
On the second largest eigenvalue 
of networks
Ankit Mishra1, Ranveer Singh2 and Sarika Jalan1*    

Introduction
Since the resolution of seven bridges of Königsberg problem (Euler 1741), the theory of 
networks, which deals with the study of complex interacting units represented as graphs, 
has demonstrated remarkable applications in various real-world systems (Albert and 
Barabási 2002). With an accelerated development in network science, various communi-
ties belonging to different branches of science, economics, biology, and sociology have 
witnessed growing applications of results and techniques of networks in their respective 
fields. The spectra of the adjacency matrix of a network have been shown to provide 
information about various structural properties of the network, as well as the dynamical 
behavior of the corresponding complex system. For example, the degeneracy of the zero 
and one eigenvalues provide a clue to the structural symmetries of the underlying net-
works (Yadav and Jalan 2015). The largest eigenvalue, in addition to capturing the infor-
mation of the largest degree, is related to the synchronization phenomena of diffusively 
coupled dynamical units on the network (Restrepo et al. 2005). Further, spectra plays a 
pivotal role in determining the epidemic threshold of a disease outbreak (Van Mieghem 
et al. 2008), stability of a system (May 1972), drug identification in complex diseases (Rai 
et al. 2018), for studying international trade networks (Alhomaidhi et al. 2019) etc. Cou-
pled dynamical evolution on networks can be better understood by the spectra of cor-
responding Laplacian matrices (Liu et  al. 2015). Further, spectra of complex networks 
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have also been studied under the Random matrix theory framework (Jalan and Bandyo-
padhyay 2007; Erdős et al. 2012). Recently, in Susca et al. (2020), a technique has been 
proposed to compute the statistics of the second largest eigenvalue and the components 
of the corresponding eigenvector for sparse symmetric matrices. It is to be noted that 
various structural properties of networks are computationally hard to determine nev-
ertheless, often, the spectral measures cater good insights into a network structure, and 
these spectral measures are computationally easier to calculate. For example, calculating 
various expansion properties of networks is computationally NP-hard in nature. How-
ever, fortunately, these properties are closely related to the second largest eigenvalue 
that we can calculate very fast (in O(n3), where n is the number of nodes in the net-
work) (Alon 1995). Note that, though calculating spectra analytically is a troublesome 
task, there exist analytical approaches to calculate spectra for a few specific networks 
(Newman et al. 2019; Peixoto 2013; Newman 2019). Further, the expansion properties of 
graphs have found their applications in computational complexity theory (com 1980), for 
the determination of robustness of computer networks (Motwani and Raghavan 1995), 
graph pebbling, parallel sorting algorithms, and theory of error-correcting codes (Hoory 
et al. 2006), derandomization of random algorithms, analysis of algorithms in computa-
tional group theory, quantum cryptography, etc. Further, the second eigenvalue of the 
Laplacian matrix of a network is equivalent to its algebraic connectivity, also known as 
the Fiedler eigenvalue (Bapat 2010). Random regular networks form one very impor-
tant class of networks and have been investigated intensively (Bender 1974; Bender and 
Canfield 1978; Bollobás 1980; McKay 1984; Wormald 1981), and for these networks, the 
second largest eigenvalue of the adjacency matrices is equivalent to the algebraic con-
nectivity. If the second eigenvalues of these networks is lesser than their degrees, these 
networks are connected (Fiedler 1973). To get an overview of second largest eigenvalue, 
it is worth to see Dehmer and Emmert-Streib (2009), Van  Mieghem (2010), Chung 
(1994).

