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Introduction
As urbanisation increases, cities have become hubs of the modern world. Abundant 
with people, resources and services which drive the growth of technology, the econ-
omy and society; all of which are intertwined with one another (Cristiano et al. 2020). 
They operate as urban ‘systems’, and represent networks of different interacting and 
co-evolving constituent parts (van Meeteren 2019). It is estimated that 55% of the 
world’s population live in urban areas, with projected increases of up to 70% by 2050 
(United Nations 2018). In order to maintain reliable functioning of the urban system, 
there will be associated increases in assets to accommodate this growing population. 
Expansion of the urban system in tandem with a changing climate leaves constituent 
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and describe how the mathematics relates to target concepts and themes. An explora-
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parts (e.g. local economy; technical infrastructure) susceptible to potentially huge 
losses in the event of a perturbation (Bouwer et al. 2007; Alfieri et al. 2017).

Recent shocks to the system, have highlighted how complex and interconnected our 
urban systems really are. For example, the global outbreak of COVID-19 has impacted 
healthcare, education, employment, travel and wellbeing—all supported by individ-
ual systems that are reliant on each other. Understanding this ‘domino’ effect within 
urban systems is therefore paramount and risk management must progress by treat-
ing risks not in isolation, but instead by considering how risk permeates throughout 
the elements within the urban system as a whole. Past approaches to the manage-
ment of urban systems have been critiqued as reductionist, i.e. where feedback effects 
and interactions between parts have not been sufficiently acknowledged (Cavallo and 
Ireland 2014). In such approaches, any risk posed to a constituent part was self-con-
tained within itself, implying that it does not pose any risk to the wider system (Clark-
Ginsberg et  al. 2018). However, methods such as Network Analysis enable elements 
within a system to be mapped and linked together, presenting a more comprehensive 
approach to assessing urban systems.

Network analysis is born from Graph Theory, where entities of a specified nature 
(e.g. services, people, houses, infrastructure, cities etc.) are represented as ‘vertices’ 
or ‘nodes’ that are each connected through a series of ‘edges’ or ‘links’. The use of 
graph theory for representing systems such as cities is relatively new, and is achieved 
through the following steps: (1) Identify network typologies (e.g. emergency facilities, 
households) (2) Define connections (e.g. emergency facilities provide relief to house-
holds and businesses) (3) Define rules (e.g. households and businesses are associated 
with their closest emergency facilities, such as fire stations, hospitals etc.) and (4) 
Build the graph in the form of an ‘adjacency matrix’ or ‘edge list’ (Fig. 1) (Arosio et al. 
2020). When the graph is established, the structure and characteristics of the network 
can be analysed through an array of metrics.

Network metrics help to describe a network at either a local level (which looks at 
individual elements i.e. particular nodes or edges) or a global level (which looks at the 

Fig. 1  Adjacency matrix (left) to graph/network (right)
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network as a whole) (Miele et al. 2019). The most established and commonly used met-
rics are those developed by Freeman (1979): Betweenness Centrality, Degree Centrality 
and Closeness Centrality. The concept of centrality is one that pertains to the local level 
of a network, and seeks to quantify the position, importance or influence of an element 
in a network. Centrality originated in Social Network Analysis (SNA) (Newman 2010), 
therefore many characteristics that metrics such as Betweenness, Degree and Close-
ness describe are sociological in origin. However, centrality metrics have also been used 
to describe physical networks such as neural topology of the brain (Saberi et al. 2021); 
technical networks such as water distribution systems (Giustolisi et al. 2019); and multi-
mode networks such as those modelling tangible and intangible elements in an urban 
system (Beevers et al. 2022; McClymont et al. 2021).

The transferability of centrality metrics across domains and contexts highlights a par-
ticular strength of network analysis in that many different systems, from the brain to 
entire cities, can be represented. However, Miele et al. (2019) argues there is a risk of 
blind use of metrics and other issues surrounding metric selection. The ease and avail-
ability of network analysis software allows end users to calculate a range of metrics with-
out fully understanding the mathematics. It is therefore essential that the adopted metric 
is truly able to describe the characteristics of the system in question and is applied and 
interpreted by the researcher in an appropriate manner. Global metrics (e.g. Density, 
Diameter) are used to compare different networks, however simple characteristics that 
vary across each network (e.g. number of nodes) can influence the results of global met-
rics. In addition, multiple metrics are often chosen without clarification of how they 
each make different contributions to the analysis, which can lead to redundant results if 
the chosen metrics are in some way correlated.

Given the wide range of possible applications of network analysis, one might ask: 
when should I use a certain metric and not another? What are the reasons for choos-
ing network metrics and is it fair to assume that common metrics (i.e. centrality) can 
consistently describe the same system characteristic across a wide range of scenarios and 
domains? How many metrics are appropriate to use? Are some metrics more versatile 
across contexts than others?

To explore these questions, this study looks at the wider urban systems and disaster 
management literature to find the raison d’etre behind metric selection in network analy-
sis. We identify the most common types of network analysis and the supporting metrics 
to fulfil study objectives, therefore answering “who uses what, where, and why?”. This 
study aims to reflect on past selection and application of network metrics across the 
fields of urban systems and disaster management, to avoid misinterpretation of results 
due to inappropriate metric selection and maximise the usefulness of network analysis 
in future.

Methodology
The materials used to conduct this review were retrieved from Scopus. Our analysis 
sought to identify research papers from the fields of disaster management and urban sys-
tems that feature network analysis. Papers were limited to journal or conference articles, 
written in English, with no upper or lower limit on publication date. In order to meet the 
PRISMA criteria of systematic reviews (Liberati et al. 2009) we outline the search terms 
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used to systematically identify relevant literature and predefined inclusion and exclusion 
criteria to ensure reproducibility. The initial literature search was conducted on 16th 
March 2021 and the full research workflow is summarised in Fig. 2. Search queries in 
Scopus were as follows;

TITLE-ABS-KEY ("FLOOD MANAGEMENT" OR "DROUGHT MANAGEMENT" 
OR "DISASTER RISK REDUCTION" OR "DISASTER MANAGEMENT" OR "HAZ-
ARD MANAGEMENT" OR "URBAN SYSTEMS" OR "COMPLEX ADAPTIVE SYS-
TEMS") AND TITLE-ABS-KEY ("NETWORK ANALYSIS" OR "NETWORK THEORY" 
OR "NETWORK SCIENCE" OR "GRAPH THEORY" OR "GRAPH ANALYSIS" OR 
"GRAPH METRIC").

The initial search in Scopus returned a total of 476 papers, which after duplicates were 
removed was reduced to 465 papers. 21 papers were unavailable on Scopus for review 
therefore 443 papers were carried forward for Stage 2.

Strict inclusion and exclusion criteria were established to keep within the scope of this 
review (Table 1). These criteria act as a means in which to filter out studies as per Stage 
2 of the research workflow, where the abstracts of the 443 papers were screened for eli-
gibility. During the abstract-screening stage, papers were manually examined to deter-
mine whether they met the pre-defined eligibility criteria for the qualitative analysis. The 
primary purpose of this stage was to ensure that there was a technical application of 
network analysis that adopted one or more metrics. Papers that used network analysis 
as a form of visualisation only with no quantitative analysis were excluded. Moreover, 

Fig. 2  Research workflow
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Bayesian and neural network-based papers were excluded as these tend to be more 
events-based, focused on probabilities between events and extracting new insights from 
granular data through deep/machine learning. Here our focus is on structure-based net-
work insights, e.g., whether one element of the network has more influence than another. 
The abstract screening process provided 346 papers for the full-text screening in Stage 3.

The full-text screening process in Stage 3 is an extension of the abstract screen-
ing stage. This stage involved full-text screening of 346 papers, in which the following 
information was documented in Excel; network method used, metrics adopted, research 
domain and context. Given that metrics that quantify centrality of a network have since 
been diversified, in that they extend out with  SNA, it was necessary to distinguish 
between identified metrics and what particular branch of network analysis they were 
applied to. Moreover, distinguishing between research domain and context was also nec-
essary since, for example, the disaster management domain comprises a wide range of 
contexts (i.e. different hazards and disasters). Out of 346 papers that qualified for full-
text screening, 155 papers were identified for a richer, manual qualitative analysis. These 
papers served as the database that form the results and discussion of this review.

The final stage of the research workflow was to manually review the final 155 papers 
as comprehensively as possible using the documented information in excel as a guide, 
and also served to validate the initial information extracted during the full-text screen-
ing stage to minimise potential error. For example, each study had the adopted metrics 
recorded, therefore an aim of the analysis was to identify (if any) the rationale behind 
metric selection. Identifying the rationale behind metric selection for each of the 155 
papers and comparing with the quantitative excel database (i.e. what metrics were used 
in what domain and context) facilitated answering the research questions. For instance, 
studies that share a research domain and context (e.g. examining the emergency 
response network after a flood) may adopt different metrics, or one study may adopt 
just one, whereas another adopts several metrics; is there an explicit reason for this? 
In addition, the characteristics that a metric is aiming to describe in a particular study 
were mapped to each metric for use in a frequency analysis. This aims to provide an 
understanding of how versatile metrics are in describing certain properties of a network. 
The literature search in this review covers multiple (albeit related) domains in its Sco-
pus search (i.e. hazard management, disaster management, flood management, drought 
management + urban systems and Complex Adaptive Systems (CAS).

