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Introduction and background
Multilayer networks have proven to be useful models for capturing complex rela-
tional data where multiple types of relations are potentially present between vertices 
in the network (Boccaletti et  al. 2014; Kivelä et  al. 2014). Classical, single layer (or 
monoplex) networks, have proven popular for representing complex interactions (i.e., 
edges) amongst a collection of objects of interest (vertices). In the multilayer setting, 
there are multiple vertex layers and edges within a layer can encode different rela-
tionship/interaction types. Multilayer graphs are often distinguished by the structure 
across layers; in the present work we consider multiplex networks where inter-layer 
relations can only exist amongst vertices representing the same object across the lay-
ers. For example, in connectomes (i.e., brain networks) different edge layers/modali-
ties can represent different synapse types between neurons (e.g., chemical versus 
electrical gap junction synapses amongst the neurons in the C. elegans connectome 
White et al. 1986); in social networks different edge modalities can capture relation-
ships/friendships in different social network platforms (Goga et al. 2015); in scholarly 
networks, different edge modalities can capture co-authorship across multiple classi-
fication categories (Ng et al. 2011). Insomuch as there is complimentary signal across 
the layers in the multilayer network (which is the case in many applications, see for 
example Mucha et al. 2010; Kivelä et al. 2014; Chen et al. 2016), leveraging the sig-
nal across the different layers of the network can lead to better, more robust perfor-
mance than working within any single network modality. In this paper, we address 
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the question of how we can practically (and theoretically) leverage the signal across 
multiple network layers in the inference setting of noisy subgraph detection.

Formally, the noisy subgraph detection problem can be stated as follows. For inte-
ger n > 0 , let Gn be the space of all n-vertex labeled networks; note that unless other-
wise specified, all graphs considered will be unweighted. Given a dissimilarity 
d : Gm × Gm �→ R (so that d is non-negative, d(g , g) = 0 for all g ∈ Gm , and small 
(resp., large) values of d are indicative of highly similar (resp., dissimilar) networks), a 
template subgraph g ∈ Gm , and a background graph h ∈ Gn with n > m , the goal is to 
find the subgraphs g ′ ∈ Gm of h minimizing d(g , g ′) . Common dissimilarities d consid-
ered in the literature include variants of graph edit distance (Ebsch 2020) and the 
graph matching distance (Chan and Cheney 2020; Sussman et  al. 2019) (see “The 
graph matching distance” section for detail). The ming ′⊂h d(g , g

′) = 0 setting (where 
g ′ ⊂ h denotes g ′ is a subgraph of h) is closely related to the subgraph isomorphism 
problem—given a template g, determine if an isomorphic copy of g exists in the larger 
network h and find the isomorphic copy (or copies) if it exists. This NP-complete 
problem has been the subject of voluminous research, with notable results in the set-
ting where g is small or structured. Common approaches include those based on effi-
cient tree search (Ullmann 1976), color coding (Alon et  al. 1995, 2008), graph 
homomorphisms (Fomin et  al. 2012), rule-based/filter-based matchings (Cordella 
et al. 2004; Moorman et al. 2018), constraint satisfaction (Larrosa and Valiente 2002; 
Zampelli et al. 2010), among others; for a survey of the literature circa 2012, see Lee 
et  al. (2012). The potential to have ming ′⊂h d(g , g

′) > 0 (this is what is meant by 
“noisy”; note this is also referred to as inexact matching in the literature) for a given 
template separates the noisy subgraph detection task from the classical subgraph iso-
morphism problem, as this accounts for the reality that relatively large, complex sub-
graph templates may only errorfully occur in the larger background network. These 
errors may be due to missing edges/vertices in the template or background, and arise 
in a variety of real data settings (Priebe et al. 2015). When g is large and complex and/
or ming ′⊂h d(g , g

′) > 0 , there are relatively fewer methods in the literature for attack-
ing this problem; see, for example, Tu et  al. (2020), Sussman et  al. (2019), Du et  al. 
(2017), DePiero and Krout (2003), Lladós et al. (2001). Moreover, for many d, in the 
setting of complex templates g there is often a single element (up to vertex reorder-
ing) in 

arg ming ′⊂h d(g , g
′)

 , and the noisy subgraph detection problem reduces to 

detecting this unique minimizer.
The inference task we consider in this manuscript is the problem of detecting (pos-

sibly multiple copies of ) a noisy multiplex template network in a multiplex back-
ground network. Letting Mc

n be the set of all c-layer, n-vertex multiplex networks (see 
Definition 1), we can define the problem formally as follows. Given a dissimilarity 
d : Mc

m ×Mc
m �→ R (so that d is non-negative, d(g, g) = 0 for all g ∈ Mc

m , and small 
(resp., large) values of d are indicative of highly similar (resp., dissimilar) networks), 
a template subgraph g ∈ Mc

m , and a background graph h ∈ Mc
n with n > m , the goal 

is to find the subgraphs g′ ∈ Mc
m of h minimizing d(g, g′) . With the rise of network 

modeling of complex, multilayer data, there has been a recent emphasis on multi-
plex inference methods. This is, indeed, the case with the noisy multiplex subgraph 
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detection problem, as there have been numerous recent papers dedicated to solv-
ing this problem; see, for example Yang and Liu (2016), Takes et al. (2017), Kopylov 
and Xu (2019), Kopylov et  al. (2020), Moorman et  al. (2021, 2018). This multilayer 
subgraph detection problem presents a host of additional challenges versus its single 
layer counterpart, including how to adapt monoplex dissimilarities to the multilayer 
setting (see Kivelä and Porter 2017 for the challenges in defining the general mul-
tilayer graph isomorphism), and how to appropriately leverage the signal across the 
multiple layers rather than more streamlined approaches that collapse the network to 
a single layer.

Our approach to approximately solving the multiplex noisy subgraph problem 
adapts the graph matching matched filter (GMMF) method proposed in Sussman 
et al. (2019) to the multiplex setting. The basic idea of the GMMF is to use the tem-
plate graph g to scan the background for similarly (according to d) structured sub-
graphs in h ; this is similar in spirit to the matched filters for pattern detection in 
image analysis (e.g., Chaudhuri et al. 1989) and the convolutional filters in image pro-
cessing and convolutional neural networks (Krizhevsky et al. 2012; O’Shea and Nash 
2015). In our Multiplex GMMF (which we denote M-GMMF), the scanning mechanism 
determining how the template is used to search the background is a multiplex adapta-
tion of the Frank-Wolfe (Frank and Wolfe 1956) based FAQ algorithm of Vogelstein 
et al. (2014) (see “Multiplex FAQ” section for more detail). For the details of M-GMMF, 
see “Multiplex graph matching matched filters” section. In the process of developing 
the M-GMMF, we introduce a multiplex graph matching problem (see “The multiplex 
graph matching distance” section) that allows us to appropriately define a dissimi-
larity d that seeks to minimize the number of disagreements between g and g′ (i.e., 
optimal induced subgraph match) or maximize the number of common edges across 
g and g′ (i.e., optimal subgraph match).

In addition to the algorithmic development above, we further posit a statistical 
framework for embedding a noisy copy of g into h that allows us to study an analogue 
of multiplex graph matchability; see “Multiplex template matchability” section. In this 
model, we demonstrate the theoretical appropriateness of multiplex matched filters 
for detecting the noisy induced subgraph as well as the benefit of considering mul-
tiple channels for improved graph de-anonymization. We further demonstrate these 
theoretical results in a number of simulation and real data settings. In “Experiments” 
section, we apply our multiplex matched filter approach in detecting a hidden tem-
plate in a multiplex social media network and we compare M-GMMF to other multiplex 
graph matching algorithms on a template discovery task in a large semantic property 
graph.

Notation: The following notation will be used throughout. For an integer n > 0 , we 
will define [n] := {1, 2, . . . , n} , let �1n ∈ R

n (resp. In ∈ R
n×n ) be the vector (resp. diagonal 

matrix) with all entries identically set to 1, let Jn be the n× n matrix with all diagonal 
entries identically set to 0 and all off-diagonal entries set to 1. Let 0k ,ℓ (resp., 0k ) be the 
k × ℓ (resp., k × k ) matrix with all entries identically set to 0. The set of n× n permuta-
tion matrices is denoted by �n . For a graph g ∈ Gn , we let V(g) denote the vertex set 
of g and E(g) denote the edge set of g. A graph g ′ is a subgraph of g (denoted g ′ ⊂ g ) if 
V (g ′) ⊂ V (g) and E(g ′) ⊂ E(g).



Page 4 of 35Pantazis et al. Applied Network Science            (2022) 7:29 

The graph matching distance

Both the single and multilayer noisy subgraph detection problems defined above rely 
heavily on a suitable definition of graph dissimilarity d to measure the goodness of the 
fit of the recovered subgraph match. A common dissimilarity used in the literature is the 
graph matching distance dGM defined as follows: Let g , h ∈ Gn (recalling Gn is the space 
of n-vertex, labelled graphs; here these are assumed to be unweighted) and let A be the 
adjacency matrix for g, and B the adjacency matrix for h; we then define

where �n is the set of n× n permutation matrices. Note that dGM is a pseudo-distance 
(i.e., dGM(g , g) = 0 for all g ∈ Gn , dGM is symmetric, and satisfies the triangle inequality) 
as it is clear that dGM(g , h) = 0 can hold for g  = h . See Bento and Ioannidis (2019) for a 
study of a number of related graph matching (pseudo) distances.