Most of the studies on the second largest eigenvalue ( �2 ) are done for random regu-
lar graphs, with sporadic studies for other networks. All these studies suggest that �2 
can yield a good insight into properties of the underlying network structure (Marcus 
et al. 2013). Particularly, the suitability of a network for a specific application depends 
on �2 , and often a small value of �2 is desirable (Hoory et al. 2006). Several classes of net-
works (graphs) are defined by the value the second largest eigenvalue take, for instance, 
reflexive graphs or hyperbolic graphs ( �2 ≤ 2 ), Salem graphs ( �2 ∈ [−2, 2] ), k-regular 
Ramanujan graphs ( �2 ≤ 2

√
d − 1 ) (Hoory et al. 2006; Maxwell 1978). Further, the sec-

ond eigenvalue is crucial in the dynamics of the Markov chain. It is found that networks 
with small �2 rapidly mix for reversible Markov chain yielding a high rate of information 
diffusion in large networks (Desai and Rao 1993).

The article is organized as follows. “Relationship of spectra with structure of networks” 
section presents results for various analytical relationships between the network’s struc-
tural properties and their spectral measures. “Results on various network models” 
section focuses on the results on few popular model networks, namely, 1D lattice, Erdös-
Renýi (ER) random, Scale-free networks and small-world networks. Exact analytical 
results are presented for 1D lattice model and k−random regular graphs, and numerical 
results are for other model networks. “Conclusion” section concludes the article.
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Relationship of spectra with structure of networks
Let G = (V ,E) be a network on N nodes, where V,  E are the vertex-set and edge-set, 
respectively. If two distinct vertices i, j ∈ V  are adjacent, we write i ∼ j , otherwise, i  ∼ j . 
We represent network G by its adjacency matrix A = (aij)N×N defined as follows.

The eigenvalues of the adjacency matrix A are denoted by {�1, �2, �3, . . . , �N } where 
�1 ≥ �2 ≥...≥ �N . For un-directed and unweighted networks, A is a symmetric matrix 
with all eigenvalues being real. The set of the eigenvalues {�1, �2, . . . , �N } is known as 
the spectra of the network G. It is important to note that �1 for adjacency matrix hav-
ing all non-negative entries is always positive, and for connected networks, �1 > �2 due 
to Perron-Frobenius Theorem. Let 〈k〉 denote the average degree of G, and kmax denote 
the maximum degree of G. The largest eigenvalue �1 satisfies �k� ≤ �1 ≤ kmax (Sarkar 
and Jalan 2018). Also �1 ≤

(
2M(N−1)

N

) 1
2 , where M, N are the number of edges and nodes 

in the graph, respectively. If G is connected, then χ(G) ≤ 1+ �1(G), where χ(G) is the 
chromatic number of G (Bapat 2010). The chromatic number χ(G) of graph G is the 
minimum number of colors required to color the vertices such that adjacent vertices 
get distinct colors. However, finding the chromatic number of a graph is an NP-hard 
problem.

Next, we see that along with �1 , other eigenvalues of A implicate the following informa-
tion about the structure of graph G (Bapat 2010). 

1	 �
2
1 + �

2
2 + · · · + �

2
N = 2M.

2	
∑

i,j,i  =j �i�j = −M.
3	 �

3
1 + �

3
2 + · · · + �

3
N = 6|T |,

where T is the set of all the cycles of length 3 in G (also referred as triangles). In general, the 
number of closed walks of length k in G equals 

∑N
i �

k
i  . A walk of length k in a graph G is a 

sequence of vertices (v1, v2, . . . , vk+1) such that there is an edge vi ∼ vi+1 for i = 1, 2, . . . , k . 
The walk is closed if v1 = vk+1.

In particular when G is random regular graph, �2 shares an interesting relationship with 
the expansion coefficient of G and its diameter. The expansion coefficient of G, denoted as 
h(G) is defined as follows:

where S ⊂ V , and E(S, S̄) are the set of the edges with one end in S and other in S̄ . Alon 
and Milman (Hoory et al. 2006) proved that if G is a k-random regular graph,

This immediately gives the following bounds on �2.

aij =
1 if i ∼ j,
0 otherwise.