Table 1  Inclusion and exclusion criteria adopted to identify papers within the scope of the review

Inclusion criteria Exclusion criteria

Studies that include a technical application of network 
analysis in the context of disaster management, urban 
systems and/or complex adaptive systems, to gain 
structure-based network insights

Studies that use “network” as a general descriptive term 
and do not explicitly include applications of network/
graph theory
Papers that adopt methods such as neural networks 
and Bayesian networks which aim to gain insights about 
probabilities of events
Discourse papers on urban systems, complex adaptive 
systems, and disaster management
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Results
Publication trend

Figure 3 below outlines the timeline of network analysis applications in the 155 identi-
fied papers used in the analysis, as discussed in “Methodology” section. For this review, 
the earliest identified application of network analysis was in 1975. Following this, no 
applications of network analysis were featured until 2005. From then onwards, a sharp 
increase can be observed, with the largest annual peak in 2020 (32 applications). The 
sharp rise suggests that the value of network analysis is of increasing interest to research-
ers focused on extreme events. Conceptually, research in this area has increasingly 
acknowledged the systemic interconnectedness of events and impacts (Pederson et al. 
2006). Practically, the influx of ‘Big Data’ from 2005 (van Rijmenam 2013) has created 
greater opportunities for insights into system behaviour, and facilitated analysis of more 
sophisticated networks, e.g. with geocoded social media data (Songchon et al. 2021).

Regarding the domains in which these studies are applied, 87 of the 155 (56%) papers 
analysed were within disaster management. The breadth of disaster management stud-
ies accounted for all hazards such as floods, tsunamis, earthquakes, hurricanes, terror-
ism, cyber-security and disease outbreaks. The remaining 44% of papers were related 
to “urban systems” and “CAS” and were diverse in their research domains, with appli-
cations in: sustainable development, supply-chain management, healthcare, transport 
and critical infrastructure, ecology and wider climate-related research such as water 
resources and emissions. The balance between network publications in urban systems 
and disaster management highlights an almost even application on short-term problems 
concerned with direct shocks, or disturbances (disaster management) and longer-term 
more complex problems such as urban planning in systems research.

Network methods

In total, we identified 31 unique network analysis methods that can be grouped into 8 
categories (Table 2). Figure 4 provides a breakdown of each individual method.

The most popular method was SNA, accounting for just under half of all studies (42%, 
69/155 papers). Applications of SNA were predominantly in the disaster management 
domain (65%, 45/69 papers), where the context was mainly focused on Emergency Man-
agement Networks (EMN) such as how Governments and Local Authorities responded 
to previous disasters. For more detailed information on networks in EMNs, we refer the 
reader to the review by Du et al. (2020).

The next most popular network methods are GIS-based networks (13%, 22/155 papers) 
and routing-problem-based networks (12%, 20/155 papers). Whilst we acknowledge that 
routing problem-based networks are also spatial in nature, we categorise them differ-
ently based on the method objective; GIS-based networks in this review refer to net-
works developed using georeferenced data that are diverse in research domain, context 
and aim. For example Ceron et al. (2020) examine meteorological topology of the sys-
tem using radar-derive rainfall data and Sun et al. (2019) investigate regional economic 
development of urban agglomerations in China. On the other hand, routing-problem-
based networks are exclusive within the disaster management domain (95%, 19/20 
papers), where there is a focus on evacuation, emergency service response or access to 
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relief facilities. One exception is a wider transport-related application of a routing prob-
lem by Guettiche and Kheddouci (2019) who examine critical transport nodes and links 
to mitigate congestion. Thus two of the most popular network analysis methods (SNA 
and Routing Problem methods) are almost exclusively focused on disaster management, 
it suggests that there is a lack of methodological diversity in the domain, with respect to 
network analysis techniques.

In contrast, 6 out of 8 method categories (approximately 51% of papers) are within 
the wider urban systems domains outlined previously. The modelling/simulation 
methods category consists of 6 different methods (Fig. 4) which incorporate network 
analysis with applications in critical infrastructure (Pumpuni-Lenss et al. 2017) and 
urban development (Sun et al. 2019). Moreover, simulation methods such as Agent-
based Modelling (ABM) are integrated within SNA, routing problems and Ecological 
Network Analysis (ENA) (7 papers).

Applications of ENA are typically applied in the same area of urban and sustain-
able development (66%, 12/18 papers), with exceptions in ecology (Borrett et  al. 
2006), climate (Chen et  al. 2015) and aviation (Burns et  al. 2008; DeLaurentis and 
Ayyalasomayajula 2009).

Celik and Corbacioglu (2018), Comfort et al. (2013) and Jin et al. (2014) feature as 
examples of typical ‘complex networks’, mainly small-world and scale-free networks. 
Both applications of complex network featured in this review are exclusive to disas-
ter management.

Network metrics

In total 38 global metrics and 41 local metrics were identified from the qualitative 
analysis of 155 papers, with a pool of 79 metrics available overall. Additional file 1: 
Table S1 provides a summary table with the definitions of each metric and a classifi-
cation as either “Global” or “Local”. Global metrics typically describe characteristics, 

Fig. 3  Network analysis publication trend
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topology, and structure at the network/system level. Conversely, local metrics are 
typically centrality-based measures that describe the characteristics of a network 
at the node/edge level. The split between global and local metrics is roughly even, 
where out of all 79 metrics, global metrics account for 48% and local metrics 52%.

Local metrics

Overall, the top three most frequently occurring local metrics were Betweenness Cen-
trality (51%, 79/155 papers), Degree Centrality (32%, 50/155 papers) and Characteris-
tic Path Length (i.e. mean path length or shortest/optimal path; 28%, 44/155 papers). 

Table 2  Network analysis methods

a Some studies use multiple methods, therefore total % is > 100

Method category Broad category definition No. of papers Percentage (%)a

Social network analysis Networks that examine social structure of 
graph, where nodes typically represent actors/
people

69 42

GIS-based network A graph in which the nodes and edges are 
defined based on georeferenced data

22 13

Routing problem Typically, the same as GIS-based networks, 
however main objective is finding optimal/
shortest path in the network

20 1312

Ecological network analysis Network methods that follow typical ENA 
approaches, where flows between systems/
nodes are analysed

17 1210

Modelling/simulation Computational model-based methods in 
which network analysis is incorporated

16 10

Standard network Networks that follow standard structures 12 7

Complex network Networks that follow complex structures 3 2

Content analysis Textual/bibliographic based network methods 3 2

Other Any method that does not fall into any of the 
above categories

4 2

Fig. 4  Map of identified network methods according to categories
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Developed by Freeman (1979) (alongside Closeness Centrality; the 4th most frequently 
occurring metric. 15%, 23/155 papers) the concept of centrality was developed in the 
context of social networks. Given that SNA is also the most popular form of network 
analysis (every application of SNA utilises at least one centrality metric), it is no surprise 
that they are the most popular metrics. Similarly, the prevalence of GIS-based networks 
and Routing problems (53%, 42/79 papers) highlighted in “Network metrics” section 
can also explain the popularity of path length as a metric, as the applications of routing 
problems are typically associated with evacuation behaviour, and thus shortest and opti-
mal path lengths are the objective in these studies (see Xuefen and Lim 2016).

Whilst centrality metrics are most popular where SNA is concerned, of particular 
interest is how these metrics were applied across the other categories of network analy-
sis described in Table 2, and in what domains. Of the papers that did not use SNA, 40% 
(34/86 papers) adopted centrality measures, highlighting that these metrics are versa-
tile out with social networks. Beyond the established centrality which dominate local 
analysis, there are 8 additional centrality metrics that cumulatively account for < 1% (7 
papers). These are as follows: Cascading Centrality and Random Centrality (Der Sarkiss-
ian et al. 2020), Directed Alternative Centrality and Directed Alternative Power (Zheng 
et al. 2020), Egobetweenness Centrality (Hossain and Kuti 2010), Percolation Centrality 
(Dong et al. 2020), Power Centrality (Radulescu et al. 2020), and Status Centrality (Ong-
kowijoyo and Doloi 2017; Tang and Lai 2019). All but three of these centrality measures 
(Directed Alternative Centrality, Directed Alternative Power and Power Centrality) were 
applied in the context of disaster management using either spatial networks or SNA, 
whereas the other three were applied in urban systems in the context of smart cities 
(SNA) or examining spatial interaction, migration and inter-city flows (spatial network). 
Although all these studies have deviated from the norm by including lesser-known cen-
trality metrics, only Zheng et al. (2020) did not supplement their analysis with one of 
either Betweenness, Closeness or Degree Centrality. Figure 5 summarises the distribu-
tion of local metrics.

Global metrics

Figure 6 illustrates the most popular global metrics. The top three most popular global 
metrics were Density (26%, 41/155 papers), Centralisation (13%, 20/155 papers), and 
Throughflow (9.7%, 15/155 papers) joint with Clustering Coefficient (9.7%, 15/155 
papers). Density and Centralisation are complementary ‘global’ metrics to Betweenness 
and Degree Centrality, as they provide an overview of a network as a whole, as opposed 
to the centrality of individual nodes. Largely these metrics are applied in SNA. There are 
few instances in which Density (7 papers) and Centralisation (2 papers) were adopted 
out with SNA. For example, Wang et al. (2020) adopt density as a topological measure of 
a Human-Spatial system based on geocoded social media data before, during and after 
Hurricane Harvey. He et  al. (2019) use Density to assess the hierarchical structure of 
China’s ‘megaregions’ to explore the urbanisation process.

In addition to established metrics such as Degree, Betweenness, Density and Centrali-
sation, there are several bespoke applications of metrics that are unique to particular 
studies. In an exploratory analysis of the ‘World City Network’, Derudder and Taylor 
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(2005) present ‘Global Network Connectivity’ (GNC)  which is an aggregated measure 
of a city’s connectivity in relation to other cities and ‘City Cliquishness’, which is derived 
from an already popular means of assessing the structure of a network through ‘clique 
analysis’ (6%, 10/155 papers).

Similar to the points raised in “Local metrics” section, where centrality metrics are 
largely associated with applications of SNA, the same can be said for ENA. This approach 
is built around network ‘flows’ (Throughflow), in which the flows (e.g. energy, resources, 

Fig. 5  Frequency of local network metrics

Fig. 6  Frequency of global network metrics
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passengers) are used to analyse the interaction between multiple systems (Fath et  al. 
2007). Throughflow is both a global (system level) and local (node level) metric (Borrett  
et al. 2006; Finn 1980). Whilst ENA is always associated with flows there are instances 
where ENA has been supplemented with additional metrics which are also unique to 
ENA: Average Mutual Information (AMI), Development Capacity and Ascendency 
(Bodini 2012; Bodini et  al. 2012), Network Utility (e.g. Gao et  al. 2021), Control (Tan 
et al. 2018; Yang et al. 2020), Network Flux (Liu et al. 2011), Stability (Fan and Fang 2019) 
and Mixed Trophic Impact (Gao et al. 2021).