There is an immense literature devoted to solving the related graph matching prob-
lem: Given graphs g , h ∈ Gn (with respective adjacency matrices A and B), find P ∈ �n 
such that dGM(g , h) = �AP − PB�F ; see Conte et al. (2004), Foggia et al. (2014), Emmert-
Streib et al. (2016), Yan et al. (2016) for a thorough review of the current graph matching 
literature. Briefly, the graph matching literature is composed of two (intertwined) main 
thrusts: algorithmic development, with popular methods including optimization/relax-
ation-based approaches (e.g., Zaslavskiy et  al. 2009; Umeyama 1988; Vogelstein et  al. 
2014; Klau 2009; Zhang and Tong 2016), tree-search (e.g., Pinheiro et  al. 2016), deep 
learning-based approaches (e.g., Zanfir and Sminchisescu 2018), representation-learn-
ing approaches (e.g., Heimann et al. 2018; Du et al. 2020), spectral approaches (e.g., Feizi 
et al. 2015; Fan et al. 2020; Egozi et al. 2012; Singh et al. 2008), and structured factori-
zation-based approaches (e.g., Zhou and De la Torre 2012; Zhang et al. 2019), to name 
but a few. The second thrust of the graph matching literature is focused on graph de-
anonymization/graph matchability. Stated succinctly, the problem of graph matchability 
is as follows: given a latent alignment P between two networks g and h (with respective 
adjacency matrices A and B), is it the case that dGM(g , h) = �AP − PB�F ; i.e., will the 
optimal “graph matching” permutation recover the latent alignment? The latent align-
ment between g and h is often achieved by correlating the networks g and h edge-wise 
(so that h can be thought of as a noisy version of g), and the matchability literature is 
often focused on deriving sharp phase-transitions for when dGM(g , h)  = �AP − PB�F 
in terms of decaying correlation across networks; see, for example, Ding et  al. (2018), 
Kazemi et al. (2015a, b), Pedarsani and Grossglauser (2011), Onaran et al. (2016), Lyzin-
ski and Sussman (2020), Cullina and Kiyavash (2017, 2016), Barak et al. (2018), Cullina 
et al. (2018) for a litany of graph matchability results in the single layer setting.

In the noisy subgraph detection problem outlined above, where g ∈ Gm and h ∈ Gn 
for n > m (with respective adjacency matrices A and B), there are a number of ways 
of adapting dGM to the setting where the graphs are different sizes (see, for example, 
Appendix F of Bento and Ioannidis 2019). If we desire our dissimilarity to penalize extra-
neous structure (i.e., non-edges mapped to edges) and reward both common edges and 
common non-edges, we can seek a subgraph g ′ (with adjacency matrix B′ ) of h that min-
imizes minP∈�m �AP − PB′�F . This is effectively minimizing dGM(g , ·) over subgraphs of 

dGM(g , h) = min
P∈�n

�AP − PB�F = min
P∈�n

√
�A�2F − 2 trace (APBTPT )+ �B�2F ,
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h of order m, which amounts to finding the closest (according to dGM ) induced subgraph 
of h to g. Equivalently, this can be cast as seeking an element P in

minimizing �A− PBPT�F (see Remark 1 below for detail). If we desire our dissimilarity 
to only reward recovered structure, we can seek a subgraph g ′ (with adjacency matrix B′ ) 
of h that maximizes maxP∈�m trace(AP(B′)TPT ) . This is effectively minimizing

over subgraphs g ′ of h of order m. Equivalently, this can be cast as seeking an element 
P in �m,n maximizing trace(APBTPT ) (see Remark 1 below) for detail, which amounts 
to finding the closest (closest in that it has the most common edges) subgraph of h to 
g. Note that these two distances/dissimilarities can be obtained from dGM directly by 
appropriately weighting and padding g and h; see Fishkind et al. (2015), Sussman et al. 
(2019) and Remark 1.

Remark 1

Let g ∈ Gm with adjacency matrix A and h ∈ Gn with adjacency matrix B. In Fishkind 
et al. (2019), the method for finding the closest (according to dGM ) induced subgraph of h 
to g was to match

to 2B− �1n�1Tn  using dGM . For Q ∈ �n , write

where P ∈ �m,n . Then, matching (2A− �1m�1Tm)⊕ 0n−m to 2B− �1n�1Tn  is equivalent to 
maximizing

and finding the optimal Q for Eq. (1) is equivalent to finding the optimal P ∈ �m,n 
minimizing

�m,n = {Q ∈ {0, 1}m×n |Q�1n = �1m, �1TmQ ≤ �1Tn }

d
(2)
GM(g , g ′) =

(
max
P∈�m

trace(AP(B′)TPT )

)−1

(
2A− �1m�1Tm

)
⊕ 0n−m =

(
2A− �1m�1Tm 0m,n−m

0n−m,m 0n−m

)

Q =
(
P
Q′

)

(1)

trace ([(2A− �1m�1Tm)⊕ 0n−m]Q(2B− �1n�1Tn )TQT )

= trace(PT (2A− �1m�1Tm)P(2B− �1n�1Tn )T )
= 4trace(APBTPT )− 2 trace((�1m�1Tm)PBTPT )

︸ ︷︷ ︸
=�PBPT �2F

− 2 trace(AP(�1n�1Tn )PT )
︸ ︷︷ ︸

=�A�2F

+trace((�1m�1Tm)P(�1n�1Tn )PT )

�A�2F + �PBPT�2F − 2trace(APBTPT ) = �A− PBPT�2F .
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Moreover, the above derivations show us that for P ∈ �m,n , minimizing �A− PBPT�2F is 
not equivalent to maximizing trace(APBTPT ) . Indeed, in Fishkind et al. (2019), the best 
fitting (non-induced) subgraph of h to g is found by maximizing (over Q ∈ �n)

which is easily seen to be equivalent to maximizing

over P ∈ �m,n as claimed.

Remark 2
The graph matching distance can be easily adapted to the weighted graph set-
ting. Letting Wn be the set of all n-vertex graphs with nonnegative edge weights, we 
can associate g = (V ,E,W ) ∈ Wn with a weighted adjacency matrix A so that 
Ai,j = 1{{i, j} ∈ E}W ({i, j}) . For g , h ∈ Wn with respective weighted adjacency matrices 
A and B, we define dGM(g , h) = minP∈�n �AP − PB�F . Extensions to the setting where 
g ∈ Wm and h ∈ Wn are then achieved as above.

Multiplex networks

Before lifting the graph matching distance/problem to the multiplex setting, we first 
need to define precisely what we mean by a multiplex graph. At the core of this paper, 
we view the template as being equal or lower order than the background. Moreover, our 
definition of multiplex networks, ideally, would allow for differing graph orders across 
the multiple layers within a single graph. To allow for these expected data nuances in 
the multiplex setting, we consider the following multiplex graph model; see Kivelä et al. 
(2014) for a thorough overview of this and other multiplex network formulations.

Definition 1  The c-tuple g = (g1, g2, . . . , gc) is an n-vertex multiplex network if for 
each i = 1, 2, . . . , c, we have that gi ∈ Gni = {ni-vertex labeled graphs} , and the vertex 
sets (Vi = V (gi))

c
i=1 further satisfy the following: 

	(i)	 For each i ∈ [c] , we have that V (gi) ⊆ [n];
	(ii)	

c⋃
i=1

V (gi) = [n];

	(iii)	 For each I ⊂ [c] , we have that (∪i∈IV (gi)) ∩ (∪j /∈IV (gj)) �= ∅;
	(iv)	 The layers are a priori node aligned; i.e., vertices sharing the same label across lay-

ers correspond to the same entity in the network.

Note that each vertex v ∈ [n] need not appear in each channel i ∈ [c] , however, we do 
require that we cannot partition the graph layers into two sets of vertex-disjoint net-
works. We will denote the set of c-layer, n-vertex multiplex networks via Mc

n . We note 
here that in the subsequent sections we will describe the M-GMMF and its associated 
primitives in the setting of unweighted multiplex networks. This is done to streamline 
exposition, and analogues in the weighted graph setting can be defined accordingly.

trace((A⊕ 0n−m)QB
TQT ),

trace(APBTPT )
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The multiplex graph matching distance

As mentioned previously, in the single layer setting the two subgraph matching dis-
tances—the ones based on dGM and d(2)GM—can be obtained from dGM via appropriate 
padding schemes applied to the template g and background h. This will be the approach 
we take in order to define the analogues of these distances in the multiplex setting, as 
this will allow us to circumvent the difficulties of differing number of vertices across 
graphs and across the layers of a given graph. To this end, we consider the following pair 
of padding schemes (adapted here from Fishkind et al. 2019; Sussman et al. 2019). Let-
ting g ∈ Mc

m and h ∈ Mc
n with m ≤ n , we define 

	 i.	 (Naive Padding) For each i ∈ [c] , define the adjacency matrices Ãi ∈ R
m×m and 

B̃i ∈ R
n×n via 

 Denote Ã = (Ã1, Ã2, . . . , Ãc) and B̃ = (B̃1, B̃2, . . . , B̃c) . This padding scheme effec-
tively appends the number of isolated vertices to each graph layer needed in order 
to make the number of vertices in all layers equal (equal m in g and n in h).

	 ii.	 (Centered Padding) For each i ∈ [c] , define the weighted adjacency matrices 
Âi ∈ R

m×m and B̂i ∈ R
n×n via 

 Denote Â = (Â1, Â2, . . . , Âc) and B̂ = (B̂1, B̂2, . . . , B̂c) . This padding scheme 
makes the number of vertices in all layers equal, as well as penalizes non-existent 
edges.

For an example of the two padding schemes applied to a graph in M2
8 , see Figure 1.

We are now ready to define the multiplex analogues of our subgraph matching dis-
similarities. Let g ∈ Mc

m (with naive and centered paddings given by Ã and Â resp.,) and 
h ∈ Mc

n with m < n (with naive and centered paddings given by B̃ and B̂ resp.,). The 
multiplex analogue of d(2)GM , that only rewards recovered common edge structure, then 
seeks a subgraph g′ ∈ Mc

m of h (with corresponding naive and centered paddings given 
by B̃′ and B̂′ resp.,) that minimizes

�Ai(u, v) =





1 if u,v ∈ V (gi), and { u,v} ∈ E(gi);
0 if u,v ∈ V (gi), and { u,v} /∈ E(gi);
0 if u or v ∈ [m] \ V (gi);

�Bi(u, v) =





1 if u,v ∈ V (hi), and { u,v} ∈ E(hi);
0 if u,v ∈ V (hi), and { u,v} /∈ E(hi);
0 if u or v ∈ [n] \ V (hi);

(2)

�Ai(u, v) =





1 if u, v ∈ V (gi), and {u, v} ∈ E(gi);
−1 if u, v ∈ V (gi), and {u, v} /∈ E(gi);
0 if u or v ∈ [m]\V (gi);

�Bi(u, v) =





1 if u, v ∈ V (hi), and {u, v} ∈ E(hi);
−1 if u, v ∈ V (hi), and {u, v} ∈ E(hi);
0 if u or v ∈ [n]\V (hi);

d
(2)
M-GM(g, g′) :=

(
max
P∈�m

c∑

i=1

trace(ÃiP(B̃
′
i)
TPT )

)−1

.
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For matrices A ∈ R
m×m and B ∈ R

n−m×n−m , we consider the matrix direct sum 
A⊕ B ∈ R

n×n defined via

where we recall for integral k , ℓ > 0 , 0k ,ℓ (resp., 0k ) is the k × ℓ (resp., k × k ) matrix of all 
0’s. Finding the m-vertex subgraphs of h minimizing d(2)M-GM(g, ·) is equivalent to finding 
all P in

as each P in Eq. (3) matches g to a subgraph of h minimizing d(2)M-GM . This formula-
tion in Eq. (3) effectively seeks to maximize the number of common edges between the 
multiplex template and multiplex background, where all edges across all channels are 
weighted equally (see Fishkind et al. 2019; Bento and Ioannidis 2019 for the monoplex 
analogue).