(1)h(G) = min0<|S|≤N/2

E(S, S̄)

|S|
,

(2)
k − �2

2
≤ h(G) ≤

√

2k(k − �2).
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Nilli (Nilli 1991) proved that if a k-random regular graph has a diameter D, then

Results on various network models
The relation (Eqs. 2–4) is valid for random regular networks, i.e., for networks with each 
node having the same degree. However, the second largest eigenvalue of the adjacency 
matrices of non-regular networks has not been given much attention. We numerically 
investigated the behavior of �2 for various model networks, namely, Erdös-Renýi (ER) 
random, scale-free, 1D lattice (for completeness), and small-world networks. ER random 
networks are constructed using the ER model ? as follows. Starting with N nodes, each 
pair of the nodes is connected with a probability p = �k�/N  . Our analysis has consid-
ered connected networks only without self-loops and multiple edges. The degree dis-
tribution of ER random networks follows a binomial distribution. Scale-free networks 
are constructed using BA preferential attachment method (Barabási and Albert 1999) in 
which each node prefers to connect with the existing higher degree nodes. Starting with 
a network with m0 nodes, we start adding a new node at each time step having m con-
nections such that m ≤ m0 . The new nodes can be connected to any existing node, and 
to incorporate preferential attachment, the probability of it getting connected to the ith 
nodes is proportional to ki where ki is the degree of the ith node. Thus, after t time steps, 
the network will have t +m0 nodes and mt edges. The network evolves into a scale-
free network with degree distribution following a power law, that is, P(k) ∼ k−γ where 
γ = 3 . The 1D lattice considered here consists of a ring lattice with each node connect-
ing exactly with the same number of neighbors on both sides. We construct small-world 
networks using the Watts and Strogatz algorithm (Watts and Strogatz 1998) as follows. 
Starting with a 1D lattice in which all the nodes have an equal degree, we rewire each 
edge of the network with a probability pr . This procedure of the rewiring allows to trans-
form a 1D lattice with pr = 0 , to a random network with pr = 1 . In the intermediate pr 
values, the network manifests the small-world behavior, which is quantified by a very 
small average shortest path length.

First, we discuss available analytical results for �1 and �2 , followed by numerical 
results for different model networks for various network parameters. The variation 
on �2 is compared with that of �1 . As discussed earlier that �1 is bounded below by the 
average degree, and above by kmax , hence, an increase in the average degree will result 
in an increase in the lower bound of �1 . In particular, for a k-random regular network 
�1 increases linearly with the average degree as �k� = kmax = �1 . However, �2 behaves 
quite differently. Figure 1 presents the behavior of �1 and �2 with respect to the aver-
age degree for various model networks. The value of �1 increases with the average 
degree for all the networks. In particular, for 1D lattice in (Fig. 1a) �1 = �k� , it is easy 
to see that the all-one vector 1 = [1, 1, . . . , 1]T  of order N × 1 satisfy A1 = �k�1 . Since 
A is an non-negative matrix and 1 is an non-negative vector, using Perron-Frobenius 

(3)k − 2h(G) ≤ �2 ≤ k −
h(G)2

2k
.

(4)�2 ≥ 2
√

k − 1

(

1−
2

D − 2

)

+
2

D − 2



Page 5 of 10Mishra et al. Applied Network Science            (2022) 7:47 	

theorem, �1 is the largest eigenvalue which is equal to 〈k〉 . The second largest eigen-
value of a 1D lattice G on N nodes and having degree k is given by 

∑ k
2

j=1
2 cos

2π j
N  . This 

can be seen as follows. Each node in G has an edge with each of immediate previous, 
next k

2
 nodes. The first row of the adjacency matrix A of G is the following

The i-th row of A is the row-vector resulting after i − 1 right shift of the first row. Thus A 
is a circulant matrix (for more detail on circulant matrices see (Gray 2006)). The eigen-
values of circulant matrix of order N with the first row as c0, c1, . . . , cn−1 are given by 
�i =

∑N−1
j=0 cke

−2πιij
N , for i = 0, 1, . . . ,N − 1. The imaginary part cancels out because the 

adjacency matrix is symmetric, hence it will have only real eigenvalues. So we are left 
with only cos terms, which implies, �i =

∑ k
2

j=1
2 cos

2π ji
N , for i = 0, 1, . . . ,N − 1. Thus 

�2 =
∑ k

2

j=1
2 cos

2π j
N , which follow the trend as is seen in Fig. 1b shown in blue.