Number of metrics used

Figure 7 below summarises the distribution of metrics across the 155 papers. The dis-
tribution is right-skewed, indicating that a majority of papers adopted 1–2 metrics in a 
network analysis, with an average metric count of approximately 3.

At the extremes of the distribution, there are 4 occurrences in which there were no 
explicitly stated metrics adopted in the analysis. For example, Pastor-Escuredo et  al. 
(2020) adopt SNA in the context of Flood Risk Management (FRM) to propose a rapid 
multi-dimensional impact assessment framework using social media data. In contrast, 
another SNA-based approach by Ongkowijoyo and Doloi (2017) adopts 8 metrics: 
Density, Centralisation, Degree Centrality, Closeness Centrality, Betweenness Central-
ity, Eigenvector Centrality, Status Centrality and Risk Criticality. The emphasis towards 
local level metrics suggests that various characteristics of the nodes within the network 
are necessary to describe. Romascanu et  al. (2020) highlight that historically, consist-
ent centrality measures are not adopted when identifying central nodes within networks. 
When examining this in the context of this review, it is found that 17% of SNA studies 
adopt only one metric. This therefore begs the question as to why some applications of 

Fig. 7  Distribution of metrics based on how many metrics are adopted across the 155 papers.
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network analysis do not aspire to describe the system in question as holistically as pos-
sible, through a suite of metrics which describe different aspects of the network.

Whilst these examples are based on SNA approaches, it is important to highlight that 
the number of metrics adopted is context dependent, with respect to the chosen net-
work method. For example, ENA is unique in that it does not require the same indicators 
as SNA as it focuses on flows, as opposed to characteristics such as centrality. Therefore 
the typical metrics adopted in this approach are Throughflow (at both system and node 
level) or Network Utility (with additional metrics adopted as highlight previously in 
“Global metrics” section). Similarly, Routing Problems are less concerned with charac-
terising the important nodes, instead the shortest/optimal route is the priority, therefore 
Characteristic Path Length is often the only metric adopted (70%, 14/20 papers).

Network characteristics

The previous section, “Network methods” and Network metrics” aimed to give an 
overview of the state-of-the-art regarding network methods and metrics. This section 
explores the extent to which the rationale behind use of particular metrics is reported 
and made transparent. In other words: what do we hope to learn about systems 
through network analysis? Why are particular metrics used, and what key concepts or 
system properties are thought to be targeted by each?

In a small proportion (6%, 10/155 papers) of papers there was a lack of transparency 
and explicit reporting around the rationale behind metric selection. This suggests that 
there is no particular ‘blind use’ of metrics with the vast majority of papers providing 
a description of how the metric relates to the system in question, or at least a generic 
definition. Of the papers where no explicit rationale or definition is provided how-
ever, the typical metrics adopted are those which featured most frequently in “Local 
metrics” section (Degree Centrality, Betweenness Centrality) and “Global metrics” 
section (Density, Centralisation, Clustering Coefficient). This suggests that their level 
of establishment is commonplace, such that it is assumed they require no detailed 
explanation.

Figure  8 illustrates the most frequently occurring characteristics described by the 
identified metrics. Table 3 provides a summary of the top 8 characteristics with their 
frequencies. It is no surprise that the most frequently occurring characteristic is con-
nectivity. In total, 12 metrics were described as measures of connectivity. In some 
cases, the distinction between metrics of connectivity are related to the scale of the 
network being measured. For example, Degree Centrality can measure node (local) 
connectivity, whilst Cohesion is a measure of system (global) connectivity. It is clear 
therefore that it is less of case that connectivity is a priority in network analysis, but 
more the nature of the connectivity that is important (Fig. 8).

The interchangeability of characteristics that metrics can describe is also high-
lighted in Table  3. Betweenness, Degree, Closeness and Eigenvector Centrality 
are all mentioned as describing a node’s importance, influence, position and power. 
Given that all of these metrics are mathematically different, it suggests that there 
are different ways in which a node can be “important” or “influential”. Furthermore, 
the main centrality metrics feature in most of the characteristics described such as 
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being measures to describe “information flows”, therefore network metrics are highly 
diverse and context dependent.

Discussion
Who uses what? And where?

With respect to “who” is using network analysis amongst the targeted areas in a broad 
sense, the applications of network analysis reviewed here were somewhat evenly spread 
across disaster management (with respect to all kinds of hazards) and urban systems 
CAS literature (a breadth of contexts). When disaggregating this further by specific 
network analysis techniques, it is clear that there is a wide range of different methods 
available. This highlights that in the areas of disaster management and urban systems, 
network analysis has been significantly diversified since the original conception of SNA 
in the 1970s (see Zhang 2010).

Fig. 8  Word cloud revealing the most common characteristics described by metrics

Table 3  Top 8 characteristics with frequency

Characteristic Frequency Associated metrics

Connectivity 34 Characteristic Path Length, Betweenness, Degree, Closeness, k-core, Clustering 
Coefficient, Disruption Index, Cohesion, Global efficiency, Centralisation, Global 
Network Connectivity, Density

Importance 20 Betweenness, Degree, Closeness, Eigenvector, Edge Importance Index, Link Criti-
cality, PageRank, Node Interdependence

Accessibility 12 Characteristic Path Length

Influence 12 Betweenness, Degree, Closeness, Eigenvector, Status

Flows 10 Betweenness, Degree, Closeness, Edge Interdependence, Node Strength, 
Throughflow

Information 8 Betweenness, Degree, Closeness, Edge Interdependence, Node Strength

Position 8 Betweenness, Degree

Power 8 Betweenness, Degree, Closeness
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Advances in computational power and data availability have not only facilitated 
more advanced applications of SNA, but have allowed integration with other com-
putational methods such as modelling and simulation. For example, Rodrigueza and 
Estuar (2018) use SNA as a basis for understanding disaster behaviour in an ABM. 
Furthermore, network analysis has evolved beyond the study of sociology, as the 
importance of transport and critical infrastructure has become a modern concern. 
For example, georeferenced data has enabled path analysis of transport and mobil-
ity, or the “actors” (nodes) in a network no longer need to be people or organisations, 
but instead businesses, homes and emergency facilities in “Hybrid-social physical 
networks” (Bozza et al. 2017). Furthermore, graph theory has facilitated systems-ori-
ented methods such as ENA, which not only pertains to ecosystems, but the interac-
tions between physical systems such as cities across the world (Bodini et al. 2012).

With respect to “who uses what”, despite the availability of a wide range of specific 
network analysis methods, there is siloing within the reviewed research domains. A 
majority (65%) of disaster management studies used either SNA or Routing Problems. 
However, the application of network methods is broader in the urban systems domain, 
where 6 out of 8 method categories (Table 2) were used in 51% of studies overall. The 
focus on SNA and routing-problem-based networks within disaster management sug-
gests that there are established priorities, yet also highlights gaps where network analysis 
may also be able to fill. For instance, the primary application of SNA is centred around 
response networks and organisational collaboration during previous disasters, where 
two extreme events (i.e. floods) are compared to examine how networks have evolved 
between two past points in time. This is intended to examine the preparedness of a 
nation or region. However, the prevalence of such applications suggest that there may 
be an overemphasis on understanding past events, instead of more directly preparing 
for future events. Applications that are more present- or future-oriented (i.e. evacuation 
and emergency service response modelling across spatial transport networks) do suggest 
that there is some element of future preparation involved, however, as they are based on 
shortest/optimal path problems, they mostly represent preparedness in the context of 
spatial movement, rather than abstract social collaboration. Because looking to future 
preparedness requires dealing with a great deal of uncertainty regarding how context 
may change from the present, and it is crucial to understand the more fundamental (but 
highly complex) dynamics behind preparedness in the present before introducing those 
future uncertainties, these findings are understandable. However, the high prevalence of 
SNA or Routing Problems suggests more could be done to expand the conceptualisation 
of research problems—and diversify the application of network analysis techniques—
within disaster management (Bedinger et  al. 2019). This review suggests that disaster 
management should therefore turn towards the wider urban systems literature for inspi-
ration regarding alternative network analysis methods that consider the interdepend-
ency of multiple systems as opposed to mobility only. For instance, ENA applications in 
urban systems studies often model the interactions between different sectors (Liu et al. 
2011).

With respect to “where”, we have further disaggregated this review by the focus of 
specific network analysis techniques—in other words, whether the metrics used have 
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a local or global perspective. A wide range of metrics were identified in the chosen 
research domains with an almost equal representation between global and local.

It should be acknowledged that this discussion emphasises centrality metrics, due to 
their overwhelming popularity, and that a comprehensive discussion of reviewed appli-
cations for each of the 79 metrics would be cumbersome and out with the scope of this 
study.

Unsurprisingly, the most frequently used of all metrics (both global and local) were all 
local metrics of centrality (Freeman 1979): Betweenness, Degree, and Closeness. These 
are sociological in origin, and have coevolved with the development of SNA, whereby 
they have typically been used to describe social entities. However, the diversification 
of network analysis has led to a diversification of metrics in two ways. First, SNA is no 
longer only “social”—it is the go-to network analysis method regardless of the phenom-
enon being studied. Although centrality metrics are grounded in SNA, and thus would 
be assumed to pertain to sociological entities, these metrics have been used to describe 
a host of other entities, or to describe economic proxies whilst the main method is still 
SNA. This is important as it begs the question as to why in disaster management there 
remains such a focus on applying SNA to mainly social-based networks, rather than 
extending this to different sectors that are interconnected and are at risk (e.g. health 
care, economy, transport). Second, centrality metrics are frequently applied in methods 
other than SNA (e.g. ABM), and the concept of centrality has developed beyond metrics 
proposed by Freeman (1979) to other centrality metrics.

