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Introduction
There are several ways to find research resources, but Google Scholar is one of the most 
convenient tools for scholars working in various fields. In addition to the millions of 
documents indexed in Google Scholar, many authors have public profiles on this plat-
form that include their publications, the number of citations of their work for each year, 
and their h-index. It is undeniable that the information provided by Google Scholar ena-
bles researchers to measure the impact of their studies and others’ scholarly work in the 
scientific community.

An interesting feature of Google Scholar is a list of potential co-authors suggested by 
the platform to the users based on their joint scholarly work with other users. Users can 
select co-authors from the list and add them to their profiles. In this paper, we focus on 
the network of co-authors, manually added by the Google Scholar users. In this network, 
which is named Manually Added Co-authorship Network (MACN), nodes are authors 
with a public profile on Google Scholar, and edges represent the co-authorship relation-
ships that they have manually added to their profile.

In prevalent co-authorship networks, the co-authorship relation between nodes is 
extracted from the author list of the papers. In other words, whenever the names of two 
authors appear on a paper, an edge is added between their corresponding nodes. These 
networks are usually undirected and weighted (weights indicate the number of papers the 
authors have published together). The main limitation of such networks is that in many 
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cases, there are authors whose names appear in the author list of a paper, but they do not 
have any direct research collaboration, and they may not even regard each other as co-
authors. For example, there are papers with more than 5000 authors (Lobo 2021) who are 
unlikely to know all of their co-authors. In contrast, in MACN, the authors voluntarily add 
their research collaborators from a suggested list which addresses the raised issue. As a 
result, MACN is much sparser than an ordinary co-authorship network, and unlike the lat-
ter, it is directed and unweighted.

The inspiring questions for our study are: (i) what is the motivation of people in adding 
their co-authors manually? (ii) who adds more collaborators? (iii) Whom do authors prefer 
to add?

Our contributions can be summarized as follows: 

1.	 We collected a dataset of 496486 Google Scholar public profiles and enriched this 
data by assigning standard fields of study to 99.81% of them using different cluster-
ing-based and community-based approaches.

2.	 We built an MACN using the collected dataset and investigated it by performing 
various analyses, calculating, and interpreting several metrics on this network.

3.	 We depicted the relationship between the number of authors, averages of citation 
count and h-index at each community of the MACN to check whether they are lin-
early correlated or not.

4.	 We computed assortativity coefficients of the MACN to find the attributes in which 
the similarity leads authors to collaborate.

5.	 We made an exponential random graph model (ERGM) based on the attributes of 
the nodes of the MACN to find the features that are statistically significant in form-
ing the network edges.

6.	 We compared the MACN with an ordinary co-authorship network of Google Scholar 
to see whether they follow similar structures or not.

7.	 We built the authors’ fields of interest network (FIN) and their affiliated institute net-
work (AIN) using the dataset and calculated centrality metrics such as PageRank, 
betweenness, and closeness for FIN to find the most centric fields of interest.

8.	 We analyzed the distributions of club-coefficient to discover the trend by which dis-
tinguished authors select their co-authors.

9.	 We investigated the authors’ citation distribution in four universities with the highest 
number of authors in our dataset and defined a new measure of citations for insti-
tutes that captures authors’ position in their research area and can be useful in rank-
ing the universities in each scientific field.

The remainder of this paper is structured as follows.  “Related work” section provides an 
overview of previous related work. In “Methodology” section we describe the dataset and 
present the measures and methods used in this study. Then, we present and discuss our 
results in “Results” section. Finally “Conclusion” section concludes the paper.
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Related work
Various studies have been conducted on online bibliographic platforms such as 
ResearchGate, Microsoft Academic Search Service, and Clarivate’s Web of Science. 
Some of these studies mainly concentrated on the yearly evolution of the co-author-
ship graph. Sarigöl et  al. (2014) studied time-evolving collaboration networks and 
citation numbers on Microsoft Academic Search Service that contains fewer docu-
ments and citations than those in Google Scholar (Ortega and Aguillo 2014). Yan 
and Ding (2009) calculated centrality measures on the co-authorship network of the 
Institute for Scientific Information. They found that centrality measures are help-
ful in author ranking as these metrics are strongly correlated with citation counts. 
Also, they measured both article impact and author’s field impact. Higaki et  al. 
(2020) built the co-authorship network from publications indexed in Clarivate’s 
Web of Science and compared it with the equivalent Barabasi Model. They found 
that the co-authorship network is similar to scale-free networks. Some of the previ-
ous studies focused on specific research areas to build the co-authorship network. 
For instance, Newman (2004) has constructed collaboration networks between 
scientists in physics, biomedical engineering, and computer science. Some studies 
tried to assess gender parity in the co-authorship network. Bravo-Hermsdorff et al. 
(2019) discussed the relevance of gender in scientific collaboration patterns in the 
Institute for Operations Research and the Management Sciences (INFORMS). Find-
ings of this study showed that the INFORMS society was far from gender parity in 
many crucial local statistics such as the number of publications, homophily, and 
author order.