The multiplex analogue of the dissimilarity that also penalizes extraneously recovered 
structure seeks an induced subgraph g′ ∈ Mc

m of h that minimizes the centered match-
ing dissimilarity

Finding the m-vertex subgraphs of h minimizing d(c)M-GM(g, ·) is equivalent to finding all 
P in

A⊕ B =
[

A 0m,n−m

0n−m,m B

]
,

(3)arg min
P∈�n

c∑

i=1

�(Ãi ⊕ 0n−m)P − PB̃i�2F = arg min
P∈�n

c∑

i=1

−tr((Ãi ⊕ 0n−m)PB̃
T
i P

T ),

d
(c)
M-GM(g, g′) := min

P∈�m

c∑

i=1

�ÂiP − PB̂′
i�2F .

(4)arg min
P∈�n

c∑

i=1

�(Âi ⊕ 0n−m)P − PB̂i�2F = arg min
P∈�n

c∑

i=1

−tr((Âi ⊕ 0n−m)PB̂
T
i P

T ),

Fig. 1  An example of the two padding schemes applied to a two layer multiplex network g = (g1, g2) with 
8 vertices
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as each P in Eq. (4) matches g to a subgraph of h minimizing d(c)M-GM(g, ·) . If for each i, we 
have that V (hi) = [n] ⊃ [mi] = V (gi) , then the formulation in Eq. (4) effectively seeks 
to minimize the number of disagreements (edge mapped to non-edge and vice versa) 
induced between the background and the matched subgraphs in the template, where 
all disagreements across all channels are weighted equally. Given the interpretation of 
Eqs. (3) and (4), the appropriate padding schemes to deploy in practice depends on the 
underlying problem assumptions and setting. In the sequel, we will let the optimization 
in Eq. (3) be known as the naive multiplex graph matching problem and the optimization 
in Eq. (4) be known as the centered multiplex graph matching problem.

Remark 3

Our formulation of the Multiplex GMP is (assuming channels of equal order across the 
adjacency matrix lists A and B)

rather than a formulation weighting the matching in each channel via

for �i > 0 . Note that we implemented the Multiplex GMP for different values of � , 
though in our experiments below we found that matching results with �i = 1 work suit-
ably well while being more robust than other ad-hoc weighting strategies. As such, we 
only present the results with �i = 1 , though finding optimal weight for a given graph 
sequence is an important learning task in its own right and is the subject of present 
research. Moreover, this allows each edge in each template channel to be weighted 
equally, which may be desirable. In the case that one or more channels is more informa-
tive or of higher import than the others, then choosing appropriate � ’s to overweight the 
matching in those channels may be desirable.

Multiplex graph matching matched filters
Our approach to approximately solving Eqs. (3) and (4) uses the template g as a filter 
to search the background h for approximate matches. Similar to how convolutional 
and matched filters are used in computer vision tasks, we use the template to scan 
the background for matching structure, though the mechanism for scanning is not 
exhaustive search but rather an adaptation of the Frank-Wolfe based matching algo-
rithm FAQ of Vogelstein et al. (2014). Below we provide the details of our multiplex 
FAQ algorithm, as well as how this is implemented towards our goal of building effec-
tive multiplex graph matching matched filters.

arg min
P∈�n

c∑

i=1

�AiP − PBi�2F .

arg min
P∈�n

c∑

i=1

�i�AiP − PBi�2F ,
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Multiplex FAQ

One of the principle motivations for our additive multiplex graph distance formulation is 
that it allows us to adapt gradient descent based search algorithms to the multiplex setting 
with ease. One such algorithm that has proven useful in the literature is the FAQ algorithm 
of Vogelstein et  al. (2014). This algorithm—based on the Frank-Wolfe method for con-
strained gradient descent applied to an indefinite relaxation of the graph matching prob-
lem—proceeds as follows (in the monoplex setting): Given graphs g , h ∈ Gn with adjacency 
matrices A, B, a threshold ǫ , and initialization P(0) ∈ Dn (where Dn is the set of doubly sto-
chastic n× n matrices, i.e., the convex hull of �n ): 

1.	 While �P(t) − P(t−1)�F > ǫ at step t ≥ 1 , repeat the following iterative loop: 

	 i.	 Letting f (P) = −trace(APBTPT ) , compute ∇f (P(t)) = −ATP(t)B− AP(t)BT .
	 ii.	 Find the optimal search direction for gradient descent by finding 

 note that this is an instantiation of the famous linear assignment problem 
(LAP) and can be solved via the Hungarian method in O(n3) time (Jonker and 
Volgenant 1987).

	 iii.	 Set α∗ equal to the minimizer of f (αP(t) + (1− α)Q(t)) . This line search in the 
direction of Q(t) can be done efficiently, as it amounts to optimizing a simple 
quadratic function of α.

	 iv.	 Set P(t+1) = α∗P(t) + (1− α∗)Q(t).

2.	 Project the (possibly) interior point solution P(final) to the set of permutation matri-
ces by solving the following LAP 

The FAQ algorithm is theoretically principled (Lyzinski et al. 2015), performs well in a num-
ber of real-data alignment tasks (see Vogelstein et al. 2014 for a comparison of FAQ to other 
graph matching approaches), and is flexible enough to easily handle weighted and directed 
graphs, seeded vertices (Fishkind et al. 2019), matching graphs of different orders (Fishkind 
et al. 2019; Sussman et al. 2019), and, as we will see below, matching multiplex networks.

The above algorithm extends easily to the multiplex setting as follows. Let 
A = (A1, . . . ,Ac) and A′ = (A′

1, . . . ,A
′
c) be the (possibly padded) adjacency matrix vectors 

of two multiplex graphs in Mc
n , where each Ai and A′

i is assumed to be an n× n matrix, we 
consider minimizing the objective function

using the same Frank-Wolfe procedure outlined above. To wit, given a threshold ǫ and 
initialization P(0) ∈ Dn , we proceed via 

Q(t) = arg min
Q∈Dn

trace(∇f (P(t))TQ);

P∗ = arg min
P∈�n

trace
(
∇f (P(final))TP

)
.

fM(P) = −
c∑

i=1

trace(AiP(A
′
i)
TPT )
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1.	 While �P(t) − P(t−1)�F > ǫ at step t ≥ 1 , repeat the following iterative loop: 

	 i.	 Compute ∇fM(P(t)) = −∑c
i=1 A

T
i P

(t)A′
i − AiP

(t)(A′
i)
T .

	 ii.	 Set Q(t) = arg min
Q∈Dn

trace(∇fM(P(t))TQ)

	 iii.	 Set α∗ equal to the minimizer of fM(αP(t) + (1− α)Q(t)).
	 iv.	 Set P(t+1) = α∗P(t) + (1− α∗)Q(t).

2.	 Lastly compute P∗ = arg min
P∈�n

trace(∇f (P(final))TP). Return approximate solution P∗.

This multiplex FAQ algorithm (denoted M-FAQ) aims to, ideally, find the global mini-
mizer of fM(P) . We will see in the next section how these ideas can be leveraged towards 
building our multiplex graph matching matched filter.

Remark 4

One of the advantages of FAQ and M-FAQ is the ease in which it allows seeded vertices 
to be incorporated (Fishkind et al. 2019). In the setting of graph alignment, seeded ver-
tices are those whose correspondence across networks is a priori known. This is incorpo-
rated into M-FAQ as follows. Without loss of generality, letting the first s < n vertices of 
g, g′ ∈ Mc

n (with respective adjacency matrix lists A and A′ ) be seeded via the identity 
mapping, we can consider incorporating these seeds via: 

	 i.	 A hard seeded approach: We seek to align g and g′ by finding 

 This effectively enforces the alignment across seeded vertices must hold in any 
optimal matching across g and g′ , thus reducing the dimension of the search space 
of the graph matching problem. In this case, M-FAQ proceeds as outlined above 
with the objective function 

 with the computation of the gradient and search steps proceeding analogously.
	 ii.	 A soft seeded approach: We seek to align g and g′ by finding 

 and initializing our optimization algorithm at a P of the form Is ⊕ Q (where the 
form of Q may be dictated by whether the algorithm relaxes the feasible region). 
This alignment across seeded vertices is encoded into the initialization though this 
alignment is not necessarily enforced in an optimal matching across g and g′ . This 

arg min
P∈�n−s

c∑

i=1

�Ai(Is ⊕ P)− (Is ⊕ P)A′
i�2F .

fM(P) = −
c∑

i=1

trace(Ai(Is ⊕ P)(A′
i)
T (Is ⊕ P)T ),

arg min
P∈�n

c∑

i=1

�AiP − PA′
i�2F ,
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is more appropriate in settings where the seeds are potentially noisy or errorful 
(Fang et al. 2018).

In both the soft and hard seeded approaches, the performance of FAQ and M-FAQ is 
often dramatically improved even with the inclusion of relatively few seeds (Fishkind 
et al. 2019; Patsolic et al. 2014).

Multiplex graph matching matched filters

In the setting of multiplex noisy subgraph detection, there may be many subgraphs in 
h optimally matching to g . To account for this (and the presence of spurious local min-
ima for the indefinite fM(D) for D in Dn ), the multiplex graph matching matched filter 
(M-GMMF) algorithm proceeds as follows: Use multiple random restarts of the M-FAQ 
algorithm applied to either Eq. (3) or (4) (depending on the desired structure to recover) 
to find multiple candidate matches for the template g in h . This approach was devel-
oped in the monoplex setting (using FAQ) in Sussman et al. (2019), with our contribu-
tion herein being the extension to the multiplex setting.

Given multiplex graphs g ∈ Mc
m and h ∈ Mc

n with m ≤ n , an appropriate padding 
scheme (either naive or centered), a tolerance ǫ ∈ R > 0 , a random initialization param-
eter γ , and the number of restarts N, M-GMMF proceeds as follows: 

1.	 Pad g and h accordingly. In the naive (resp., centered) padding regime, the padded 
adjacency matrix list of g is denoted via Ã (resp., Â ), and the padded h via B̃ (resp., B̂
).