The versatility of centrality metrics and the availability of many other metrics (global 
and local) highlights the value of network analysis. Although this does present issues as 
well.

How many metrics should I use? When should I use this metric and not the other?

It is challenging to definitively answer how many metrics one should use in network 
analysis, as this depends on context, adopted method, time, resources, and knowledge 
of the end user. However, based on the results in “Number of metrics used” section, 
three things are clear; the average number of metrics observed in this review is three; 
the majority of studies adopt fewer than 3; and there is wide variation across the studies 
(i.e. some studies adopt several (8) and some adopt none at all). Centrality metrics are 
typically used to capture specific characteristics of a network, such as evaluating how 
a single node is connected to the rest (degree centrality), which provides a static over-
view of network structure. From a more dynamic perspective, betweenness centrality 
evaluates how ‘information’ propagates through the network. Other centrality metrics, 
such as eigenvector centrality aim to fill the gaps of basic nodal metrics such as degree 
centrality, as it includes ‘information’ (such as a nodes influences) whilst also describing 
the connectivity as degree centrality evaluates. Given these three perspectives, this could 
possibly explain why typically studies returned in this review adopt an average of three 
metrics. This would therefore assume that there is a minimum number of characteristics 
required to evaluated a network.

If the purpose of having an array of metrics is to capture different characteristics of 
a network, then it could be argued that more metrics are better, as each metric would 
contribute to holistically describing the system. However, this is where context becomes 
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important. For example, Cui and Li (2020) aimed to measure two concepts: social capital 
and how it is used in community resilience. Both of these concepts are multi-faceted 
and represent complex sociological interactions, such as sense of belonging, collective 
efficacy, trust, and reciprocity. To achieve this, Cui and Li (2020) adopt one global met-
ric (Density) and seven local metrics (Betweenness, Degree, Closeness, Path Length, 
Efficiency, Constraint, Structural Holes) as appropriate to these concepts. In a different 
context, Balsiger and Ingold (2016) aimed to investigate how actors within flood govern-
ance collaborate and share information based on perceptions of sustainability, using just 
one local metric (Degree Centrality). Degree Centrality uses the concept of “Structural 
embeddedness” (see Granovetter 1992) which describes how embedded an actor is in 
the network based on how central they are (i.e. how many actors they are connected 
to). Both studies clearly define their objectives and achieve them through appropriate 
metrics; the former study’s scope is wider or more complex, therefore a wider range of 
metrics is perhaps necessary.

However, one could also use the latter study to highlight inconsistent metric appli-
cations between studies measuring similar concepts. Balsiger and Ingold (2016) and 
another study (Comfort et al. 2016) both aim to examine collaboration. Comfort et al. 
(2016) use another sociological concept: “bridging” actors. These are defined as actors 
that link between two indirectly connected actors, and this can be measured using 
Betweenness Centrality. If the objectives of the two studies are similar, why has one 
adopted Betweenness Centrality and the other has not? Further contradicting these 
observations is Faas et al. (2017), whose objective is also analysing bridging actors, how-
ever in this instance, Degree Centrality is the only metric presented in the paper. These 
examples show it is difficult to justify which and how many metrics should be used, 
based only on referencing past applications of disaster management and urban systems 
research, because the existing body of work is inconsistent.

So how should we justify which and how many metrics should be used? The funda-
mental aims of network analysis are arguably to represent complex concepts (e.g. multi-
faceted social interactions) with a systems perspective (i.e. what is happening both 
locally and globally). Selecting only one metric is insufficient to achieve either. One met-
ric can only cover one concept, and either global or local characteristics. Therefore at 
least one global and one local metric is desirable. In addition, more is not necessarily 
better, as this runs the risk of redundancy if the results of the chosen metrics are corre-
lated (Miele et al. 2019).

Therefore, we would argue that an important step in selecting network metrics is a 
correlation analysis in order to minimise this risk. For example, the R package, Central 
Informative Nodes in Network Analysis (CINNA) (see Ashtiani et al. 2019) enables com-
parisons across numerous measures of centrality to identify the most important metrics 
using Principal Component Analysis (PCA) and pairwise associations.

Are some metrics more versatile than others? Can common metrics consistently describe 

the same characteristic across contexts?

The results in Sects.  “Network metrics” and “Network characteristics” sections high-
light that there is diversity in terms of what characteristics of a system or entities can 
describe. Moreover, the above discussion has alluded to versatility amongst metrics in 
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that two metrics can describe the same thing and that terminology is interchangeable. 
This raises the question, does interchangeable terminology represent versatility? Or 
inconsistency in reporting? Furthermore, beyond the most common metrics, what about 
the less popular ones?

In favour of the argument of inconsistency is the fact that there were studies (albeit a 
small percentage) which provided no rationale or explanation of metric choice. Katern-
dahl (2012) uses SNA to understand how research collaboration within academic fac-
ulties impacts productivity at the individual and departmental level, however does not 
provide any definition or rationale behind the use of Degree, Betweenness and Eigen-
vector Centrality. Similarly, Comfort et  al. (2013) and Oh (2017) provide no rationale 
for their selection of metrics. Kim and Hastak (2018) provide no rationale for Density, 
yet describe Degree, Betweenness and Eigenvector centralities as metrics to explain 
“prominence or importance”, without distinguishing how these three centrality metrics 
differ and why all three are required to measure the same concept. In contrast, Liu and 
Lim (2016) provide no definitions for the centrality metrics Betweenness and Degree, 
yet provide definitions and interpretations of Centralisation and Density. Moreover, 
Comfort and Zhang (2020) explain the rationale behind Betweenness Centrality and 
the External/Internal Index, but omit any explanation of Density or Diameter. Tozer 
and Klenk (2019) use only Degree in a Bibliometric analysis but provide no rationale 
as to what it represents. Ma et  al. (2020) simply state that degree measures structure. 
Finally, Pheungpha et  al. (2019) and Zelenkauskaite et  al. (2012) do not specify which 
metrics or measure of centrality is being used, respectively. In these instances, it appears 
the analysis was qualitative and that the relationships (i.e. who was connected to who) 
was of primary interest. Rather than specific failures to adequately outline methodologi-
cal choices, we believe these instances speak to a larger issue of “letting the researcher 
decide” how to communicate about network analysis in non-mathematical fields. This 
is a barrier to a more transparent, higher standard of interdisciplinary network science.

In terms of versatility, it appears that it is not necessarily always a case of which char-
acteristic is being measured but a case of how. The most frequently occurring charac-
teristic is connectivity. In the context of Routing Problem based methods, this typically 
refers to how connections between nodes are disrupted as a result of a hazard in which 
the optimal path length is impacted due to a loss of connectivity (Espada et al. 2015). 
Accessibility is also a frequently appearing characteristic which is interchangeable with 
connectivity in this context. Connectivity is used as a generic term when adopting cen-
trality metrics, in which Degree, Betweenness and Closeness describe different aspects 
of connectivity. For example, Čerba et al. (2017) describe the connectivity of semantic 
resources in terms of quantity (Degree), distance and relation (Closeness) and whether 
nodes act as bridges (independent, or indirectly connected nodes; described by Between-
ness) or not. Optimal connectivity is therefore described as a node which is connected 
to many others, acts as a bridge and is close to each other nodes. However, whilst in this 
instance connectivity appears to be a characteristic described by three measures of cen-
trality, there are several examples of this that do not relate to well-known and oft-used 
centrality metrics. Derudder and Taylor (2005) use the GNC metric to measure a city’s 
connectivity in relation to other cities. This metric does not consider centrality. Further-
more, “Connectivity” is also a metric that represents the minimum amount of nodes or 



Page 18 of 25Morrison et al. Applied Network Science            (2022) 7:50 

edges that would need to be removed to fragment the network into two or more isolated 
subgroups (Diestel 2005) and Samarasinghe and Strickert (2013) claim that Density is a 
global indicator of connectivity. It is no surprise that connectivity is the most frequently 
occurring characteristic, given that networks are fundamentally about connection.

Similarly, the same applies for importance and influence. Kim and Hastak (2018) state 
that Degree, Betweenness and Eigenvector centrality are used to explain the impor-
tance of actors in an SNA analysis of social media data post-disaster. Taking a selec-
tion of examples from the application of SNA to measure response networks in disaster 
management, Calliari et al. (2019) use Degree to assess the influence of the most central 
actors in the network, Celik and Corbacioglu (2018) use Degree to highlight the most 
important and well-connected actors, and Celik and Corbacioglu (2016) and Cui and Li 
(2020) both measure the power of actors using Degree. Moreover, Celik and Corbacioglu 
(2016) use Betweenness as a means of measuring an actors’ position in the network, yet 
Htein et  al. (2018) measure such actor-level positioning using Degree (with respect to 
Centralisation). Mathematically, Degree Centrality is simply the number of other nodes 
which a given node is connected to (Freeman 1979). Therefore, it is recognisable in the 
context of social networks that a well-connected actor plays a prominent role in the net-
work, and possesses influence and importance. However, the nature of this influence and 
importance is not only a function of the amount of connections. For instance, Meilani 
and Hardjosoekarto (2020) and Chen et al. (2020) make a distinction between Degree 
and Eigenvector Centrality by stating that power is measured in the latter not by how 
many connections a node has, but who the connections are. In both examples, nodes 
represent actors within disaster risk reduction efforts after an event and the power is 
identified by examining nodes who are both mutually high in Eigenvector Centrality, 
thus identifying who is most powerful differently than Degree Centrality affords.