There are few studies on Google Scholar. Chen et al. (2017) built the co-author-
ship network of Google Scholar based on the list of authors appearing in papers 
and calculated several metrics such as PageRank, clustering coefficient, and degree. 
They also explored the correlation between the co-authorship network metrics and 
citation metrics. They found that there is a strong correlation between PageRank 
and h-index. Ortega and Aguillo (2013) performed country and institutional level 
analysis on Google Scholar to find the dominant country in the research area. Tang 
et  al. (2021) concentrated on misconfigured author profiles detection on Google 
Scholar and used a method for labeling these profiles. To the best of our knowl-
edge, there is no analysis of the manually added co-authorship network. Moreover, 
no study has been conducted on the fields of interest graph obtained from Google 
Scholar.

Methodology
In this section, we introduce the dataset that we collected for this study. We also define 
networks that are constructed using the dataset, and discuss the metrics and techniques 
which are used for analyzing these networks.
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Dataset

We developed a web crawler in Python for collecting the data used in this study 
directly from Google Scholar. First, we created a list of 65 universities in different 
countries and found their pages on Google Scholar. Then, we crawled the profiles of 
authors on the first page of each university, i.e., the most cited researchers of these 
institutes. Finally, we collected information about the co-authors of these authors. 
The data collection is stopped on March 31, 2021. Moreover, we added information 
about the authors’ gender and country based on their names using the NameToGAN 
tool (https://​quecst.​qcri.​org/​tool/​Name2​GAN).

To enrich our dataset, we determined the standard field of interest for each author 
in our dataset from a list of 39 general fields available in Table 6. We used a 3-step 
approach for this goal. In the first step, we found a field of interest for authors using 
the name of the journals where they had published their work. We used Scimago 
Journal & Country Ranking (SJR) (https://​www.​scima​gojr.​com) to map each journal 
name to one of the 39 general fields of interest. Using this method, 80.83% (401311 
out of 496486) of users were assigned a field of interest. In the second step, we 
used non-general fields of interest that authors have added to their profiles. There 
are 221759 different non-general fields of interest in our dataset. We used Mini-
Batch K-Means clustering (Sculley 2010) to cluster them into 39 standard fields of 
interest. Then we assigned a standard field of interest to authors by considering the 
clusters of the majority of their unstandardized fields of interest. By this approach, 
we assigned the standard fields of interest to 77.78% (74032 out of 95175) of the 
remaining users. In the third step, we used the community structure of the MACN. 
Using the Infomap community detection algorithm (Rosvall and Bergstrom 2008) 
we found communities in the MACN. Then, we considered the most frequent field 
of interest of users in each community as the field of interest for all the users in that 
community. By this method, we were able to assign the standard fields of interest to 
99.01% (94234 out of 95175) of the remaining users. After combining the results of 
these three steps, 99.81% (495545 out of 496486) of the users got a standard field of 
interest. Table 1 provides an overview of the features available in our dataset.

Table 1  The dataset features and their explanations

Feature Explanation

Author URL The URL linking us to the author’s page on Google Scholar

Name The author’s full name

Institute URL The URL linking us to the author’s affiliation page on Google Scholar

Citation Count The author’s number of citations

h-index The author’s h-index

Co-author URLs The URLs linking the author’s profile to the co-authors’ profiles on Google Scholar

Fields of Interest The fields of interest added by the author

Publisher Names The names of journals/conferences where the author has published papers

Gender The author’s gender

Country The author’s country

https://quecst.qcri.org/tool/Name2GAN
https://www.scimagojr.com
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Manually added co‑authorship network

We built a directed unweighted manually added co-authorship network (MACN) 
using our dataset. In this network, the set of nodes represents authors with pub-
lic profiles on Google Scholar, and an edge from node u to node v means that u has 
added v as a co-author into her/his profile.

