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Introduction
The brain activity of healthy subjects at rest is commonly used as a baseline against 
which a wide range of both pathological (e.g. dementia) and healthy (e.g. sleep) condi-
tions are compared (de Vos et al. 2018; Mitra et al. 2017; Pullon et al. 2020). Often, activ-
ity under one condition is modelled as a single static pattern of activity, ignoring large 
scale dynamic shifts. However, neuroimaging researchers have begun to recognise that 
subjects move through a wide array of brain activity configurations even while relaxed 
or asleep (Vidaurre et al. 2016; Karahanoğlu and Van De Ville 2017; Suk et al. 2016). A 
brain state is a configuration of brain activity evoked in response to a stimulus or to facil-
itate more complex responses (Brown 2006). Neuroimaging time series provide a way 
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to observe these reconfigurations as spatial patterns of metabolic or electrophysiologi-
cal activity, termed functional activity (Papo 2019). In order to generate these patterns, 
brain regions must coordinate through transfer of information. This exchange between 
brain regions defines the state’s functional connectivity. Functional activity can there-
fore be interpreted as a realisation from a brain state graph model which describes brain 
dynamics and the relationships between brain regions in the state (Bassett and Sporns 
2017). This relates to models of the relationship between observed state and environ-
ment in which states are realisations of a so-called Markov blanket taking input from 
the environment to create an internal model of the external and internal environment 
(Hipólito et al. 2021; Kirchhoff et al. 2018). In these graph models, nodes are anatomi-
cally or functionally defined brain regions and edge strength is determined by the level 
of information shared between these regions (their functional connectivity).

The dynamics of communities of brain regions are of particular interest due to the 
important functional roles some communities play. Previous work has focused on deriv-
ing communities of brain regions using a number of methods including dynamic com-
munity detection (Martinet et  al. 2020). State space models have also been proposed 
that focus on the changing community structure within brain states from inferred func-
tional connectivity (Ting et al. 2020; Liu et al. 2018). Our novel framework uses a Hid-
den Markov Model (HMM) approach to construct a model, we term a Hidden Markov 
Graph Model (HMGM). This framework is fully unsupervised requiring no sliding 
window-based estimation or thresholding of the functional connectivity, and no prior 
assumptions about the number of states or embedding dimension.

We analyse brain state dynamics as a multiplex graph with modular (community) 
structure at both the temporal (state switching dynamics) and spatial (brain region com-
munication) levels. In order to differentiate the temporal communities of states and the 
less functionally relevant spatial communities from the most relevant we use the term 
network. Network here is used exclusively to refer to modular subgraphs of coordinated 
brain regions within a state that are functionally important (rather than being synon-
ymous with the term graph). These brain networks form the basis of our understand-
ing of the functional connectivity pathways within the brain and are integral to our 
understanding of the role of changing brain configurations in wakefulness and beyond 
(Rosazza and Minati 2011).

We have developed a method based on the HMGM framework to identify the impor-
tance of possible brain networks using random walks to ascribe to each module in each 
state an importance or T-score based on their functional connectivity and co-activation. 
Notably, the method does not apply random walk information to partition the graph but 
rather to determine the relative importance of communities within a partition (Rosvall 
and Bergstrom 2008). Our method provides a means to characterise dynamic functional 
activity under novel conditions or behaviours. As a proof of principle, we apply our pipe-
line to neuroimaging data from subjects at rest and provide new evidence for both mod-
ular and nested functional activity in the awake brain.

Static brain state models

In the simplest brain state models (see Fig. 1A), functional activity arises as noisy real-
isations of a single static brain state. Considerable progress has been made using this 
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static framework to characterise the vast repertoire of activity patterns observed dur-
ing wakefulness. Models using both weighted and unweighted graph structures derived 
from Independent and Principal Component Analysis (ICA and PCA respectively) have 
revealed key modules within the brain across a wide range of conditions. These include 
both behavioural and task-based conditions (sensory, motor etc.) and resting state con-
ditions in the absence of direct stimulation (Calhoun and Adali 2012; Smith et al. 2009; 
Kokkonen et al. 2009; Sämann et al. 2011; Calhoun et al. 2004). Recent results from both 
electrophysiological data derived from Electroencephalography (EEG) and Blood Oxy-
gen Dependent (BOLD) data derived from functional MRI (fMRI), suggest that weighted 
network models produce more reliably reproducible and robust results than do bina-
rised network models (Jalili 2016; Ran et al. 2020; Smith et al. 2017).