Whilst centrality metrics are most popular where SNA is concerned, of particu-
lar interest is how else these metrics have been applied. A number of studies adopted 
centrality measures out with SNA, and described entities other than people or organi-
sations. For example, Lao et al. (2016) use degree centrality to weight edges in their net-
work to represent air passengers, thus providing a measure of a city’s centrality. Arora 
and Ventresca (2018) use Betweenness and Closeness centrality for preferential linking 
in the synthesis of resilient Supply Chain Networks (SCN), where centrality measures 
act as proxies for price, performance and quality. Mu et al. (2020) examine the spatial 
distribution of green space and physical factors to explore alternative green space plan-
ning strategies using Degree, Closeness and Betweenness. Garrett et  al. (2017) adopt 
Degree, Closeness, Betweenness, Eigenvector as measures of centrality to explore food 
security and agricultural networks (alongside Cliques, Diameter and Path Length). In 
disaster management, centrality measures are typically associated with road networks 
and critical infrastructure; Fan and Mostafavi (2019) use degree centrality with social 
media data in a graph-based event detection model to identify disruption of critical 
infrastructure. Papilloud et al. (2020) characterise flood exposure of road network using 
Edge Betweenness Centrality (EBC) and Sasabe et al. (2020) also apply EBC in road net-
work risk analysis. Alongside Lao et  al. (2016), these instances were the only three in 
which Betweenness Centrality was measured at edges instead of nodes.
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Whilst interchangeable terminology for some metrics is a prevalent theme emerging 
from this review, there are instances in which the metric being described is more defini-
tive. A metric that is terminologically consistent across studies is Throughflow, used in 
ENA. Whilst the nature of the flows may vary between study, the purpose of applying 
the metric remains the same. Throughflow is classed as both a global and local metric. 
Locally, the flows can measure the importance of a node, whereas at a system level, the 
Total System Throughflow (TST) can indicate if a system is at a steady state if the sum 
of all inflows is equal to outflows. Measuring TST indicates the level of activity that per-
tains to the system in question, and this can be useful to characterise the system’s level 
of growth (e.g. economic growth in a city) (Bodini et  al. 2012). This presents a useful 
insight into the methods of network analysis as it is clear that SNA has evolved beyond 
sociology in terms of method and metrics, and its background in sociology has perhaps 
fostered the level of versatility, interchangeability, and at times, ambiguity as to what 
metrics actually mean for those interpreting their results. ENA on the other hand is far 
more clear-cut, as it depends on measuring flows in terms of materials and resources, 
not the roles of individuals which are far more difficult to quantify.

Moreover, there is also more consistency and less ambiguity in studies that adopt 
bespoke/composite/less popular/less generalisable metrics. Nakatani et al. (2018) dem-
onstrate adaptability of network analysis by using a well-established economic indicator, 
the Herfindahl–Hirschman Index (see Matsumoto et  al. 2012) to measure the vulner-
ability of supply-chains. In contrast to vulnerability (an assessment of weak network 
links) is criticality, which measures importance (Knoop et al. 2012). Mitsakis et al. (2016) 
adopt the Unified Network Performance Measure (UNPM) to assess the performance of 
a transportation network against technological and natural disasters. Developing on the 
approach by Nagurney and Qiang (2008), the UNPM is an example of a metric that has 
been developed to measure the performance of a network in a specific context, therefore 
the meaning of “importance” in comparison to that described by centrality measures is 
less ambiguous. An additional example of bespoke metrics are Travel Alternative Diver-
sity and Network Spare Capacity Dimension by Xu et al. (2018). These are measures of 
redundancy in a transport network and aim quantify alternative travel routes and how 
much spare capacity the network has under normal and disruptive conditions.

Conclusions
Summary of findings

The modern world is highly complex and comprises of numerous interconnected enti-
ties. Understanding the interactions between these parts is of great importance if 
the fragility of the urban system is to be understood and mitigated. To do so requires 
advanced analytical methods that are able to quantify the importance of a particular 
component and examine its role in the system with respect to other parts upon which it 
may rely. Network methods have significantly increased in popularity as the availability 
of data and specialised software enables such analyses. Network analysis is not a restric-
tive technique as it can be applied across various contexts and domains, such as under-
standing the key actors and processes in social networks to supply-chain management. 
It is highly diverse, even beyond the scope of this review which covers disaster manage-
ment and urban systems exclusively. Within the confines of these research domains, this 
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review highlights some key issues in network analysis related to: the range of network 
methods in disaster management and urban systems, the selection of appropriate met-
rics to describe characteristics and whether or not metrics versatile, and how many met-
rics are necessary for a holistic analysis.

First, the concepts of graph theory and network analysis have developed well beyond 
original applications (SNA). It has developed into a research domain of its own and has 
become highly diverse in terms of what problems it seeks to answer; spanning from anal-
ysis of social systems, ecological systems, economic systems and infrastructure to name 
a few. In addition, it has purpose as a standalone method, but also as a supplementary 
method to simulation and modelling problems, such as human behaviour. Furthermore, 
SNA remains the most popular method, however extends beyond social entities. How-
ever, despite the diversity, siloing exists between the research domains examined in this 
review. Answering “who uses what, and where?”, we find that the majority of this diversity 
is found in the wider urban systems literature. Disaster management could take inspira-
tion from this domain as it may benefit from applying SNA more broadly, out with the 
contexts of EMN. Furthermore, methods such as ENA may be appropriate in the context 
of systems-oriented approaches. Network analysis coupled with ABM is gaining trac-
tion. It should also be emphasised that whilst we discuss methodological diversity, this 
is constrained to the two specified research domains examined as part of this review. As 
a result, for network analysis applications more broadly, there are likely be additional 
methods that this review has not covered.

Second, answering “who uses what, and why?”, we find that the centrality metrics have 
evolved in tandem with the methodologies. Sociological in origin, centrality metrics are 
not constrained to quantifying the properties and characteristics of social entities. They 
can be applied to networks describing cities and air passenger flows. However, the ver-
satility of these metrics has led to diverging meanings and interchangeable terminology. 
This makes it difficult to underpin an appropriate metric to analyse networks with, as it 
may be the case that the same metric describes one characteristic in one instance, and 
then something different in the other. Furthermore, out with centrality, there is a vast 
range of metrics that have been developed for a specific purpose, making them ‘bespoke’. 
Metrics can also that utilise established indices coupled with network principles (such 
as centrality) to form composite metrics. This review identified 79 metrics in total, many 
of which are not discussed, however it is clear that there are many metrics that are not 
being used.

Finally, answering the raison d’etre further, knowing when to select one metric and not 
the other, alongside how many metrics to adopt in an analysis is a point of importance. 
This review finds that the average number of metrics adopted is three, however nearly 
20% of papers adopt only one. Given that metrics can either be categorised as global or 
local, selecting only one metric potentially fails to capture the necessary characteristics 
of the network. In contrast, there are instances where studies adopt up to eight metrics 
in an attempt to capture all characteristics. However, this approach falls short due to the 
fuzzy lexicon of certain metrics in that multiple are reported to describe the same thing. 
This potentially results in redundant analysis and multicollinearity between metrics.
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A way forward

In light of the above findings, we outline a way forward researchers embarking on 
network analysis. The steps outlined acts as points to consider when approaching 
problems that require analysis of a network.

1.	 Define target concepts and/or frameworks that support the study objectives. It is then 
possible to map these concepts to the entities in the network and establish what 
characteristics are being measured. Characteristics can then be mapped to appropri-
ate metrics. We refer the reader to supplementary material for a full list of the met-
rics identified in this review and definitions. One can also cast the net wider and use 
the CINNA package in R (see Ashtiani et al. 2019) which provides metrics beyond 
those identified in this review.

2.	 Make a metrics shortlist. Ensuring your target concepts are in line with a shortlist of 
possible metrics by reviewing applications of similar metrics in the research domain 
of interest, make a shortlist of metrics for testing.

3.	 Perform an exploratory metric analysis. Using packages like CINNA, it is possible to 
perform PCA and Correlation analysis on a multitude of variables. PCA describes 
which of the shortlisted metrics contribute to the analysis most and describe how 
much of the variance within results. Correlation analysis is a quick way of identifying 
redundant metrics. Revise shortlist if necessary.

4.	 Adopt at least more than one metric and understand the maths. Mapping concepts 
such as social characteristics to mathematical formulas is difficult and it is possi-
ble that one may interpret the results different from what the maths describes. It is 
therefore important that in the final analysis, more than one metric is adopted to get 
an idea of how interpretation of results may change depending on the metric out-
puts in question. Furthermore, where possible, describe the network at both local 
and global scales.

5.	 Be explicit. Outline explicitly the rationale behind metric selection, what they aim to 
measure and describe, how the maths translates to the target concepts and rules of 
interpretation.

Abbreviations
ABM	� Agent-based modelling
FRM	� Flood risk management
CAS	� Complex adaptive systems
CINNA	� Central informative nodes in network analysis
ENA	� Ecological network analysis
EBC	� Edge betweenness centrality
EMN	� Emergency management networks
GNC	� Global network connectivity
PCA	� Principal component analysis
SNA	� Social network analysis
TST	� Total system throughflow
UNPM	� Unified network performance measure



Page 22 of 25Morrison et al. Applied Network Science            (2022) 7:50 

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1007/​s41109-​022-​00476-w.

Additional file 1. Table S1. Network metric definitions.

Acknowledgements
The work presented would not have been possible were it not for the funding provided by EPSRC.

Author contributions
DM, MB, LB and KM contributed to the design and implementation of the research. DM contributed to the main analysis. 
All authors contributed to writing the manuscript. There are no other persons who satisfied the criteria for authorship 
but are not listed. All authors read and approved the final manuscript.

Funding
This work was undertaken as part of the ‘Water Resilient Cities: Climate Uncertainty and Urban Vulnerability to Hydro-
hazards’ project, funded by the Engineering and Physical Sciences Research Council (EPSRC). Grant number EP/
NE30419/1.

Availability of data and materials
Not applicable.

Declarations

Consent for publication
Not required.

Competing interests
None.