Field of interest network

We built a directed weighted network that represents the connections between stand-
ard fields of interest of authors in Google Scholar. In this field of interest network 
(FIN), the set of nodes represents the standard fields of interest of authors according 
to their profile on Google Scholar, and an edge of weight W from node u to node v 
means that there are W added co-authorship relations between authors of field u and 
authors of field v.

Affiliated institute network

We built a directed weighted network that represents the cooperation between insti-
tutes in Google Scholar. In this affiliated institute network (AIN), the set of nodes 
represents the institute of users of Google Scholar, and an edge of weight W from u to 
v means that there are W added co-authorship relations between authors of institute 
u and authors of institute v (Fig. 1).

Metrics

There are various metrics for the quantitative analysis of complex networks. We used 
the most common social network analysis metrics that are meaningful in the context 
of our dataset.

Fig. 1  Networks based on the dataset in Table 2: a MACN, b FIN, c AIN

Table 2  An example of dataset of Google Scholar authors for constructing networks

Author Institute Field of Interest Co-authors

A X CS B

B Y CS A

C Z EE A, B
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Definition 1  Transitivity of a network is defined as the fraction of all possible triangles 
present in the graph (Yang 2013).

Definition 2  Edge reciprocity of a directed network is defined as the ratio of the num-
ber of edges pointing in both directions to the total number of edges in the network 
(Costa et al. 2007).

Definition 3  Modularity measures the strength of division of a network into modules 
and is defined as:

where the sum iterates over all communities c, m is the number of edges, Lc is the num-
ber of intra-community links for community c, and kc is the sum of degrees of the nodes 
in community c (Clauset et al. 2004).

Definition 4  Average clustering coefficient of a network measures the degree to which 
nodes intend to cluster together and is defined as:

where n is the number of nodes in the network and cv is the local clustering coefficient 
for node v (Kaiser 2008).

Definition 5  Assortativity coefficient of a network indicates the tendency of its nodes 
to attach to other nodes that are similar to them. The similarity of two nodes is usually 
measured using a given nodal attribute such as degree (Newman 2003).

Definition 6  Rich-club coefficient of an undirected network reflects the tendency of 
hubs (nodes of a higher degree) to be better connected among themselves than nodes 
with a smaller degree. It is defined as:

where Nk is the number of nodes with degrees larger than k, and Ek is the number of 
edges among those nodes (McAuley et al. 2007).

Definition 7  Betweenness centrality of a node measures how frequently that node lies 
on short paths between other pairs of nodes. It is defined as:

C =
number of triangles× 3

number of connected triples of vertices

Q =

n
∑

c=1

[

Lc

m
−

(

kc

2m

)]

C =
1

n

∑

v∈G

cv

φ(k) =
2Ek

Nk(Nk − 1)
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where σ(i,u, j) is the number of shortest paths between vertices i and j that pass through 
vertex or edge u, σ(i, j) is the total number of shortest paths between i and j, and the sum 
is over all pairs i, j of distinct vertices (Beveridge and Shan 2016).

Definition 8  Closeness centrality of a node is the average distance from the node to all 
other nodes and is defined as:

where d(v, u) is the shortest-path distance between v and u, and n is the number of nodes 
that can reach u (Beveridge and Shan 2016).

Definition 9  Weighted degree centrality of a node is the sum of the weights of the 
edges incident with that node (Beveridge and Shan 2016).

Definition 10  Eigenvector centrality computes the centrality for a node based on the 
centrality of its neighbors. The eigenvector centrality for node i is the i-th element of the 
vector x defined by the equation

where A is the adjacency matrix of graph G with eigenvalue � (Yang 2013).

Definition 11  PageRank of a node in a directed graph computes a ranking of that node 
based on the structure of the incoming links. It is defined as:

where α and β are positive constants and Aij is an element of the adjacency matrix (Page 
et al. 1999).