2.	 For k = 1, 2, . . . ,N  , repeat the following 

	 i.	 Create a random initialization for the M-FAQ algorithm via 
P(0) ← α�1n�1Tn /n+ (1− α)P where P ∼ Unif(�n) , α ∼ Unif[0, γ ].

	Note that this is one possible random initialization scheme (the random jitter of the bar-
ycenter �1n�1Tn /n of Dn).

	 ii.	 In the naive (resp., centered) padding regime, find a candidate match for g via 
P∗
k = M-FAQ(Ã ⊕ 0n−m, B̃,P

(0), ǫ) (resp., P∗
k = M-FAQ(Â ⊕ 0n−m, B̂,P

(0), ǫ))

3.	 Rank the matchings {P∗
1 ,P

∗
2 , . . . ,P

∗
N } by increasing value of the multiplex graph 

matching objective function, Eq. (3) or (4), depending on the padding regime 
selected. This ranked list provides a candidate list of matchings/detected subgraphs 
for g in h.

Note that code implementing the above M-GMMF and M-FAQ procedures can be down-
loaded as part of our R package, iGraphMatch, which is available on CRAN or can be 
downloaded at https://​github.​com/​dpmcs​uss/​iGrap​hMatch.

Remark 5

Effectively, the M-GMMF algorithm uses the multiplex template and a multiplex matching 
algorithm A (M-FAQ in our implementation) to search �n for relevant regions of h that 
align well to g . The multiple restarts in Step 2 of the procedure are needed in the case of 

https://github.com/dpmcsuss/iGraphMatch
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A = M-FAQ to account for multiple possible globally best matched and the fact that the 
objective function is relaxed to an indefinite quadratic program with myriad local min-
ima in the feasible region. For approximate combinatorial A , the restarts may be appro-
priate as well, while for continuous, convex relaxation algorithms (see, for example, Bento 
and Ioannidis 2019), this step may not be necessary if we believe there is a single global 
minima.

Multiplex template matchability
In order to theoretically understand the efficacy of our M-GMMF approach, we con-
sider the following probabilistic framework (note that real-data experimentation 
demonstrating the empirical success of M-GMMF is presented in “Experiments” sec-
tion). Considering a random graph model for both g and h in which a stochastically 
noisy copy of g has been embedded into h , we seek to understand to what degree an 
oracle algorithm (i.e., those that can exactly solve Eq. (3) and (4)) can identify the 
noisy copy of g in h . This offers an important suitability test for M-GMMF, as if even 
oracle approaches are not able to uncover probabilistically errorful copies of g , then 
practically M-GMMF will most likely not be suitable for finding optimal subgraph 
matches in real data, high noise settings.

Moreover, to understand this problem further, we develop novel results on multiplex 
graph matchability (for g and h of the same order) that may be of independent inter-
est, as well as generative multiplex error models in which to explore this question. The 
layout of this section is as follows. We develop a pair of error models, the ME and MS 
models, in “Background/template error models”. Within each error model, we tackle the 
question of template matchability in “Template matchability” section. Interspersed with 
these matchability results are simulations further illuminating the corresponding match-
ing theory.

Background/template error models

We first consider a random graph model in the monoplex setting, in which a stochasti-
cally noisy copy of a template g has been embedded into the background h. Next, we lev-
erage this model in the multiplex setting by proposing a pair of generative error models 
wherein the template g is embedded as an errorful subgraph into the background h.

Definition 2  (See Arroyo et al. 2018) Consider a graph g with V (g) ⊂ [n] . Let the cen-
tered, padded adjacency matrix (as in Eq. (2)) of g be denoted Â ∈ R

n×n . Let E ∈ [0, 1]n×n 
be a symmetric, hollow (hollow indicating that the diagonal entries of E are set to 0) 
matrix. The graph-valued random variable E(g) with vertex set equal to V(g) and random 
centered, padded adjacency matrix Âg ,E , which models passing g through an errorful 

channel E, is defined as follows. For each {i, j} ∈
(
[n]
2

)
,

where X(i, j)ind.∼ Bern(E(i, j)).

ÂG,E(i, j) = Â(i, j) · (1− 2X(i, j)),
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The two generative models we then consider for lifting Definition 2 to the multiplex 
setting are defined below. Each models a particular setting in which multilayer networks 
can appear in real-data settings. 

	 i.	 (Single Channel Source, Multiplex Error; abbreviated ME) There is a single non-
random background source graph h ∈ Gn and a non-random source template 
g = h[m] ∈ Gm , and two multi-channel errorful filters E(1) = (E

(1)
1 , . . . ,E

(1)
c ) , 

with each E(1)
i  acting on h, and E(2) = (E

(2)
1 , . . . ,E

(2)
c ) , with each E(2)

i  acting 
on g. We observe H = (E

(1)
1 (h), . . . , E

(1)
c (h)) as the multiplex background and 

G = (E
(2)
1 (g), . . . , E

(2)
c (g)) as the multiplex template. By assumption, the errorful 

filters act independently across channels within G and H , and independently across 
G and H . In this model, by construction each |V (Gi = E

(i)
2 (g))| = [m] and each 

|V (Hi = E
(i)
1 (h))| = [n] . This situation is used to model settings in which the mul-

tiplex layers can be thought of as errorful realizations of a single true but unknown 
network, and the edges across layers are of the same fundamental kind. For exam-
ple, multiplex connectomes in which each layer graphically represents a (for exam-
ple) DT-MRI scan for a patient at a different point in time; see, for example, Zuo 
et al. 2014; Kiar et al. 2018.

	 ii.	 (Single Channel Errors, Multiplex Source; abbreviated MS) The non-random back-
ground and non-random template source graphs are multiplex. To wit, let g ∈ Mc

m 
and h ∈ Mc

n satisfy the following: For each i ∈ [c] , let Ĉ and D̂ be the centered pad-
dings of g and h respectively. We assume then that Ĉi = D̂i[m] (i.e., Ĉi—the pad-
ded adjacency matrix of gi—is the m×m principal submatrix of D̂i—the padded 
adjacency matrix of hi ). In this model, there are two multi-channel errorful filters: 
E(1) = (E

(1)
1 , . . . ,E

(1)
c ) and E(2) = (E

(2)
1 , . . . ,E

(2)
c ) . For each i ∈ [c] , E(1)

i ∈ R
n×n acts 

on hi , and E(2)
i ∈ R

m×m acts on gi . We observe 

 as the multiplex background, and 

 as the multiplex template. As above, the errorful filters act independently across 
channels within G and H , and independently across G and H . Note that if the tem-
plate (resp., background) channels have non-identical vertex sets, then this will be 
preserved in the errorful template (resp., background). This situation is used to 
model settings in which we errorfully observe a given multiplex background and 
template. This is the case in many applications where the layers in G and H repre-
sent different edge types; e.g., a multiplex social network where the layers represent 
different friendship modalities (Magnani and Rossi 2011) or a multilayer connec-
tome where the layers represent different synaptic types (Chen et al. 2016).

It may be convenient to view g and h (resp., g and h ) as realizations from graph-valued 
random variables in the ME (resp., MS) model. In this case, we will assume the actions of 
the errorful filters on g and h (resp., g and h ) are also independent of the random g and h 
(resp., g and h).

H = (E
(1)
1 (h1), E

(1)
2 (h2) . . . , E

(1)
c (hc))

G = (E
(2)
1 (g1), E

(2)
2 (g2), . . . , E

(2)
c (gc))
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Considering the models above, in order for our M-GMMF approach to possibly recover 
the true errorful induced subgraph of h corresponding to g , we need for the global mini-
mum of the Multiplex GMP to be in Pm,n := {Im ⊕ P : P ∈ �n−m} . This is the multiplex 
analogue of template matchability, i.e., uncovering conditions under which an oracle 
graph matching will recover a true but unknown latent vertex alignment. Here, that 
alignment is represented by g being an errorful version of h[m].

Template matchability

In this section, we will explore the benefit of considering multiplex versus monoplex 
networks when considering template matchability in both the MS and ME models. We 
note here that while the proof mechanism behind the theory underlying the matchability 
results in the multiplex setting differs only slightly from those used in the monoplex set-
ting of Sussman et al. (2019), we stress that the end results are novel and demonstrate 
the utility of considering multiple channels in a novel manner. Recall below that for inte-
ger n > 0 , Jn is the n× n matrix with all diagonal entries identically set to 0 and all off-
diagonal entries set to 1.

In the MS model, let g ∈ Mc
m and h ∈ Mc

n be the respective template and background 
source graphs, with respective centered, padded adjacency matrices given respectively 
by Ĉ and D̂ satisfying Ĉi = D̂i[m] for all i ∈ [c] . Assume that the errorful filters satisfy for 
each i ∈ [c] , E(1)

i = qiJn and E(2)
i = siJm (where si = si(n) and qi = qi(n) are allowed to 

vary with n). If c = 1 , and s1, q1 = 1/2 , then the observed background and template are 
effectively independent ER(n, 1/2) and ER(m, 1/2) networks, respectively. It is immediate 
then that the optimal permutation aligning the background to the template will almost 
surely not be in Pm,n . If c > 1 , can strongly correlated signal present in less noisy chan-
nels be used to counteract the excess error caused by noisier channels?

The next result tackles this from a template matchability perspective. The main result 
in the following theorem (Theorem 1) is that in the correlated model outlined above, if 
there are sufficiently many positively correlated channels relative to the number of nega-
tively correlated channels, then under mild assumptions on the growth of m, the sub-
graph of H minimizing the centered graph matching dissimilarity d(c)M-GM(G, ·), is, with 
high probability, uniquely the embedded noisy copy of G in H ; note that the proof of 
Theorem 1 can be found in “Appendix 1.1”. While an oracle procedure for finding the 
minimizer of d(c)M-GM(G, ·), is unknown, this result gives credence to the matched filter 
approach, as the global optimizing alignment sought by the multiplex matched filter will 
(with high probability) be the right alignment.