Received: 1 October 2021   Accepted: 27 May 2022

References
Alfieri L, Bisselink B, Dottori F, Naumann G, de Roo A, Salamon P, Wyser K, Feyen L (2017) Global projections of river flood 

risk in a warmer world. Earth’s Future 5(2):171–182
Arora V, Ventresca M (2018) Modeling topologically resilient supply chain networks. Appl Netw Sci 3(1):3–19. https://​doi.​

org/​10.​1007/​s41109-​018-​0070-7
Arosio M, Martina MLV, Figueiredo R (2020) The whole is greater than the sum of its parts: a holistic graph-based assess-

ment approach for natural hazard risk of complex systems. Nat Hazard 20(2):521–547. https://​doi.​org/​10.​5194/​
nhess-​20-​521-​2020

Ashtiani M, Mirzaie M, Jafari M (2019) CINNA: an R/CRAN package to decipher central informative nodes in network 
analysis. Bioinformatics 35(8):1436–1437. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bty819

Balsiger J, Ingold K (2016) In the eye of the beholder: network location and sustainability perception in flood prevention. 
Environ Policy Gov 26(4):242–256. https://​doi.​org/​10.​1002/​eet.​1715

Bedinger M, Beevers L, Collet L, Visser A (2019) Are we doing ‘systems’ research? A review of methods for climate change 
adaptation to hydro-hazards in a complex world. Sustainability 11(4):1163. https://​doi.​org/​10.​3390/​su110​41163

Beevers L, Bedinger M, McClymont K, Morrison D, Aitken G, Quinn AV  (2022) Modelling Systematic COVID-19 impacts in 
cities. Springer, Nature (Urban Sustainability)

Bodini A (2012) Building a systemic environmental monitoring and indicators for sustainability: what has the ecological 
network approach to offer? Ecol Ind 15(1):140–148. https://​doi.​org/​10.​1016/j.​ecoli​nd.​2011.​09.​032

Bodini A, Bondavalli C, Allesina S (2012) Cities as ecosystems: growth, development and implications for sustainability. 
Ecol Model 245:185–198. https://​doi.​org/​10.​1016/j.​ecolm​odel.​2012.​02.​022

Borrett SR, Whipple SJ, Patten BC, Christian RR (2006) Indirect effects and distributed control in ecosystems: temporal 
variation of indirect effects in a seven-compartment model of nitrogen flow in the Neuse River Estuary, USA—time 
series analysis. Ecol Model 194(1–3 SPEC. ISS.):178–188. https://​doi.​org/​10.​1016/j.​ecolm​odel.​2005.​10.​011

Bouwer LM, Crompton RP, Faust E, Höppe P, Pielke RA Jr (2007) Confronting disaster losses. Science 318(5851):753–753
Bozza A, Asprone D, Parisi F, Manfredi G (2017) Alternative resilience indices for city ecosystems subjected to natural 

hazards. Comput-Aided Civ Infrastruct Eng 32(7):527–545. https://​doi.​org/​10.​1111/​mice.​12275
Burns MC, Roca CJ, Moix BM (2008) The spatial implications of the functional proximity deriving from air passen-

ger flows between European metropolitan urban regions. GeoJournal 71(1):37–52. https://​doi.​org/​10.​1007/​
s10708-​008-​9144-x

Calliari E, Michetti M, Farnia L, Ramieri E (2019) A network approach for moving from planning to implementation in 
climate change adaptation: evidence from southern Mexico. Environ Sci Policy 93(2019):146–157. https://​doi.​org/​
10.​1016/j.​envsci.​2018.​11.​025

Cavallo A, Ireland V (2014) Preparing for complex interdependent risks: a systems of systems approach to building disas-
ter resilience. Int J Disaster Risk Reduct 9:181–193. https://​doi.​org/​10.​1016/j.​ijdrr.​2014.​05.​001

https://doi.org/10.1007/s41109-022-00476-w
https://doi.org/10.1007/s41109-018-0070-7
https://doi.org/10.1007/s41109-018-0070-7
https://doi.org/10.5194/nhess-20-521-2020
https://doi.org/10.5194/nhess-20-521-2020
https://doi.org/10.1093/bioinformatics/bty819
https://doi.org/10.1002/eet.1715
https://doi.org/10.3390/su11041163
https://doi.org/10.1016/j.ecolind.2011.09.032
https://doi.org/10.1016/j.ecolmodel.2012.02.022
https://doi.org/10.1016/j.ecolmodel.2005.10.011
https://doi.org/10.1111/mice.12275
https://doi.org/10.1007/s10708-008-9144-x
https://doi.org/10.1007/s10708-008-9144-x
https://doi.org/10.1016/j.envsci.2018.11.025
https://doi.org/10.1016/j.envsci.2018.11.025
https://doi.org/10.1016/j.ijdrr.2014.05.001


Page 23 of 25Morrison et al. Applied Network Science            (2022) 7:50 	

Celik S, Corbacioglu S (2016) From linearity to complexity: emergent characteristics of the 2006 Avian Influenza Response 
System in Turkey. Saf Sci 90:5–13. https://​doi.​org/​10.​1016/j.​ssci.​2016.​01.​006

Celik S, Corbacioglu S (2018) Organizational learning in adapting to dynamic disaster environments in Southern Turkey. J 
Asian Afr Stud 53(2):217–232. https://​doi.​org/​10.​1177/​00219​09616​677368

Čerba O, Jedlička K, Čada V, Charvát K (2017) Centrality as a method for the evaluation of semantic resources for disaster 
risk reduction. ISPRS Int J Geo-Inf 6(8):237. https://​doi.​org/​10.​3390/​ijgi6​080237

Ceron W, Santos LB, Neto GD, Quiles MG, Candido OA (2020) Community detection in very high-resolution meteorologi-
cal networks. IEEE Geosci Remote Sens Lett 17(11):2007–2010. https://​doi.​org/​10.​1109/​LGRS.​2019.​29555​08

Chen S, Chen B, Su M (2015) Nonzero-sum relationships in mitigating urban carbon emissions: a dynamic network simu-
lation. Environ Sci Technol 49(19):11594–11603. https://​doi.​org/​10.​1021/​acs.​est.​5b026​54

Chen W, Zhang H, Comfort LK, Tao Z (2020) Exploring complex adaptive networks in the aftermath of the 2008 Wen-
chuan earthquake in China. Saf Sci 125(2020):104607. https://​doi.​org/​10.​1016/j.​ssci.​2020.​104607

Clark-Ginsberg A, Abolhassani L, Rahmati EA (2018) Comparing networked and linear risk assessments: from theory to 
evidence. Int J Disaster Risk Reduct 30:216–224. https://​doi.​org/​10.​1016/j.​ijdrr.​2018.​04.​031

Comfort LK, Zhang H (2020) Operational networks: adaptation to extreme events in China. Risk Anal 40(5):981–1000. 
https://​doi.​org/​10.​1111/​risa.​13442

Comfort LK, Ertan G, Oh N, Haase T (2013) Network evolution in disaster management: a comparison of response systems 
evolving after the 2005 and 2008 gulf coast hurricanes. In: Proceedings of the 2013 IEEE 2nd international network 
science workshop, NSW 2013, pp 42–49. https://​doi.​org/​10.​1109/​NSW.​2013.​66091​93

Comfort LK, Bert J, Song JE (2016) Wicked problems in real time: uncertainty, information, and the escalation of Ebola. Inf 
Polity 21(3):273–289. https://​doi.​org/​10.​3233/​IP-​160394

Cristiano S, Zucaro A, Liu G, Ulgiati S, Gonella F (2020) On the systemic features of urban systems. A look at material flows 
and cultural dimensions to address post-growth resilience and sustainability. Front Sustain Cities 2:12. https://​doi.​
org/​10.​3389/​frsc.​2020.​00012

Cui P, Li D (2020) A SNA-based methodology for measuring the community resilience from the perspective of social 
capitals: take Nanjing, China as an example. Sustain Cities Soc 53:101880. https://​doi.​org/​10.​1016/j.​scs.​2019.​101880

DeLaurentis DA, Ayyalasomayajula S (2009) Exploring the synergy between industrial ecology and system of systems to 
understand complexity a case study in air transportation. J Ind Ecol 13(2):247–263. https://​doi.​org/​10.​1111/j.​1530-​
9290.​2009.​00121.x

Der Sarkissian R, Abdallah C, Zaninetti JM, Najem S (2020) Modelling intra-dependencies to assess road network resil-
ience to natural hazards. Nat Hazards 103(1):121–137. https://​doi.​org/​10.​1007/​s11069-​020-​03962-5

Derudder B, Taylor P (2005) The cliquishness of world cities. Glob Netw 5(1):71–91. https://​doi.​org/​10.​1111/j.​1471-​0374.​
2005.​00108.x

Diestel, R., 2005. Graph theory 3rd ed. Graduate texts in mathematics, 173, p.33
Dong S, Mostafizi A, Wang H, Gao J, Li X (2020) Measuring the topological robustness of transportation networks to 

disaster-induced failures: a percolation approach. J Infrastruct Syst 26(2):04020009. https://​doi.​org/​10.​1061/​(asce)​is.​
1943-​555x.​00005​33

Du L, Feng Y, Tang LY, Kang W, Lu W (2020) Networks in disaster emergency management: a systematic review. Nat Haz-
ards. https://​doi.​org/​10.​1007/​s11069-​020-​04009-5

Espada RJ, Apan A, McDougall K (2015) Vulnerability assessment and interdependency analysis of critical infrastructures 
for climate adaptation and flood mitigation. Int J Disaster Resil Built Environ 6(3):313–346. https://​doi.​org/​10.​1108/​
IJDRBE-​02-​2014-​0019

Faas AJ, Velez ALK, FitzGerald C, Nowell BL, Steelman TA (2017) Patterns of preference and practice: bridging actors in 
wildfire response networks in the American Northwest. Disasters 41(3):527–548. https://​doi.​org/​10.​1111/​disa.​12211

Fan Y, Fang C (2019) Research on the synergy of urban system operation—based on the perspective of urban metabo-
lism. Sci Total Environ 662:446–454. https://​doi.​org/​10.​1016/j.​scito​tenv.​2019.​01.​252