For k-random regular networks, �1 = k . For ER random networks, �1 ≈ [1+ o(1)]�k� 
(Chung et  al. 2004). For scale-free networks, �1 ≈ 

√
kmax  if γ > 2.5 and �1 ≈ 〈k

2〉
〈k〉

=
∑N

i=1(ki)
2

∑N
i=1(ki)

 if 2 < γ < 2.5 (Sarkar and Jalan 2018). With increase in the average degree, 

�1 exhibits a consistent increase for all these networks. However, by keeping the net-
work size fixed, as we increase the average degree of a network, �2 first exhibits an 
increase until �k� ∼ N/2 , which is not surprising as �1 also exhibits an increase and 
one can expect of a similar trend followed by the second largest eigenvalue. However, 
rather intriguingly, if we increase the average degree further, �2 reflects a decreasing 
behaviour with 〈k〉 . The trend of �2 is symmetric with respect to �k� = N/2 (Fig. 1b).

We consider k-random regular networks for analytically substantiating this behav-
iour observed numerically for ER and SF networks. Let G be a k-random regular 
network on N nodes and M edges. Let {�1, �2, �3, . . . , �N } be the eigenvalues of the 
adjacency matrix of G such that k = �1 ≥ �2 ≥ · · · ≥ �N  hold. Since

Dividing both the sides by N we get

0,

k
2

︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0,

k
2

︷ ︸︸ ︷

1, . . . , 1.

�
2
1 + �

2
2 + · · · + �

2
N = 2M.

Fig. 1  Comparison of �1 and �2 for various model networks as a function of 〈k〉 with N = 500 for 20 different 
network realizations
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We have

Since N is constant, the quantity k − k2

N  depends on the higher-order terms in L.H.S of 
the Eq. 6. The quantity k − k2

N  first increases till k becomes N
2

 , followed by a decrease, 
and so does the higher-order terms. Therefore, �2 after reaching the threshold value 
starts decreasing.

For any other random network, the explanation is similar to what we deduced for 
random regular networks. Let G be any random network, for which Eq. 6 becomes

Since �k� ≤ �1 ≤ � , where � is the largest degree in G. The RHS of Eq.  7 first takes 
increasing value till k becomes N

2
 , followed by a decrease, and so does �2 and the higher 

order terms.
Further, in Fig. 2, the plots are shown for �2N  vs 〈k〉N  for various network models. The 

behaviour is similar to what it is for �2 vs 〈k〉 as shown in Fig. 1. The ratio �2N  increases 
when 〈k〉N  increases from 0 to 0.5 and after that it shows a decreasing trend from 0.5 
to 1. In every iteration, for 1D lattice, we have plot for double the size of previous 
network instance, but keeping 〈k〉N  fixed. We see that these curves overlaps which can 
be explained as follows. The second largest eigenvalue of 1D lattice with degree k is 
�2 =

∑ k
2

j=1
2 cos

2π j
N  . For a given N and k, expanding the summation, we get the follow-

ing expression

(5)�
2
1

N
+

�
2
2

N
+ · · · +

�
2
N

N
=

2M

N
= �k� = k .

(6)�
2
2

N
+ · · · +

�
2
N

N
=

2M

N
= k −

k2

N
.

(7)�
2
2

N
+ · · · +

�
2
N

N
=

2M

N
= �k� −

�
2
1

N
.