Theorem  1  In the MS model framework, suppose that there exist constants α < 1 , 
β > 0 , and n0 ∈ Z > 0 such that for all n > n0 , m = m(n) satisfies mα > β log n . Suppose 
that for pi = p = p(n) we have that each hi

ind.∼ ER(n, p), and that si(n) = s(n) = s < 1/2 . 
For c1 channels, let qi = q < 1/2 , for c2 channels, let qi = 1/2 , and for c3 = c − c1 − c2 
channels let qi = 1− q > 1/2 (where c1 = c1(n) , c2 = c2(n) , c3 = c3(n) , s = s(n) and 
q = q(n) are allowed to vary with n). Then there exist constants γ , ξ > 0 , and n2 ∈ Z > 0 
such that if for all n > n2,

(5)mp2 ≥ ξ log n,
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then for n > max(n0, n2) , we have

If s, q, c, c1 and c2 are fixed constants that do not vary with n, we need only require c1 > c3 
rather than Condition (5).

To derive analogous results to Theorem  1 in the ME model, we consider the fol-
lowing setting. Letting H ∼ ER(n, p = p(n)) ∈ Gn with p ≤ 1/2 , and G = H [m] be the 
respective background and template source graphs, we again assume that there exist 
constants α ≤ 1, β > 0 , and n0 ∈ Z > 0 such that for all n > n0 , m = m(n) satisfies 
mα ≥ β log n . Further assume that for each i ∈ [c = c(n)] the errorful filters satisfy,

In the ME setting, we then have the following theorem whose proof is presented in 
“Appendix 1.2”. The result in Theorem 2 is similar to that of Theorem 1: In the correlated 
ME model outlined above, if there are sufficiently many positively correlated channels 
(those in c3 and c4 ) relative to the number of negatively correlated channels (those in c1 
and c2 ), then under mild assumptions the subgraph of H minimizing the centered graph 
matching dissimilarity d(c)M-GM(G, ·), is again, with high probability, uniquely the embed-
ded noisy copy of G in H.

Theorem 2  With setup as above, suppose that α < 1 . For

where e1 = e1(n) and e2 = e2(n) can vary in n and c = c1 + c2 + c3 + c4 . Then there exist 
constants γ , ξ > 0 , and n2 ∈ Z > 0 such that if for all n > n2

then for n > max(n0, n2),

(6)p(1/2− s)(1/2− q)(c1 − c3) > γ
√

mα−1c,

P

(
arg min
P∈�n

c∑

i=1

�(Âi ⊕ 0n−m)P − PB̂i�2F �⊂ Pm,n

)
≤ 4n−2.

E
(2)
i (j, ℓ) =

{
si = si(n) if G(j, ℓ) = 1
qi = qi(n) if G(j, ℓ) = 0

E
(1)
i (j, ℓ) =

{
ri = ri(n) if H(j, ℓ) = 1
ti = ti(n) if H(j, ℓ) = 0.

c1 = c1(n) channels, suppose that si + qi = 1+ e1 > 1 and ri + ti = 1− e2 < 1;
c2 = c2(n) channels, suppose that si + qi = 1− e1 < 1 and ri + ti = 1+ e2 > 1;
c3 = c3(n) channels, suppose that si + qi = 1+ e1 > 1 and ri + ti = 1+ e2 > 1;
c4 = c4(n) channels, suppose that si + qi = 1− e1 < 1 and ri + ti = 1− e2 < 1,

(7)mp2 ≥ ξ log n,

(8)pe1e2[c3 + c4 − c1 − c2] > γ
√
mα−1c,
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If e1 , e2 , and c are fixed in n, we need only require c1 + c2 < c3 + c4 for the bound in Eq. 
(9) to hold for sufficiently large n.

As mentioned above, in Theorem 2, the channels in c3 and c4 represent those in which 
the template and background are positively correlated, with those in c1 and c2 representing 
those in which the template and background are negatively correlated. We can then inter-
pret Eq. (8) as asserting that sufficiently many positively correlated channels can overcome 
the signal loss in negatively correlated channels. This is a unique benefit of multiple layers 
versus the monoplex setting, as in the single layer setting there is no universal way to over-
come the negative impact of anti-correlation on graph matchability. In the following sec-
tions, we further empirically explore the effect of negatively correlated/high noise channels 
on multiplex matchability.

Strength in numbers

Consider c2 = c3 = 0 in Theorem 1. Condition (6) then reduces to

and sparsity in the background (i.e., p ≈ 0 ) and large noise values (i.e., close to 1/2) for 
s and q can be mitigated by choosing an appropriately large c; effectively, multiple chan-
nels can amplify the weak signal present in each individual channel.

We explore this further in the following experiment. We will look at two different cases, 
first considering when m = n and then when m < n . First, we consider n = m = 100 (to 
mitigate possible effects of template order on matching accuracy), and we let G,H ∈ Mc

100 
for c ranging over {1, 2, . . . , 10} . For each i ∈ [c] , we have that (Gi,Hi) ∼ ER(100, 0.5, ρ) (so 
that Gi and Hi are marginally ER(100,0.5) and edges across graphs are independent except 

that for each {j, k} ∈
(
[100]
2

)
 , we have that corr(1{{j, k} ∈ E(Gi)},1{{j, k} ∈ E(Hi)}) = ρ ). 

Within this model, the channels are endowed with a natural vertex correspondence across 
Gi and Hi , namely the identity mapping as identically labeled edges are correlated while 
edges with different vertex labels are independent. Note that in the hi ∼ ER(n, pi) MS 
model setting, we have that

so that the correlation between edges in Gi and Hi can be made positive or negative with 
judiciously chosen si and qi . Considering ρ varying over {0.1, 0.2, 0.3, 0.4, 0.5} , we match 
G and H using M-FAQ using s = 10 hard seeded vertices (see Remark 4). Results are plot-
ted in Figure 2. In the figure, we plot the mean matching accuracy (i.e., the fraction of 
vertices whose latent alignment is recovered correctly) of M-FAQ versus c, averaged over 
2000 Monte Carlo replicates. For each choice of parameters, we also plot (via the par-
tially transparent points) the accuracy distribution corresponding to the MC replicates. 
In red (resp., olive, green, blue, purple) we plot the results for ρ = 0.1 (resp., ρ = 0.2 , 
ρ = 0.3 , ρ = 0.4 , ρ = 0.5 ). From Figure  2, we see the expected relationship: in low 

(9)P

(
arg min
P∈�n

c∑

i=1

�(Âi ⊕ 0n−m)P − PB̂i�2F �⊂ Pm,n

)
≤ 6n−2.

(10)p(1/2− s)(1/2− q)
√
c > γ

√
mα−1,

Cov(1{j ∼gi k},1{j ∼hi k}) = pi(1− pi)(1− 2si)(1− 2qi),
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correlation settings where M-FAQ is unable to align the monoplex graphs, this can often 
be overcome by considering c > 1 . Indeed, in all cases, save ρ = 0.1 , perfect matching is 
achieved using c ≥ 8 channels.

Next, we look at the case when m < n . In addition to examining the effect of multiple 
channels when weak signal is present across channels, we wish to compare the effect 
of different padding schemes (Naive vs Centered) in terms of the matching accuracy. 
Here, we are following the MS model with the background (resp., template) channels 
independent and marginally distributed as ER(n, 1/2) (resp., ER(m, 1/2)). Here the tem-
plate is correlated edge-wise to the induced subgraph of the first m vertices in the back-
ground (as in the MS model), with edge correlation ρ . We analyze the padding schemes’ 
effectiveness by first varying the values of the correlation ρ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} while 
keeping n = 500 , and m = 100 constant (see Figure 3) and second, by varying the back-
ground size n ∈ {100, 500, 1000, 2000} while the template size m = 100 and the correla-
tion ρ = 0.5 remain constant (see Figure 4). Letting the Naive (resp. Centered) padded 
template/background pair have adjacency matrix lists (G̃, H̃) (resp. (Ĝ, Ĥ) ), in each figure 
we consider matching the template to the background using M-FAQ (with 10 hard seeds) 
while varying c over {1, 2, . . . , 10} . Results are plotted in Figures 3 and 4. As in Figure 2, 
we plot the mean matching accuracy (i.e., the fraction of template vertices whose true 
latent alignment is recovered correctly in the background) of M-FAQ versus c, here aver-
aged over 100 MC replicates. For each choice of parameters, we also plot (via the par-
tially transparent points) the accuracy distribution corresponding to the MC replicates. 
In Figure 3, in red (resp., olive, green, blue, purple) we plot the results for ρ = 0.1 (resp., 

Fig. 2  Considering n = m = 100 , we let G,H ∈ Mc
100 (for c ranging over {1, 2, . . . , 10} ). For i ∈ [c] , we have 

that (Gi ,Hi) ∼ ER(100, 0.5, ρ) . Utilizing s = 10 seeded vertices, we match G and H using M-FAQ. In red (resp., 
olive, green, blue, purple) we plot the results for ρ = 0.1 (resp., ρ = 0.2 , ρ = 0.3 , ρ = 0.4 , ρ = 0.5 ). The partially 
transparent points visualize the accuracy distribution and correspond to individual Monte Carlo replicates
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ρ = 0.2 , ρ = 0.3 , ρ = 0.4 , ρ = 0.5 ). In Figure 4, in red (resp., green, blue, purple) we plot 
the results for n = 100 (resp., n = 500 , n = 1000 , n = 2000).

All figures demonstrate that even though the M-FAQ algorithm is unable to align 
the multiplex template to its correlated subgraph in the background when c = 1 , this 
can often be overcome by considering c > 1 . Moreover, Figures 3 and 4, show that the 
Centered Padding scheme achieves better matching accuracy between channels than 
the Naive Padding scheme, and that the matching accuracy increases as the correlation 
increases for both padding schemes. Finally, we observe the unsurprising phenomena in 
Figure 4 that the matching accuracy decreases as the ratio between the template size and 
the background size decreases (indeed, larger backgrounds are harder to search!).