Methods

In this section, we introduce the methods that are employed in this study.
In this study, we use exponential random graph models (ERGM), which are a family of 

models that are suitable to model the formation of dyads in relational data like the net-
work datasets. They describe the local selection forces that shape the global structure of 
a network (Robins et al. 2007). ERGMs allow us to include and control node attributes, 
structural configurations, and edge attributes.

Bu =

∑

ij

σ(i,u, j)

σ (i, j)

C(u) =
n− 1

∑n−1
v=1 d(v,u)

Ax = �x

xi = α
∑

j

Aij
xj

doutj

+ β
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Mini-Batch K-Means clustering is a variant of the KMeans algorithm that uses mini-
batches to reduce the computation time while still attempting to optimize the same 
objective function (Sculley 2010). We use K-Means clustering for standardizing authors’ 
fields of interest.

Results
This section provides a thorough explanation of the methods used to analyze the data 
and provide some insight into the meaning of our results.

MACN of Google Scholar

Figure 2 shows a sample of the MACN. Each node is selected with a probability that 
is proportional to its degree. The color of a node and its size indicate the author’s 
field of interest and citation count, respectively. We can see that Computer Science 
is the dominant field of interest in this network. This observation confirms the find-
ing of Ortega and Aguillo (2014) that Google Scholar has a strong bias towards the 
Information and Computing sciences.

Analysis of communities

In this section, we perform a bivariate analysis of communities’ attributes for the 
MACN. As mentioned earlier, we used the Infomap community detection algorithm 
(Rosvall and Bergstrom 2008) to detect communities for the MACN. For each com-
munity of the MACN, we calculated attributes such as the size of the community 

Fig. 2  A sampled subgraph of the MACN. The color of a node indicates the author’s field of interest and its 
size is proportional to the author’s citation count
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(number of authors in that community), mean citation count, and mean h-index. 
The relationships between these attributes is illustrated in Fig.  3. We applied the 
logarithm transformation to all three variables because the distribution of commu-
nity size is right-skewed. The correlation method that we used in this analysis was 
Pearson correlation.

As it is illustrated in Fig. 3, there is a strong positive linear relationship between 
mean citation count and mean h-index of communities. Our finding confirms the 
result of Yong (2014), where the authors argued that the h-index is approximately 
equal to 0.54 times the square root of citation count for typical scientists. How-
ever, the correlations between the community size and the rest of the variables 
are weak.

Fig. 3  Bivariate relationships between communities’ attributes

Table 3  Assortativity coefficients for different attributes in the MACN

Attribute Assortativity 
coefficient

Field of interest 0.525

h-index 0.224

Country 0.220

Institute 0.193

Citation count 0.162

Gender 0.095

Node degree 0.088
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Interpretation of assortativity coefficients

One of the important metrics usually calculated on social networks is assortativity. This 
metric shows whether nodes tend to communicate with other nodes which are similar 
to them or not. In this section, we calculate assortativity based on different measures 
of similarity (using various attributes) for the MACN. You can see the result in Table 3. 
Based on the results, all the assortativity coefficients are positive. A positive value of 
assortativity for a similarity measure based on an attribute indicates a tendency between 
nodes (authors) with a similar value for that attribute to make a connection (add each 
other as a co-author). Due to the positive value for the h-index attribute in Table 3, it 
is more probable that two people from the same field add each other as co-authors and 
form an edge in the MACN.

As it can be seen, the highest value of this metric is for the field of interest of authors. 
Thus, we can deduce that authors with the same field of interest tend more to collabo-
rate. Additionally, attributes such as country, institute, and citation count have also rel-
atively large positive assortativity values in this network. Therefore, the users that are 
co-authors based on the MACN are more probable to be from the same country, from 
the same institute, or to have close citation counts. Besides, gender and node degree 
have small assortativity coefficients; thus, these attributes do not affect the connection 
between nodes in the MACN.