Fan C, Mostafavi A (2019) A graph-based method for social sensing of infrastructure disruptions in disasters. Comput-
Aided Civ Infrastruct Eng 34(12):1055–1070. https://​doi.​org/​10.​1111/​mice.​12457

Fath BD, Scharler UM, Ulanowicz RE, Hannon B (2007) Ecological network analysis: network construction. Ecol Model 
208(1):49–55. https://​doi.​org/​10.​1016/j.​ecolm​odel.​2007.​04.​029

Finn JT (1980) Flow analysis of models of the Hubbard Brook ecosystem. Ecology 61(3):562–571
Freeman LC (1979) Centrality in social networks. Soc Netw 1(3):215–239. https://​doi.​org/​10.​1016/​0378-​8733(78)​90021-7
Gao H, Tian X, Zhang Y, Shi L, Shi F (2021) Evaluating circular economy performance based on ecological network analy-

sis: a framework and application at city level. Resour Conserv Recycl 168:105257. https://​doi.​org/​10.​1016/j.​resco​nrec.​
2020.​105257

Garrett KA, Andersen KF, Asche F, Bowden RL, Forbes GA, Kulakow PA, Zhou B (2017) Resistance genes in global crop 
breeding networks. Phytopathology 107(10):1268–1278. https://​doi.​org/​10.​1094/​PHYTO-​03-​17-​0082-​FI

Giustolisi O, Ridolfi L, Simone A (2019) Tailoring centrality metrics for water distribution networks. Water Resour Res 
55(3):2348–2369. https://​doi.​org/​10.​1029/​2018W​R0239​66

Granovetter M (1992) Problems of explanation in economic sociology. In: Eccles R, Nohria N (eds) Networks and organiza-
tions: structure, form, and action. Harvard Business School Press, Boston, pp 25–56

Guettiche M, Kheddouci H (2019) Critical links detection in stochastic networks: application to the transport networks. Int 
J Intell Comput Cybern 12(1):42–69. https://​doi.​org/​10.​1108/​IJICC-​04-​2018-​0055

He D, Sun Z, Gao P (2019) Development of economic integration in the central Yangtze River Megaregion from the 
perspective of urban network evolution. Sustainability (Switzerland). https://​doi.​org/​10.​3390/​su111​95401

Hossain L, Kuti M (2010) Disaster response preparedness coordination through social networks. Disasters 34(3):755–786. 
https://​doi.​org/​10.​1111/j.​1467-​7717.​2010.​01168.x

Htein MK, Lim S, Zaw TN (2018) The evolution of collaborative networks towards more polycentric disaster responses 
between the 2015 and 2016 Myanmar floods. Int J Disaster Risk Reduct 31(August):964–982. https://​doi.​org/​10.​
1016/j.​ijdrr.​2018.​08.​003

https://doi.org/10.1016/j.ssci.2016.01.006
https://doi.org/10.1177/0021909616677368
https://doi.org/10.3390/ijgi6080237
https://doi.org/10.1109/LGRS.2019.2955508
https://doi.org/10.1021/acs.est.5b02654
https://doi.org/10.1016/j.ssci.2020.104607
https://doi.org/10.1016/j.ijdrr.2018.04.031
https://doi.org/10.1111/risa.13442
https://doi.org/10.1109/NSW.2013.6609193
https://doi.org/10.3233/IP-160394
https://doi.org/10.3389/frsc.2020.00012
https://doi.org/10.3389/frsc.2020.00012
https://doi.org/10.1016/j.scs.2019.101880
https://doi.org/10.1111/j.1530-9290.2009.00121.x
https://doi.org/10.1111/j.1530-9290.2009.00121.x
https://doi.org/10.1007/s11069-020-03962-5
https://doi.org/10.1111/j.1471-0374.2005.00108.x
https://doi.org/10.1111/j.1471-0374.2005.00108.x
https://doi.org/10.1061/(asce)is.1943-555x.0000533
https://doi.org/10.1061/(asce)is.1943-555x.0000533
https://doi.org/10.1007/s11069-020-04009-5
https://doi.org/10.1108/IJDRBE-02-2014-0019
https://doi.org/10.1108/IJDRBE-02-2014-0019
https://doi.org/10.1111/disa.12211
https://doi.org/10.1016/j.scitotenv.2019.01.252
https://doi.org/10.1111/mice.12457
https://doi.org/10.1016/j.ecolmodel.2007.04.029
https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1016/j.resconrec.2020.105257
https://doi.org/10.1016/j.resconrec.2020.105257
https://doi.org/10.1094/PHYTO-03-17-0082-FI
https://doi.org/10.1029/2018WR023966
https://doi.org/10.1108/IJICC-04-2018-0055
https://doi.org/10.3390/su11195401
https://doi.org/10.1111/j.1467-7717.2010.01168.x
https://doi.org/10.1016/j.ijdrr.2018.08.003
https://doi.org/10.1016/j.ijdrr.2018.08.003


Page 24 of 25Morrison et al. Applied Network Science            (2022) 7:50 

Jin L, Jiong W, Yang D, Huaping W, Wei D (2014) A simulation study for emergency/disaster management by applying 
complex networks theory. J Appl Res Technol 12(2):223–229

Katerndahl D (2012) Co-evolution of departmental research collaboration and scholarly outcomes. J Eval Clin Pract 
18(6):1241–1247. https://​doi.​org/​10.​1111/j.​1365-​2753.​2012.​01881.x

Kim J, Hastak M (2018) Social network analysis: characteristics of online social networks after a disaster. Int J Inf Manag 
38(1):86–96. https://​doi.​org/​10.​1016/j.​ijinf​omgt.​2017.​08.​003

Knoop VL, Snelder M, van Zuylen HJ, Hoogendoorn SP (2012) Link-level vulnerability indicators for real-world networks. 
Transp Res Part A Policy Pract 46(5):843–854

Lao X, Zhang X, Shen T, Skitmore M (2016) Comparing China’s city transportation and economic networks. Cities 
53:43–50. https://​doi.​org/​10.​1016/j.​cities.​2016.​01.​006

Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) 
The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care 
interventions: explanation and elaboration. PLoS Med 6(7):e1000100–e1000128. https://​doi.​org/​10.​1371/​journ​al.​
pmed.​10001​00

Liu X, Lim S (2016) Integration of spatial analysis and an agent-based model into evacuation management for shelter 
assignment and routing. J Spat Sci 61(2):283–298

Liu GY, Yang ZF, Chen B, Zhang Y (2011) Ecological network determination of sectoral linkages, utility relations and 
structural characteristics on urban ecological economic system. Ecol Model 222(15):2825–2834. https://​doi.​org/​10.​
1016/j.​ecolm​odel.​2011.​04.​034

Ma X, Liu W, Zhou X, Qin C, Chen Y, Xiang Y, Zhang X, Zhao M (2020) Evolution of online public opinion during meteoro-
logical disasters. Environ Hazards 19(4):375–397. https://​doi.​org/​10.​1080/​17477​891.​2019.​16859​32

Matsumoto A, Merlone U, Szidarovszky F (2012) Some notes on applying the Herfindahl–Hirschman Index. Appl Econ 
Lett 19(2):181–184. https://​doi.​org/​10.​1080/​13504​851.​2011.​570705

McClymont K, Bedinger M, Beevers L, Walker G, Morrison D (2021) Analysing city-scale resilience using a novel systems 
approach. In: Santos PP, Chmutina K, Von Meding J, Raju E (eds) Understanding disaster risk: a multidimensional 
approach, 1st edn. Elsevier, Amsterdam, pp 179–201. https://​doi.​org/​10.​1016/​B978-0-​12-​819047-​0.​00011-1

Meilani NL, Hardjosoekarto S (2020) Digital weberianism bureaucracy: alertness and disaster risk reduction (DRR) related 
to the Sunda Strait volcanic tsunami. Int J Disaster Risk Reduct 51(September):101898. https://​doi.​org/​10.​1016/j.​ijdrr.​
2020.​101898

Miele V, Matias C, Robin S, Dray S (2019) Nine quick tips for analyzing network data. PLoS Comput Biol 15(12):1–10. 
https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10074​34

Mitsakis E, Salanova JM, Stamos I, Chaniotakis E (2016) Network criticality and network complexity indicators for the 
assessment of critical infrastructures during disasters. Springer, Cham, pp 191–205

Mu B, Liu C, Tian G, Xu Y, Zhang Y, Mayer AL, Lv R, He R, Kim G (2020) Conceptual planning of urban-rural green space 
from a multidimensional perspective: a case study of zhengzhou, China. Sustainability 12(7):1–20. https://​doi.​org/​10.​
3390/​su120​72863

Nagurney A, Qiang Q (2008) A network efficiency measure with application to critical infrastructure networks. J Glob 
Optim 40(1):261–275

Nakatani J, Tahara K, Nakajima K, Daigo I, Kurishima H, Kudoh Y, Matsubae K, Fukushima Y, Ihara T, Kikuchi Y, Nishijima A, 
Moriguchi Y (2018) A graph theory-based methodology for vulnerability assessment of supply chains using the life 
cycle inventory database. Omega 75:1339–1351. https://​doi.​org/​10.​1016/j.​omega.​2017.​03.​003

Newman MEJ (2010) Networks: an introduction. Oxford University Press, Oxford
Oh N (2017) Dimensions of strategic intervention for risk reduction and mitigation: a case study of the MV Sewol inci-

dent. J Risk Res 20(12):1516–1533. https://​doi.​org/​10.​1080/​13669​877.​2016.​11792​10
Ongkowijoyo C, Doloi H (2017) Determining critical infrastructure risks using social network analysis. Int J Disaster Resil 

Built Environ 8(1):5–26. https://​doi.​org/​10.​1108/​IJDRBE-​05-​2016-​0016
Papilloud T, Röthlisberger V, Loreti S, Keiler M (2020) Flood exposure analysis of road infrastructure: comparison of differ-

ent methods at national level. Int J Disaster Risk Reduct. https://​doi.​org/​10.​1016/j.​ijdrr.​2020.​101548
Pastor-Escuredo D, Torres Y, Martínez-Torres M, Zufiria PJ (2020) Rapid multi-dimensional impact assessment of floods. 