Fig. 3  We consider the MS model with the background (resp., template) channels independent and 
marginally distributed as ER(n, 1/2) (resp., ER(m, 1/2)). Here the template is correlated edge-wise to the 
induced subgraph of the first m vertices in the background. We fix n = 500 , m = 100 and we apply naive 
padding (left panel) and centered padding (right panel) before aligning the networks via M-FAQ, and we 
plot the matching accuracy (averaged over 100 Monte Carlo replicates, with s = 10 seeded vertices) versus 
the number of channels c. In red (resp., olive, green, blue, purple) we plot the results for ρ = 0.1 (resp., 
ρ = 0.2 , ρ = 0.3 , ρ = 0.4 , ρ = 0.5 ). The partially transparent points visualize the accuracy distribution and 
correspond to individual Monte Carlo replicates

Fig. 4  We consider the MS model with the background (resp., template) channels independent and 
marginally distributed as ER(n, 1/2) (resp., ER(m, 1/2)). Here the template is correlated edge-wise to the 
induced subgraph of the first m vertices in the background. Here we fix m = 100 and we consider n ranging 
over {100, 500, 1000, 2000} . We fix ρ = 0.5 and we apply naive padding (left panel) and centered padding 
(right panel) before matching the template to the background via M-FAQ with s = 10 seeds (averaged over 
100 Monte Carlo replicates). In red (resp., green, blue, purple) we plot the results for n = 100 (resp., n = 500 , 
n = 1000 , n = 2000 ). The partially transparent points visualize the accuracy distribution and correspond to 
individual Monte Carlo replicates
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The good outweighs the bad

In this section, we explore the ability of the signal in “good” channels to overcome the 
obfuscating effect of “bad” channels. To wit, consider Condition (6) with c3 > 0 . We see 
that if there are enough channels (i.e., c1 is sufficiently large) with positive correlation 
( si, qi < 1/2 ), then the template and background remain matchable even in the presence 
of (potentially) multiple negatively-correlated channels. We explore this further in the 
following experiment. As in the previous “Strength in numbers” section, we study the 
obfuscating effect of negatively-correlated channels for both the m = n and m < n cases.

In Figure  5, we first consider n = m = 100 (left panel), and let G,H ∈ M10
100 

(i.e., c = 10 ), where for i ∈ [10] we have that (Gi,Hi) ∼ ER(100, 0.5, ρ) . Under the 
same setting (right panel), we let m = 100, n = 500 and we apply Naive Padding to 
(G,H) ∈ (M10

100,M
10
500).

Considering ρ to be either ρ = r (for cg channels) or ρ = −r (for cb = c − cg chan-
nels), where r varies in {0.1, 0.2, 0.3, 0.4, 0.5} , we plot the matching accuracy (averaged 
over 2000 (left panel) and 100 (right panel) Monte Carlo replicates) obtained by M-FAQ 
(with 10 seeds) versus cb in Figure 5. For each choice of parameters, we also plot (via the 
partially transparent points) the accuracy achieved by each MC replicate. In red (resp., 
olive, green, blue, purple) we plot the results for r = 0.1 (resp., r = 0.2 , r = 0.3 , r = 0.4 , 
r = 0.5 ). From the figure, we see the expected relationship: matching at higher levels of 
ρ yields better accuracy, and more robustness to channels with negative correlation. Fur-
ther, we notice that the matching accuracy in the right panel (i.e., m < n ) is not as good 
as in the left panel (i.e., m = n ). To see whether this is universal, or merely an artifact of 
the padding scheme, we explore the m < n case further in Figures 6 and 7.

To study the effect of different padding schemes (Naive vs Centered) in terms of 
the matching accuracy. We analyze the padding schemes’ effectiveness first, by vary-
ing the values of the correlation r ∈ {0.3, 0.4, 0.5, 0.6, 0.7} while keeping n,  m con-
stant (see Figure  6) and second, by varying the number of the background vertices 

Fig. 5  We consider m = 100 , and we let G,H ∈ M10
100 (i.e., c = 10 ) (left panel). We also implement the Naive 

Padding scheme, and we let G ∈ M10
100 , H ∈ M10

500 (right panel). Considering ρ to take two possible values: 
ρ = r for cg channels, or ρ = −r for cb = c − cg channels, where r varies in {0.1, 0.2, 0.3, 0.4, 0.5} , we plot the 
matching accuracy obtained by M-FAQ with 10 seeds averaged over 2000 (left panel) and 100 (right panel) 
Monte Carlo replicates (with 10 seeds) versus cb . In red (resp., olive, green, blue, purple) we plot the results 
for r = 0.1 (resp., r = 0.2 , r = 0.3 , r = 0.4 , r = 0.5 ). The partially transparent points visualize the accuracy 
distribution and correspond to individual Monte Carlo replicates
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n ∈ {100, 500, 1000, 2000} while the template size m = 100 remains the same (see Fig-
ure 7). Using the Naive (resp. Centered) padding scheme, we consider matching G̃ and 
H̃ (resp. (Ĝ and Ĥ) ) for cb ranging over {1, 2, . . . , 10} . Utilizing s = 10 seeds, we match 
using M-FAQ; results are plotted in Figures 6 and 7. As in Figure 5, we plot the mean 
matching accuracy (i.e., the fraction of vertices whose latent alignment is recovered 
correctly) of M-FAQ versus cb , averaged over 100 MC replicates. For each choice of 
parameters, we also plot (via the partially transparent points) the accuracy distribu-
tion corresponding to the MC replicates. In Figure 6, in red (resp., olive, green, blue, 
purple) we plot the results for r = 0.3 (resp., r = 0.4 , r = 0.5 , r = 0.6 , r = 0.7 ). In Fig-
ure 7, in red (resp., green, blue, purple) we plot the results for n = 100 (resp., n = 500 , 
n = 1000 , n = 2000 ). From Figures 5 and 6, we observe that matching at higher levels 
of ρ yields better accuracy, and more robustness to channels with negative correla-
tion even though the channels with negative correlation are more anti-correlated for 
higher r. Moreover, Figures 6 and 7 show that the Centered Padding scheme achieves 
better performance in terms of matching accuracy than the Naive Padding scheme, 
though the improvement is not as dramatic as that previously seen.

Fig. 6  Under the MS model setting as in Figure 5, we fix n = 500 , m = 100 , and we apply Naive Padding 
(left panel) and Centered Padding (right panel) in (G,H) ∈ (M10

100,M
10
500) . We plot the matching accuracy 

(averaged over 100 Monte Carlo replicates) obtained by M-FAQ (with 10 seeds) versus cb

Fig. 7  Under the MS model setting as in Figure 5, we fix m = 100 and we apply Naive Padding (left panel) 
and Centered Padding (right panel) in (G,H) ∈ (M10

n ,M10
100) where n varies. We plot the matching accuracy 

(averaged over 100 Monte Carlo replicates) obtained by M-FAQ (with 10 seeds) versus cb
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Experiments
Our previous simulation explored the effect on multiple channels on multiplex match-
ability. We next consider the performance of our multiplex matched filter approach in 
detecting a hidden template in a multilayer social media network from Magnani and 
Rossi (2011). The background network contains 3 aligned channels representing user 
activity in FriendFeed, Twitter and Youtube (where the Youtube and Twitter channels 
were generated via FriendFeed which aggregates user information across these plat-
forms). In total, there are 6,  407 unique vertices across the three channels, with the 
channel specific networks satisfying: 

Channel Vertices Edges

FriendFeed 5,540 31,921

Twitter 5,702 42,327

YouTube 663 614

 Given a 35 vertex multiplex template g (embedded into the background) created by 
Pacific Northwest National Laboratories for the DARPA MAA program, we ran our 
M-GMMF algorithm to attempt to recover the embedded template in h ; results are sum-
marized below.

In our first experiment, we first considered running “cold-start” M-GMMF; that is, no 
prior information (in the form of seeds, hard or soft) is utilized in the algorithm. We 
consider padding the graph via the Naive Padding and Centered Padding regimes of 
“The multiplex graph matching distance” section, and for each padding regime, we ran 
M-GMMF with N = 100 random restarts. Numeric results are summarized in Table  1 
(with the best recovered background signals also plotted in Figure  8). While the best 
recovered signal in the Naive Padding regime captures all but two template edges, this is 
at the expense of many extraneous background edges that do not appear in the template. 
On the other hand, the Centered Padding regime recovers most of the template edges 
(across the three channels) with minimal extra template edges in the recovered signal.

The M-FAQ algorithmic primitive used in our implementation of M-GMMF is most 
effective when it can leverage a priori available matching data in the form of seeded ver-
tices. Seeds can either come in the form of hard seeds (a priori known 1–to–1 matches; 
here that would translate to template vertices whose exact match is known in the back-
ground) or soft seeds (where a soft seeded vertex v in g has an a priori known distribu-
tion over possible matches in h ; here this would translate into template vertices with 

Table 1  For each padding regime, we provide the % of template edges present in the recovered 
background signal in the best random restart

For example, the best recovered background signal in the Centered Padding regime recovered 86.67% of the edges in 
template channel 1, and 85.07% of the edges in template channel 2, and 96.77% of the edges in template channel 3. Here, 
the best performer is the one that recovers the highest average % across the three channels (averaging the % within each 
channel across channels)

Padding regime % recovered in ch. 1 % recovered in ch. 2 % 
recovered 
in ch. 3

Centered 86.67 85.07 96.77

Naive 98.33 100 96.77
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a list of candidate matches in the background). While hard seeds are costly and often 
unavailable in practice, there are many scalable procedures in the literature for automati-
cally generating soft seed matches. Here, we use as a soft-seeding the output of Moor-
man et al. (2018, 2021), a filtering approach for finding all subgraphs of the background 
network homomorphic to the template.

For each node in the template, the output of Moorman et al. (2018, 2021) produces 
a multiset of candidate matches in the background, where each candidate match cor-
responds to a template copy contained in the background as a subgraph (not necessarily 
as an induced subgraph). We convert the candidate matches into probabilities by simply 
converting the multiset to a count vector and normalizing the count vector to sum to 
1. We then consider the normalized count vectors as rows of a stochastic matrix; this 
stochastic matrix provides M-FAQ with a soft-seeding/initialization which can be used 
to initialize the algorithm. Considering random restarts as perturbations (akin to Step 
2.i of M-GMMF as presented in “Multiplex graph matching matched filters” section) of 
the soft-seeding (conditioned on retaining nonnegative entries), we ran M-GMMF using 
a generalization of the Centered Padding regime, which is defined as follows: For each 
i ∈ [c] , define the weighted adjacency matrices Ăi ∈ R

m×m and B̆i ∈ R
n×n via

Fig. 8  Signal recovered by the best performing random restart in M-GMMF across different Padding regimes. 
As in Table 1, the best performer is the one that recovers the highest average % of the template edges across 
the three channels (averaging the % within each channel across channels). In the left panel, we plot the 
Centered Padding regime and in the right panel the Naive Padding regime. For each centering regime, we 
plot the signal template across the three channels (in the left 3 panels) and the best recovered subgraphs in 
the background (in the right 3 panels)
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where we vary w from 0 to 1. Note that w = 0 yields Naive Padding, and w = 1 yields 
Centered Padding. Optimal performance in the present experiment was achieved with 
w = 0.25 , in which case N = 4000 random restarts yielded an induced subgraph in the 
background that was exactly isomorphic to the template network.