Interpretation of ERGM coefficients

In this section, we calculated ERGM for the MACN. Table  4 shows the result of this 
study. The coefficient for the Edges term is negative, indicating that the density of the 
network is below 50%. A negative Edges coefficient is a typical feature of an observed 

Table 4  Coefficients for ERGM of the MACN

Factor Estimate Standard error p value

Edges − 3.871 0.103 < 0.01***

Field of interest 2.744 0.070 < 0.01***

Country 1.187 0.078 < 0.01***

Institute 4.442 0.090 < 0.01***

Gender 1.265 0.074 < 0.01***

Citation count − 0.012 0.002 < 0.01***

h-index 0.384 0.023 < 0.01***

Table 5  Structural metrics of the MACN

Metric Measurement

Reciprocity 0.311

Clustering coefficient 0.188

Average shortest path length 6.384
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network; very few observed networks have a density of 0.5 or higher. Most network 
models will contain negative Edges terms (Harris 2018).

All estimates are statistically significant. Significant positive coefficients for attributes 
such as country show that two users with the same value for these attributes are more 
likely to be connected. In other words, they are more likely to co-author a paper. A sig-
nificant negative coefficient for citation count means that two users with different values 
for this metric are more likely to be connected.

We should also note that the significance of the gender attribute might be due to our 
unbalanced dataset, in which most users (70.10%) are male.

Interpretation of structural characteristics

We investigated the structural characteristics of the MACN using reciprocity, clustering 
coefficient, and average shortest path length. Table 5 represents the values of these met-
rics. The value of edge reciprocity shows that only 31.10% of the edges in the MACN are 
bidirectional. Therefore, we can observe that many authors do not tend to add all of their 
co-authors to their profiles. For all unidirectional edges in the MACN, we calculated 
the difference between the endpoints (authors)’ h-index (the h-index of head minus the 
h-index of tail). The average of these values was 2.302, a large positive number, which 

Fig. 4  The field of interest network. The color of a node indicates its community. The size of a node 
corresponds to its PageRank value, and the size of its label represents its betweenness centrality. An edge’s 
thickness shows its weight
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indicates that users usually tend to add co-authors whose h-index are higher than their 
h-index, i.e. more well-known researchers.

We considered the largest weakly connected component of the MACN to calculate 
clustering coefficient and average shortest path length. Chen et  al. (2017) computed 
these two metrics for the largest connected component of the co-authorship network 
of Google Scholar constructed from the author list of papers. Based on their results, the 
value of the clustering coefficient was 0.30 and the value of the average shortest path 
length was 5.96. As you can see in Table 5, these values are different for the MACN. The 
lower average clustering coefficient for the MACN means that there are more weak ties 
in this network compared to the ordinary network. In other words, the probability that 
the co-authors of a user collaborate is less than that of the ordinary network. In addi-
tion, based on the higher value of the average shortest path in the MACN, more steps 
are needed to get from a randomly chosen author to another. This result is in agreement 
with our previous finding that the MACN is not a well-connected network.

Centrality metrics of the FIN

Using the disparity filter algorithm (Serrano et al. 2009) as a sparsification technique, we 
reduced the density of the FIN from 0.947 to 0.639 in order to remove edges with low 
weight and make the values of centrality metrics more meaningful. Then, we calculated 
centrality metrics to find the most critical (or centric) fields of interest in the FIN. Since 
there are numerous centrality measures, we calculated five of them that are more mean-
ingful in this context. Figure 4 shows an overview of the field of interest network. The 
size of a node and the size of its label represent the value of its PageRank and between-
ness, respectively. The nodes are colored based on their community which is detected 
using the Louvain community detection algorithm (Blondel et al. 2008).

Additionally, values of calculated centrality metrics for the top twelve central fields of 
interest can be seen in Fig. 5. According to this figure, the PageRank works almost the 
same as the weighted degree centrality for this network.

Fig. 5  Centrality measures for the top twelve central nodes of the field of interest graph. Larger values 
correspond to greater importance. Numbers in the bars give the rankings of these fields of interest
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This led us to analyze other centrality metrics which have a more global view of the 
graph. For this goal, we considered closeness and betweenness centralities. Ordering 
for betweenness centrality is also different from the ordering of other metrics. However, 
Computer Science (CS) keeps its rank as the first.

The eigenvector values for our list of most centric fields of interest is about zero, except 
for the faraway Computer Science.

