set we use consists of 29 milestones 
for which we have information about their geographical position and time when they 
were (most likely) placed. We consider these milestones to be indicators for existence 
of important roads at a particular point in time. Specifically, as a mean of validation, we 
will compare the resemblance of milestones’ position in space and time with the inter-
regional connections with the highest values of the effective current H∗.

In Fig. 5, we plot the Roman road network, milestones and romanized cities aggregated 
in three time-frames 0–150 AD, 150–250 AD and 250–350 AD. Milestones are marked as 
black squares and cities are colored according to the region they belong to, as described 
in “Background” section, where large circles indicate Colonias and small circles stand for 

Fig. 5  Validation data and dominant connections of H∗ . Milestones are marked with black squares and 
cities with circles (large circles stand for colonias, small circles for municipia and civitates). Cities are colored 
according to the region they belongs to, were transparent colors indicate that a city has not yet been 
romanized at that time. Full arrows show the dominant connections of effective current H∗ that all three 
solutions have in common. Dashed arrows indicate dominant connections that only some of the solutions 
A, B, C have.  Sources Ancient World Mapping Center (2012); iDAI. geoserver German Archaeological Institute 
(2022). Licensed under CC BY-NC 3.0. and Open Data Licence
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cities of other roman status. Additionally, we plot dominant interregional connections as 
directed edges with the highest values of H∗ . We distinguish between interregional con-
nections that all three networks have in common (marked with full arrows) and the ones 
that appear only some networks (marked with dashed arrows).

In the early period from 0–150 AD we observe a strong connection from region 1 in 
the east to a less romanized region 3 in the south. As discussed above, already at this 
time region 1 had many colonias many of which were important regional hubs. Similarly 
strong connections occur from region 1 to the central region 4, that we see in solution 
A. Another region with many colonias is the region 2 in the west for which our model 
infers a high effective current to the central region 4 for network B. Several milestones 
in the north-west part could explain the connection between the two regions. Whether 
the central region 4 was influenced in the beginning more from the east (region 1) or the 
west (region 2), should be further studied by archaeologist. In the next period from 150–
250 AD, we observe strong romanization of the region 3, expressed by the appearance of 
many Colonias and the first milestones in this region. This could explain the high effec-
tive current we obtain from region 3 to region 1. In the central region 4 we find many 
new milestones. However, the main source of influence on region 4 in this period cannot 
be clearly identified, as it could be any of the other three regions. Finally, in the last step, 
our results show strong connections from region 3 to regions 1 and 4. Possible expla-
nation is that by that time region 3 consisted of many important colonias, whereas in 
regions 1 and 4 from 250 AD we see many newly romanized cities and many milestones, 
indicating increased romanization of that area. More detailed evaluation of obtained 
results is needed to derive conclusions in archaeological context, which exceeds the 
focus of this work.

Discussion
In this paper we inferred time-evolving networks from historical data. A problem when 
working with historical data is that, the data is scarce and has high uncertainty. Never-
theless, historical processes range over long time-scales and are governed by complex 
mechanisms, requiring a model that is able to capture such spatial and temporal attrib-
utes of the process.

To study the Romanization process in northern Tunisia, we introduced a mesoscale 
SI model with an underlying contact network and a temporal spreading rate , where 
the cities are divided into regions based on their features and location. Naturally, dif-
ferent choices of regions would lead to different contact networks and spreading rate 
functions. Then, using our expert curated Romanization data, we were able to infer 
several contact networks and the Romanization spreading rates during the period of 
0–350 AD. In particular, we used the PMALA algorithm to solve the parameter infer-
ence problem, that is to find contact networks and spreading rate functions which 
reproduce the data. When we studied the best 20 solutions, we observed that the 
solutions could be divided into three main groups according to their network struc-
ture and the shape of their spreading rate functions. From these groups we picked one 
representative solution each and observed that optimal solutions consist of very dif-
ferent network structures and spreading rate functions, and furthermore, that these 
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diverse solutions produce very similar spreading patterns. Despite the limited amount 
of historical data, we were able to obtain partial information on the possible impor-
tant interregional connections. We cross-validated these connections with the avail-
able archaeological traces. Our insights can now be further investigated and guide 
historical studies on the processes of cultural change during the ancient times.

Ideally, more data would lead to stronger inference and insights, however, typical 
information in historical research is hard to obtain and arduous. Hence, our approach 
is suitable and appropriate for the context of historical data, due to the fact, that 
despite the data being scarce, we still obtained plausible historical interregional con-
nections. We believe that this way of approaching the study of historical questions 
can be easily generalized and applied to different historical examples.

One bottleneck of our approach is that the best found parameters had to be com-
pared manually. Naturally, this is only feasible for small number of best parameters, 
like 20 in our case. To analyse larger solution sets, we would need a meaningful simi-
larity measure which would take into account differences in both the contact network 
and the spreading parameters. With the right distance measure, we could cluster the 
parameter set to study only the distinct parameter configurations. This will be the 
focus of future research.
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