M‑GMMF on semantic property graphs

For our second example, we consider the semantic property graph released by Pacific 
Northwest National Laboratories as part of the MAA-AIDA Data Release V2.1.2 via 
the DARPA MAA program (Ebsch 2020). In this dataset, the background network is 
a knowledge graph constructed from a variety of documents (e.g., newspaper articles) 
by DARPA’s AIDA program. At a high level, the graph is encoding the real-world rela-
tionships between a variety of entities (people, locations, major events, etc.) that can be 
automatically extracted from a variety of data sources. Practically, the graph is a richly 
featured network on the order of 100K nodes. Node properties/features include entity 
name; rdf:type (corresponding to a structured ontology of types defined by the AIDA 
ontology); textValue; linkTarget; start time; among others. Edge properties/features 
include edge name/id; rdf:type; argument (values given to edges of a given rdf:type); 
among others. Note that many nodes and edges do not have values for all properties. 
The provided templates, themselves richly featured knowledge graphs, are of the order 
of 10s of vertices (ranging in size from 33 nodes/40 edges to 11 nodes/11 edges); for each 
of three template types, there are 6 variants with varying error levels, including one vari-
ant (version “A”) that is perfectly/isomorphically embedded into the background.

The principle challenge in applying our M-GMMF methodology on such richly featured 
data is sensibly incorporating the rich, structured features into our multiplex network 
framework. Towards this end, we adopted the following approach. We incorporated 
the vertex features/properties into a penalty term in the objective function, encoding 
the features into a vertex–to–vertex similarity matrix S (this is possible provided that 
similarities are easily computed within each vertex covariate, which is the case here). 
Edge features were used to divide the knowledge graph into multiple overlapping chan-
nels in a multiplex network. One channel was assigned to each unique (E(rdf:type), 
E(argument)) pair in the template, and we divided background edges amongst 
the channels via a measure of similarity between the edge’s (E(rdf:type), 
E(argument)) pair and that of the channel. Note that this yields many, often over-
lapping, channels in the multiplex graph. Spatiotemporal constraints can be coded into 
separate channels in the multiplex graph, one channel per spatiotemporal constraint 
in the template. Each constraint (e.g., action A must occur between x and y days after 
action B) yields an edge filter, with only edges that could potentially satisfy the constraint 
being added to that constraint channel. Lastly, numeric edge features are used to further 

(11)

⌣

Ai(u, v) =





1 if u, v ∈ V (Hi), and {u, v} ∈ E(Hi);
−w if u, v ∈ V (Hi), and {u, v} /∈ E(Hi);
0 if u or v ∈ [m]\V (Hi);

⌣

Bi(u, v) =





1 if u, v ∈ V (Gi), and {u, v} ∈ E(Gi);
−1 if u, v ∈ V (Gi), and {u, v} ∈ E(Gi);
0 if u or v ∈ [n]\V (Gi);
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weight the edges in the background/template. The final objective function we used in 
our M-GMMF approach was then of the form

Performance of M-GMMF and other competing approaches (as scored by the GED scor-
ing metric of Ebsch 2020) are presented in Figure 9 (Note that the filtering approach of 
Tu et al., as presented in Tu et al. (2020), also present a method that uses the clean “A” 
template for training, and achieves essentially the best score for all template versions; we 
did not include those scores for comparison in our figure).

Overall, the challenge was to detect noisy matches to each of 18 provided templates: 
3 distinct template types, each with 6 variants encompassing different amounts of tem-
plate noise; see Figure 10, for a pair of example templates and M-GMMF recovered signals 
here. One template of each type was constructed to have a perfect isomorphic match in 

(12)arg max
P∈�n

c∑

i=1

tr((Âi ⊕ 0n−m)PB̂iP
T )+ tr(SPT ).

Fig. 9  Graph edit distance score from Ebsch (2020) for the best recovered signal for the filter algorithms of 
Tu et al. (2020) (green) and Kopylov et al. (2020) (gray); G-finder of Liu et al. (2019) (blue; as implemented in 
Kopylov et al. (2020)) and M-GMMF (red; with 1000 random restarts) for each of the 18 templates

Fig. 10  Example of template knowledge graph and recovered signal in the knowledge graph. In each 
graph, different colored edges represent different E(rdf:types), with the dotted versus solid edges 
representing different E(arguments) 
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the background, while the noisy templates were designed for inexact/fuzzy/noisy match-
ing. All approaches identified the isomorphic match in the background for all three tem-
plate types version “A”, while our approach achieved its best relative results on the larger, 
more complex template (Template 1). For Template 1, we obtained the best (or nearly 
the best) score on 3/6 versions; see Table 2 for detail.

Templates 2 and 3 were essentially tree-like structures (nodes/edges is 13/15 and 11/11 
respectively), and we suspect that the filtering-based approaches of Tu et al. (2020) and 
Kopylov et al. (2020) are more suitable to this problem type. Indeed, M-GMMF is designed 
for larger/more complex templates, though our performance (especially compared to the 
non-filtering G-Finder of Liu et al. 2019) is encouraging on these instantiations, espe-
cially on version “B” of the templates.

Discussion
In this paper, we presented a framework for finding noisy copies of a multiplex template 
in a large multiplex background network. Our strategy, which extends (Sussman et al. 
2019) to the multiplex setting, uses a novel formulation of multiplex graph matching 
combined with multiple random restarts to search the background for locally optimal 
matches to the template. The effectiveness of the resulting algorithm, named M-GMMF, is 
further demonstrated both theoretically (in a novel multiplex correlated network frame-
work) and empirically on both real and simulated data sets. To formalize the M-GMMF 
approach, we provide a very natural extension of the classical graph matching problem 
to multiplex networks that is easily amended to matching graphs of different orders 
(both across networks and channels). We also extend the Frank-Wolfe based FAQ algo-
rithm of Vogelstein et al. (2014) to the multiplex setting.

There are a number of extensions and open questions that arose during the course of 
this work. Natural theoretic extensions include lifting Theorems 1 and 2 to non-edge 
independent models (note that certain localized dependencies amongst edges can easily 
be handled in the McDiarmind proof framework, while globally dependent errors pro-
vide a more significant challenge); formulating the analogues of Theorems 1 and 2 in the 
weighted, attributed graph settings; and considering the theoretic properties of various 
continuous relaxations of the multiplex GM problem akin to Aflalo et al. (2015), Lyzinski 
et  al. (2015), Bento and Ioannidis (2019). A key methodological question in multiplex 
graph matching was touched upon in Remark 3; indeed, we expect the question of how 
to weight the matching across channels to be essential when applying these methods to 
topologically diverse and weighted networks. If the order of magnitude of edge weights 
vary across channel, then it is easy to see a GM algorithm aligning channels with large 
edge weights at the expense of the alignment accuracy in other channels. Judiciously 

Table 2  Performance on Template 1

Method T1A T1B T1C T1D T1E T1F

M-GMMF 0 0.24 6.28 4.35 5.17 3.12

G-Finder 0 7.38 18.81 0.76 2.25 14.96

2020) 0 0.347 8.783 15.47 19.194 13.596

2020) 0 1.17 3.47 2.58 3.85 2.94
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choosing (�i) would allow for the signal in channels with smaller edge weights to be bet-
ter leveraged towards a better overall matching.

While the largest network we consider in this work has ≈ 100, 000 vertices, scaling 
this approach to very large networks is essential. By utilizing efficient data structures for 
sparse, low-rank matrices and a clever implementation of the LAP subroutine of M-FAQ 
(step 2.ii. in the presented M-GMMF algorithm), we are able to match O(10) vertex tem-
plates to 20K-vertex background graphs in < 10s per restart with our base M-GMMF code 
(available in iGraphMatch) implemented in R on a standard laptop. Further work to 
scale M-GMMF by leveraging both efficient data structures and scalable approximate LAP 
solvers is currently underway.

Appendix
Herein we collect details of our auxiliary algorithms and proofs of our main results.

Proof of Theorem 1

For each m < n , denote the set of permutations in �n that permute exactly k labels of 
[m] by �n,m,k . For each P ∈ �n (with associated permutation σp ), define

and for each i ∈ [c] , define

Let the set of the c1 low-noise channels ( q < 1/2 ) be denoted C1 , and the set of the c3 
high-noise channels ( q > 1/2 ) be denoted C3 . If there exists an n1 > 0 such that for all 
n > n1 , we have that for all k ∈ {1, 2, 3, . . . ,m(n)} and all P ∈ �n,m,k,

then letting Â and B̂ be the padded, centered adjacency matrices of G and H respectively 
(the errorful g and h ), for n > n = max(n0, n1) we have that

(see “Appendix 1.1.1” for proof of this bound).
While we expect Eq. (14) to hold in more general settings, below we show it holds with 

high probability in the present Erdős-Rényi setting with our given theorem assumptions. 
Here, �(i,2)

P  is empty, and a simple application of McDiarmid’s inequality yields that for a 
fixed P ∈ �n,m,k , we have

(13)�P =
{
{i, j} ∈

(
[m]
2

)
s.t. {i, j} �= {σp(i), σp(j)}

}
,

�
(i,1)
P = { {j, ℓ} ∈ �P s.t. 0 �= Ĉi(j, ℓ) �= D̂i(σp(j), σp(ℓ)) �= 0};

�
(i,2)
P = { {j, ℓ} ∈ �P s.t. 0 �= Ĉi(j, ℓ) �= D̂i(σp(j), σp(ℓ)) = 0}.

(14)
∑

i∈C1∪C3

(
2|�(i,1)

P | + |�(i,2)
P |

)
(1− 2si)(1− 2qi) ≥ k

√
672m1+αc

β
,

(15)P

(
arg min
P∈�n

c∑

i=1

�(Âi ⊕ 0n−m)P − PB̂i�2F �⊂ Pm,n

)
≤ 2n−2,
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with probability at least

Indeed, if each hi ∼ ER(n, p), then

so that E(�(i,1)
P ) = 2p(1− p)|�P | . Also, �(i,1)

P  is then a function of at most 2|�P | inde-
pendent Bernoulli random variables, and changing the value of any one these can change 
the value of �(i,1)

P  by at most 2. McDiarmid’s inequality then yields the desired result

by setting t = p(1− p)|�P |.
Note that if m > 6 , then as P ∈ �n,m,k , mk/3 ≤ |�P | ≤ mk . Therefore, if m > 6 then 

for n sufficiently large, we have that with probability at least (letting ξ in Assumption (5) 
be appropriately defined)

the event

occurs. Now, we have that

where the second inequality holds by assumption. We see then that Eq. (14) holds with 
high probability with an appropriate choice of γ (independent of k).