Besides, in this network, three fields of interest stand out consistently: Computer 
Science, Physics and Astronomy, and Agricultural and Biological Sciences. Computer 
Science is a highly interdisciplinary scientific domain having significant overlaps with 

Fig. 6  Rich-club coefficient distribution for subgraphs of the four most centric fields of interest

Fig. 7  Histogram of author’s citation
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mathematics, physics, and even biology (Fiala and Tutoky 2017). CS research combines 
aspects of engineering and natural sciences (in Systems) as well as mathematics (Meyer 
et al. 2009). Our findings confirm the results of Fiala and Tutoky (2017) and Meyer et al. 
(2009).

Fig. 8  Author’s citation distribution in the top four institutes (based on the number of authors)

Fig. 9  A subgraph of the AIN. The color of a node indicates the majority of fields of interest. The size of a 
node corresponds to the number of its authors, and the size of its label corresponds to its MCC-index
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Interpretation of rich‑club coefficients

We studied the subgraphs in which all authors have the same fields of interest, sep-
arately. Then, we marked the degree to which nodes have the highest value for the 
rich-club coefficient. For this goal, we considered the four most centric fields of inter-
est in the FIN to separate their corresponding subgraphs from the MACN. Each of 
the plots in Fig. 6 shows the rich-club coefficient for different possible degrees in each 
of these subgraphs. As it is presented, the highest value for this metric appears in 
high degrees. This confirms the claim of Colizza et al. (2006) that in science, influen-
tial researchers of some research areas tend to form collaborative groups and publish 
papers together.

Introducing a new citation metric

Figure 7 shows the histogram of the distribution of users’ citation counts. As we can see, 
the distribution is right-skewed.

Moreover, we saw the same pattern for this distribution among institutes with 
the highest number of authors. Figure  8 indicates the citation distribution in four 
of these institutes. Therefore, the median can be a robust measure of center for 
this distribution. Based on these observations, we defined a new citation metric to 
evaluate academic institutes. We named this metric MCC-index (MCC stands for 
Median Citation Count) which is the median of the authors’ number of citations of 
an institute.

Figure  9 illustrates an overview of a subgraph of the AIN. The size of a node (an 
institute) and the size of its label represent the number of its authors and its MCC-
index, respectively. Besides, node color indicates the majority of fields of interest of its 
authors.

Conclusion
In this paper, we analyzed the manually added co-authorship network (MACN) of 
Google scholar users. We discussed the effect of various attributes on forming the links 
between users and observed that the field of interest plays the most crucial role. We 
showed that there is a linear correlation between h-index and citation count. Moreover, 
we studied different structural properties of the MACN, such as reciprocity, clustering 
coefficient, and average shortest path length. Then we compared these values with those 
of the ordinary co-authorship network of Google Scholar, and the result of this com-
parison shows that the two networks do not have similar structures, and the MACN is 
not as connected as the ordinary network. Also, we found that there is a tendency to 
collaborate and publish papers together among influential authors. The observed results 
for both the field of interest and institute networks confirm the prominent position of 
Computer Science in the scholar space. We also defined a new citation metric called 
MCC-index to assess institutes in the specific research areas.

There is a limitation to this study. Due to the large size of the MACN and the complex-
ity of the calculations of structural terms in ERGM, we had to exclude those terms from 
the model and only focus on nodal attributes.
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Appendix
See Table 6.
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Table 6  Standard fields of interest in alphabetical order

Field of interest

Aerospace Engineering

Agricultural and Biological Sciences

Arts and Humanities

Automotive Engineering

Biochemistry, Genetics and Molecular Biology

Biomedical Engineering

Building and Construction

Business, Management and Accounting

Chemical Engineering

Chemistry

Civil and Structural Engineering

Computational Mechanics

Computer Science

Control and Systems Engineering

Dentistry

Earth and Planetary Sciences

Economics, Econometrics and Finance

Electrical and Electronic Engineering

Energy

Environmental Science

Health Professions

Immunology and Microbiology

Industrial and Manufacturing Engineering

Interdisciplinary Events

Materials Science

Mathematics

Mechanical Engineering

Mechanics of Materials

Media Technology

Medicine

Neuroscience

Nursing

Ocean Engineering

Pharmacology, Toxicology and Pharmaceutics

Physics and Astronomy

Psychology

Safety, Risk, Reliability and Quality

Social Sciences

Veterinary
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