Sustainability (Switzerland). https://​doi.​org/​10.​3390/​su121​04246
Pederson P, Dudenhoeffer D, Hartley S, Permann M (2006) Critical infrastructure interdependency modelling: a survey of 

critical infrastructure interdependency modelling. Technical report. A. Idaho National Laboratory. https://​doi.​org/​10.​
2172/​911792

Pheungpha N, Supriyono B, Wijaya AF, Sujarwoto S (2019) Modes of network governance in disaster relief: the 
case of the Bangkok flood relief, 2011. Public Administr Issues 2019(6):77–93. https://​doi.​org/​10.​17323/​
1999-​5431-​2019-0-​6-​77-​93

Pumpuni-Lenss G, Blackburn T, Garstenauer A (2017) Resilience in complex systems: an agent-based Approach. Syst Eng 
20(2):158–172

Radulescu CM, Slava S, Radulescu AT, Toader R, Toader DC, Boca GD (2020) A pattern of collaborative networking for 
enhancing sustainability of smart cities. Sustainability (Switzerland). https://​doi.​org/​10.​3390/​su120​31042

Rodrigueza RC, Estuar MRJE (2018) Social network analysis of a disaster behavior network: an agent-based modeling 
approach. In: Proceedings of the 2018 IEEE/ACM international conference on advances in social networks analysis 
and mining, ASONAM 2018, pp 1100–1107. https://​doi.​org/​10.​1109/​ASONAM.​2018.​85086​51

Romascanu A, Ker H, Sieber R, Greenidge S, Lumley S, Bush D, Morgan S, Zhao R, Brunila M (2020) Using deep learning 
and social network analysis to understand and manage extreme flooding. J Contingencies Crisis Manag 28(3):251–
261. https://​doi.​org/​10.​1111/​1468-​5973.​12311

Saberi M, Khosrowabadi R, Khatibi A, Misic B, Jafari G (2021) Topological impact of negative links on the stability of 
resting-state brain network. Sci Rep. https://​doi.​org/​10.​1038/​s41598-​021-​81767-7.​PMC78​38299

Samarasinghe S, Strickert G (2013) Mixed-method integration and advances in fuzzy cognitive maps for computational 
policy simulations for natural hazard mitigation. Environ Model Softw 39:188–200. https://​doi.​org/​10.​1016/j.​envso​ft.​
2012.​06.​008

https://doi.org/10.1111/j.1365-2753.2012.01881.x
https://doi.org/10.1016/j.ijinfomgt.2017.08.003
https://doi.org/10.1016/j.cities.2016.01.006
https://doi.org/10.1371/journal.pmed.1000100
https://doi.org/10.1371/journal.pmed.1000100
https://doi.org/10.1016/j.ecolmodel.2011.04.034
https://doi.org/10.1016/j.ecolmodel.2011.04.034
https://doi.org/10.1080/17477891.2019.1685932
https://doi.org/10.1080/13504851.2011.570705
https://doi.org/10.1016/B978-0-12-819047-0.00011-1
https://doi.org/10.1016/j.ijdrr.2020.101898
https://doi.org/10.1016/j.ijdrr.2020.101898
https://doi.org/10.1371/journal.pcbi.1007434
https://doi.org/10.3390/su12072863
https://doi.org/10.3390/su12072863
https://doi.org/10.1016/j.omega.2017.03.003
https://doi.org/10.1080/13669877.2016.1179210
https://doi.org/10.1108/IJDRBE-05-2016-0016
https://doi.org/10.1016/j.ijdrr.2020.101548
https://doi.org/10.3390/su12104246
https://doi.org/10.2172/911792
https://doi.org/10.2172/911792
https://doi.org/10.17323/1999-5431-2019-0-6-77-93
https://doi.org/10.17323/1999-5431-2019-0-6-77-93
https://doi.org/10.3390/su12031042
https://doi.org/10.1109/ASONAM.2018.8508651
https://doi.org/10.1111/1468-5973.12311
https://doi.org/10.1038/s41598-021-81767-7.PMC7838299
https://doi.org/10.1016/j.envsoft.2012.06.008
https://doi.org/10.1016/j.envsoft.2012.06.008


Page 25 of 25Morrison et al. Applied Network Science            (2022) 7:50 	

Sasabe M, Fujii K, Kasahara S (2020) Road network risk analysis considering people flow under ordinary and evacuation 
situations. Environ Plan B Urban Anal City Sci 47(5):759–774. https://​doi.​org/​10.​1177/​23998​08318​802940

Songchon C, Wright G, Beevers LC (2021) Quality assessment of crowdsourced social media data for urban flood man-
agement. Comput Environ Urban Syst. https://​doi.​org/​10.​1016/j.​compe​nvurb​sys.​2021.​101690

Sun Q, Wang S, Zhang K, Ma F, Guo X, Li T (2019) Spatial pattern of urban system based on gravity model and whole 
network analysis in eight urban agglomerations of China. Math Probl Eng. https://​doi.​org/​10.​1155/​2019/​65097​26

Tan LM, Arbabi H, Li Q, Sheng Y, Densley TD, Mayfield M, Coca D (2018) Ecological network analysis on intra-city metabo-
lism of functional urban areas in England and Wales. Resour Conserv Recycl 138:172–182. https://​doi.​org/​10.​1016/j.​
resco​nrec.​2018.​06.​010

Tang P, Lai S (2019) A framework for managing public security risks with complex interactions in cities and its application 
evidenced from Shenzhen City in China. Cities 95(April):102390. https://​doi.​org/​10.​1016/j.​cities.​2019.​102390

Tozer L, Klenk N (2019) Urban configurations of carbon neutrality: insights from the Carbon Neutral Cities Alliance. Envi-
ron Plan C Politics Space 37(3):539–557. https://​doi.​org/​10.​1177/​23996​54418​784949

United Nations (2018) World Urbanization Prospects: The 2018 Revision. Online Edition
Van Meeteren M (2019) Urban system. The Wiley Blackwell Encyclopedia of Urban and Regional Studies, pp 1–11
van Rijmenam M (2013) A short history of big data. https://​dataf​loq.​com/​read/​big-​data-​histo​ry/​239. Accessed 22 Sept 

2021
Wang Y, Taylor JE, Garvin MJ (2020) Measuring resilience of human-spatial systems to disasters: framework combining 

spatial-network analysis and fisher information. J Manag Eng 36(4):04020019. https://​doi.​org/​10.​1061/​(asce)​me.​
1943-​5479.​00007​82

Xu X, Chen A, Jansuwan S, Yang C, Ryu S (2018) Transportation network redundancy: complementary measures and 
computational methods. Transp Res Part B Methodol 114:68–85. https://​doi.​org/​10.​1016/j.​trb.​2018.​05.​014

Xuefen L, Lim S (2016) Integration of spatial analysis and an agent-based model into evacuation management for shelter 
assignment and routing. J Spat Sci 61(2):283–298. https://​doi.​org/​10.​1080/​14498​596.​2016.​11473​93

Yang Z, Gao W, Zhao X, Hao C, Xie X (2020) Spatiotemporal patterns of population mobility and its determinants in 
Chinese cities based on travel big data. Sustainability (Switzerland). https://​doi.​org/​10.​3390/​SU121​04012

Zelenkauskaite A, Bessis N, Sotiriadis S, Asimakopoulou E (2012) Interconnectedness of complex systems of internet 
of things through social network analysis for disaster management. In: Proceedings of the 2012 4th international 
conference on intelligent networking and collaborative systems, INCoS 2012, pp 503–508. https://​doi.​org/​10.​1109/​
iNCoS.​2012.​25

Zhang M (2010) Social network analysis: history, concepts, and research. In: Furht B (ed) Handbook of social network 
technologies and applications. Springer, Berlin, pp 3–21. https://​doi.​org/​10.​1007/​978-1-​4419-​7142-5_1

Zheng W, Kuang A, Wang X, Chen J (2020) Measuring network configuration of the Yangtze River middle reaches 
urban agglomeration: based on modified radiation model. Chin Geogr Sci 30(4):677–694. https://​doi.​org/​10.​1007/​
s11769-​020-​1131-2

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1177/2399808318802940
https://doi.org/10.1016/j.compenvurbsys.2021.101690
https://doi.org/10.1155/2019/6509726
https://doi.org/10.1016/j.resconrec.2018.06.010
https://doi.org/10.1016/j.resconrec.2018.06.010
https://doi.org/10.1016/j.cities.2019.102390
https://doi.org/10.1177/2399654418784949
https://datafloq.com/read/big-data-history/239
https://doi.org/10.1061/(asce)me.1943-5479.0000782
https://doi.org/10.1061/(asce)me.1943-5479.0000782
https://doi.org/10.1016/j.trb.2018.05.014
https://doi.org/10.1080/14498596.2016.1147393
https://doi.org/10.3390/SU12104012
https://doi.org/10.1109/iNCoS.2012.25
https://doi.org/10.1109/iNCoS.2012.25
https://doi.org/10.1007/978-1-4419-7142-5_1
https://doi.org/10.1007/s11769-020-1131-2
https://doi.org/10.1007/s11769-020-1131-2

	Exploring the raison d’etre behind metric selection in network analysis: a systematic review
	Abstract 
	Introduction
	Methodology
	Results
	Publication trend
	Network methods
	Network metrics
	Local metrics
	Global metrics
	Number of metrics used

	Network characteristics

	Discussion
	Who uses what? And where?
	How many metrics should I use? When should I use this metric and not the other?
	Are some metrics more versatile than others? Can common metrics consistently describe the same characteristic across contexts?

	Conclusions
	Summary of findings
	A way forward

	Acknowledgements
	References