Fig. 2  Plot of �2/N as a function of 〈k〉/N for various model networks. a 1D, b ER, c SF
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Now let us change the parameters N, k to N ′ , k ′ , respectively such that kN = k ′

N ′ . Let the 
corresponding second largest eigenvalue for these parameters be �′2 . We can express �′2 
in terms of N and k as follows. We have N ′ = 2N  and so k ′ = 2k , then

Next, we have to prove that �
′
2

N ′ = �2
N  , that is, R.H.S of Eq. 9 should be equal to 2 times 

R.H.S of Eq. 8 as N ′ = 2N  . The consecutive terms of Eq. 9 (enclosed in parentheses) can 
be written as cos π j

N + cos
π(j−1)

N  where j = 2, 4, 6, . . . , k . The second term can be fur-
ther written as cos(π jN − π

N ) . Since cos θ is a continuous function and cos(θ − δ) ≈ cos θ 
when δ → 0 , we have cos(π jN − π

N ) ≈ cos(π jN ) for N → ∞ . Thus, R.H.S of Eq. 9 becomes 
4 × (cos 2π

N + cos 4π
N + cos 6π

N + · · · + cos πk
N  ), which proves that �

′
2

N ′ = �2
N .

Expansion coefficient h(G) of random regular graphs and �2
The expansion coefficient h(G) of a network G reveals how well the network is con-
nected. For a disconnected network h(G) = 0 , and higher the expansion coefficient bet-
ter well-connected a network is. This can be directly spotted from the expression for the 
expansion coefficient

This means that for any subset S, the number of edges from S to the rest of the vertices 
is at least h(G)×min(|S|, |S̄|) . Therefore, the higher the value of h(G) more well-con-
nected the network is. However, in general calculating h(G) is an intractable problem 
(NP-hard) (Hoory et al. 2006). Nevertheless, for a 1D lattice, we can easily calculate the 
expansion coefficient as follows. Consider a 1D lattice of degree k on N nodes. By Eq. 10, 
the minimum ratio is achieved for |S| = N

2
 . It is easy to observe that the total number of 

edges from S to rest of the vertices are

Hence,

Figure  3 plots �2 of 1D lattice against the lower and upper bounds in terms of h(G) 
(Expression 3). It can be seen that the lower bound almost matches the behaviour of �2 
given by the Inequality 2

(8)�2 = 2

(

cos
2π

N
+ cos

4π

N
+ cos

6π

N
+ · · · + cos

πk

N

)

(9)
�
′
2 = 2

((

cos
2π

N
+ cos

π

N

)

+
(

cos
4π

N
+ cos

3π

N

)

+ · · · +
(

cos
πk

N
+ cos

π(k − 1)

N

))

(10)h(G) = min
0<|S|≤N/2

E(S, S̄)

|S|
.

E(S, S̄) = 2×
(

1+ 2+ · · · +
k

2

)

.

h(G) =
k

N
×

(k + 2

2

)

.

k − �2

2
≤ h(G) ≤

√

2k(k − �2).



Page 8 of 10Mishra et al. Applied Network Science            (2022) 7:47 

by Definition 1, in general for any k-random regular network G, the expansion coeffi-
cient h(G) will increase as k increases, thus the quantity, k − �2 (it is present in both the 
sides of inequality, also known as spectral gap) must also increase with k. However, in 
general, calculation of h(G) is NP-hard, it will be interesting to check how �2 behaves 
with respect to h(G) for other networks (Hoory et al. 2006).

Conclusion
This article reviews the properties of the second largest eigenvalue for 1D lattice, ran-
dom regular graphs and networks capturing properties of real-world complex systems. 
The intriguing conclusion of future interests is that �2 behaves in a completely differ-
ent demeanor from the largest eigenvalues. The largest eigenvalue �1 is more dependent 
on the highest degree of the corresponding networks. The larger the value of kmax , the 
higher will be the value of �1 , however �2 though having an upper bound of kmax turns 
out to be independent of it. For model networks, an increase in the average degree leads 
to an increase in the value of �1 . However, contrarily �2 first manifests an increase till 
�k� = N

2
 followed by a decreasing trend. Further, �1 of the scale-free networks is always 

higher than the 1D lattice and random network since it has higher kmax while �2 is higher 
for 1D lattice than that of the random and scale-free networks. We have analytically 
obtained the lower bound of �2 for 1D lattice using its relation with the expansion coef-
ficient and found that the numerical value of �2 follows the same behavior as its lower 
bound.
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