To finish the proof, we proceed as follows. For each P ∈ �n define

Let the equivalence relation “ ∼ ” on �n,m,k be defined via P ∼ Q if there exists a U ∈ Pn,m 
such that PU = Q . Note that if P ∼ Q then

|�(i,1)
P | ∈ ( |�P |p(1− p), 3|�P |p(1− p) ),

(16)1− 2exp

{−2|�P |p2(1− p)2

8

}
.

�
(i,1)
P =

∑

{j,ℓ}∈�P

1{Ĉi(j, ℓ) �= D̂i(σp(j), σp(ℓ))},

(17)P(|�(i,1)
P − E(�

(i,1)
P )| ≥ t) ≤ 2exp

{
− 2t2

8|�P |

}
,

(18)1− 2exp

{−2mkp2(1− p)2

24

}
≥ 1− 2exp

{
−8k log(n)

}
.

{|�(i,1)
P | ∈

[
mkp(1− p)/3, 3mkp(1− p)

]
}

∑

i∈C1∪C3

(
2|�(i,1)

P | + |�(i,2)
P |

)
(1− 2si)(1− 2qi) >

4

3
mkp(1− p)(1/2− s)(1/2− q)(c1 − c3)

≥ 4

3
mk(1− p)γ

√
mα−1c

= 4

3
k(1− p)γ

√
m1+αc

(19)XP : = 1

4

[
c∑

i=1

�(Âi ⊕ 0n−m)P − PB̂i�2F −
c∑

i=1

�(Âi ⊕ 0n−m)− B̂i�2F

]
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and so XP = XQ . Let �∗
n,m,k be a fixed (but arbitrarily chosen) set composed of one mem-

ber of each equivalence class according to “ ∼ ,” and note that |�∗
n,m,k | is at most m2kn2k . 

From Eq. (18), for n > n2 we have that for each P ∈ �∗
n,m,k,

Denote the event bound in Eq. (20) via En,P . For n > max(n2, n0) , we then have

as desired.

Proof of Eq. (15)

Recall, for each P ∈ �n , we defined

Assuming that P ∈ �n,m,k , then |�P | ≤ mk . Note that XP is a function of (at most) 3c|�P | 
independent Bernoulli random variables, and changing any one of these Bernoulli ran-
dom variables can change the value of XP by at most 8. McDiarmid’s inequality (McDiar-
mid 1989) then implies that for any t ≥ 0,

Note that if Ĉi(j, k), D̂i(j, k), D̂i(σp(j), σp(k)) ∈ {1,−1} then

c∑

i=1

�(Âi ⊕ 0n−m)P − PB̂i�2F =
c∑

i=1

�(Âi ⊕ 0n−m)Q − QB̂i�2F ,

(20)
P

( c⋃

i=1

{
|�(i,1)

P | /∈
[
mkp(1− p)/3, 3mkp(1− p)

]})

≤ 2exp
{
−8k log n+ log c

}
≤ 2exp

{
−7k log n

}
.

P

(
arg min
P∈�n

c∑

i=1

∥∥∥
(
Âi ⊕ 0n−m

)
P − PB̂i

∥∥∥
2

F
�⊂ Pm,n

)
= P

(
∃P /∈ Pm,n s.t. XP ≤ 0

)

≤
m∑

k=1

∑

P∈�∗
n,m,k

P(XP ≤ 0)

≤
m∑

k=1

∑

P∈�∗
n,m,k

P
(∣∣XP − E(Xp)

∣∣ ≥ E(Xp)
∣∣εcn,P

)
+ P(εn,P)

≤
m∑

k=1

∑

P∈�∗
n,m,k

P
(∣∣XP − E(Xp)

∣∣ ≥ E(Xp)
∣∣εcn,P

)

︸ ︷︷ ︸
≤2n−2 by the proof in App. 1.1.1

+2

m∑

k=1

exp
(
−7k log n+ 2k log n+ 2k log m

)

≤ 4n−2,

XP : = 1

4

[
c∑

i=1

�(Âi ⊕ 0n−m)− PB̂iP
T�2F −

c∑

i=1

�(Âi ⊕ 0n−m)− B̂i�2F

]

=
c∑

i=1

1

2

(
tr((Âi ⊕ 0n−m)B̂i)− tr((Âi ⊕ 0n−m)PB̂iP

T )

)

=
c∑

i=1

∑

{j,ℓ}∈�P

Âi(j, ℓ)
[
B̂i(j, ℓ)− B̂i(σp(j), σp(ℓ))

]

(21)P(|XP − E(XP)| ≥ t) ≤ 2exp

{
− 2t2

192cmk

}
.
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Define

so that |�(i,0)
P | = |�(i,1)

P | + |�(i,2)
P | + |�(i,3)

P | . We then have

Note that if P,Q ∈ �n,m,k , then XP = XQ if σp(j) = σq(j) for all j ∈ [m] ; i.e., if there 
exists a U ∈ Pm,n such that PU = Q . Note that this defines an equivalence relation 
on P,Q ∈ �n,m,k which we will denote by “ ∼ ,” and let �∗

n,m,k be a fixed (but arbitrar-
ily chosen) set composed of one member of each equivalence class according to “ ∼ .” 
Note that |�∗

n,m,k | is at most m2kn2k . Letting t = E(XP) in Eq. (21), we have that if 
n > n = max(n0, n1)

as desired.

Proof of Theorem 2

For each P ∈ �(n) , define

E Âi(j, ℓ)B̂i(j, ℓ) = Ĉi(j, ℓ)D̂i(j, ℓ) (1− 2si)(1− 2qi) = Ĉi(j, ℓ)
2 (1− 2si)(1− 2qi)

E Âi(j, ℓ)B̂i(σp(j), σp(ℓ)) = Ĉi(j, ℓ)D̂i(σp(j), σp(ℓ)) (1− 2si)(1− 2qi).

�
(i,0)
P = { {j, ℓ} ∈ �P s.t. Ĉi(j, ℓ) �= 0};

�
(i,1)
P = { {j, ℓ} ∈ �

(i,0)
P s.t. 0 �= Ĉi(j, ℓ) �= D̂i(σp(j), σp(ℓ)) �= 0};

�
(i,2)
P = { {j, ℓ} ∈ �

(i,0)
P s.t. 0 �= Ĉi(j, ℓ) �= D̂i(σp(j), σp(ℓ)) = 0};

�
(i,3)
P = { {j, ℓ} ∈ �

(i,0)
P s.t. 0 �= Ĉi(j, ℓ) = D̂i(σp(j), σp(ℓ))};

(22)

E(XP) =
c∑

i=1

[
|�(i,0)

P | (1− 2si)(1− 2qi)− |�(i,3)
P | (1− 2si)(1− 2qi)

+ |�(i,1)
P | (1− 2si)(1− 2qi)

]

=
c∑

i=1

(
2|�(i,1)

P | + |�(i,2)
P |

)
(1− 2si)(1− 2qi).

P(∃P /∈ Pm,n s.t. XP ≤ 0) ≤
m∑

k=1

∑

P∈�∗
n,m,k

P(XP ≤ 0)

≤
m∑

k=1

∑

P∈�∗
n,m,k

P(|XP − E(Xp)| ≥ E(XP))

≤
m∑

k=1

∑

P∈�∗
n,m,k

2exp

{
−1344m1+αck2

192βcmk

}

≤
m∑

k=1

∑

P∈�∗
n,m,k

exp

{
−7mαk

β

}

≤
m∑

k=1

2exp
{
−7k log n+ 2k log n+ 2k logm

}

≤ 2exp
{
−2 log n

}
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where �P is defined as in Eq. (13). Suppose that there exists an n1 > 0 such that for all 
n > n1 , we have that for all k ∈ [m = m(n)] and all P ∈ �n,m,k (where γ is an appropri-
ately chosen constant)

then

where the proof of the bound in Eq. (24) uses “Appendix 1.3” and then the proof follows 
mutatis mutandis from the proof in “Appendix 1.1.1”.

In the present ER setting, as in Eq. (16), we then have that for j = 1, 2,

with probability at least

Note that if m > 6 , then mk/3 ≤ |�P | ≤ mk , so that with probability at least 
1− 4e−8 log n (this lower bounds Eq. (25) for judiciously chosen ξ in Eq. (7),

for both j = 1, 2 . To show Eq. (23) holds here with sufficiently high probability, note that 
the above bounds yield

where the last inequality follows from Eq. (8). Proving Eq. (9) then follows mutatis mtu-
andis to the proof of the analogue in Theorem 1 (which is spelled out in detail in “Appen-
dix 1.1”), and details are omitted.

�
(1)
P := {{j, ℓ} ∈ �P s.t. G(j, ℓ) = 1;H(σp(j), σp(ℓ)) = 0};

�
(2)
P := {{j, ℓ} ∈ �P s.t. G(j, ℓ) = 0;H(σp(j), σp(ℓ)) = 1},

(23)

|�(1)
P |

∑

i

2(1− 2si)(1− ri − ti)+ |�(2)
P |

∑

i

2(1− 2qi)(1− ri − ti) ≥ k

√
γm1+αc

β
,

(24)P

(
arg min
P∈�n

c∑

i=1

�(Âi ⊕ 0n−m)P − PB̂i�2F �⊂ Pm,n

)
= 2n−2;

|�(j)
P | ∈

(
1

2
|�P |p(1− p),

3

2
|�P |p(1− p)

)
,

(25)1− 2exp

{−2|�P |p2(1− p)2

32

}

|�(j)
P | ∈ (1/6, 3/2) ·mkp(1− p).

∣∣∣�(1)
P

∣∣∣
∑

i

2(1− 2si)(1− ri − ti)+
∣∣∣�(2)

P

∣∣∣
∣∣∣∣∣
∑

i

2(1− 2qi)(1− ri − ti)

≥ 2

3
mkp(1− p)

∑

i

(1− si − qi)(1− ri − ti)

= 2

3
mkp(1− p)(c3 + c4 − c1 − c2)e1e2

≥ 2γ

3
k(1− p)

√
m1+αc
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Proof details for Eq. (24)

For P ∈ �n , define

For P ∈ �n,m,k , we then have that XP defined in Eq. (19) satisfies

Showing that this yields the desired bound combines Eq. (23) with the (nearly identical) 
proof technique of “Appendix 1.1.1”; details are omitted.
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