Studies using static models have helped neuroscientists to build up vast libraries of 
associations between cognitive functions and specific brain regions (Poldrack et  al. 
2011). However, the static approach makes it difficult to account for inter-subject vari-
ability as well as dynamic changes in state that occur in time as different cognitive and 

Fig. 1  This figure shows how brain activity can be modelled as being generated by a system of either 
static (A) or dynamic (B) states, and, in particular, how such a dynamic brain state model can be interpreted 
as a multiplex network with modular structure (C). In A a static pattern (left) of functional activity (colour 
of functional activity map) and connectivity (edges between regions) is observed (green arrow) as a 
stationary multi-ROI multi-subject time series (right) in which each dimension is the activity observed for 
a particular Region of Interest (ROI) in each subject (separated by a dotted line). B Shows state dynamics 
for a multi-subject system with multiple states (left). In this system each state is represented by a colour 
and arrow length indicates its duration in time. This is observed as a multivariate time series composed 
of weakly stationary segments (right). Segment colour indicates the state that generated it. In C we use 
temporal relationships between states to represent the system as a dynamic multiplex graph. This system is 
decomposed (purple arrow) into its essential temporal (coloured ellipses) and spatial modules or functional 
networks (coloured subgraphs). Dashed circles around states show state hubs, important states in each 
community which are central to the dynamics and facilitation of brain activity across subjects
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functional demands are placed on the brain (Michael et al. 2014). These demands result 
in activity in one moment that is often functionally incompatible with activity in the the 
next, driving the need for dynamic approaches to brain state modelling (Sridharan et al. 
2008).

Dynamic brain state models

Moving window-based approaches produce a series of snapshots of the activity pat-
tern of the brain. Although these methods have proved incredibly useful in understand-
ing changing brain state, they are limited in their ability to reliably detect changes in 
functional connectivity between regions over time (Hindriks et  al. 2016). By contrast, 
state space models (Fig.  1B) and in particular Hidden Markov Models (HMMs) (Vid-
aurre et al. 2017; Chen et al. 2016), have arisen as an alternative to the sliding window 
approach and use a number of simplifying assumptions to improve on these models’ 
tractability and specifiability (Suk et al. 2016). More recently, dynamic community detec-
tion methods have been proposed which capture many of the same features as dynamic 
state space models, however these methods often still rely on sliding window approxi-
mations of functional connectivity to construct a series of dynamic networks (Martinet 
et al. 2020; Liu et al. 2018).

The chief underlying assumption of HMMs is that brain dynamics can be para-
metrised by a finite state, positive recurrent, Markov process where functional activity 
and connectivity is determined by an observation model, typically a multivariate normal 
distribution (Vidaurre et  al. 2016; Ting et  al. 2020). In these models, dynamic switch-
ing between states can be interpreted as a temporal graph of probable state transitions 
(Fig. 1C). The full model can thus be interpreted as a nested, or multiplex graph in which 
the layers are brain states (with brain regions as nodes) and the interlayer directed edges 
are transition probabilities between state layers.

Novel multiplex approach

A state characterises a pattern of activity across the whole brain at a given time; how-
ever, it is most often characterised in terms of just a few key subgraphs of interacting 
brain regions (see Fig. 1C) (Ting et al. 2020; Liu et al. 2018). Much progress has been 
made to characterise the vast repertoire of activity patterns observed during resting 
states and task performance. These enquiries have given rise to a number of re-occurring 
and important networks, associated with a wide range of brain functions and behaviours 
(Shulman et al. 1997; Biswal et al. 1995; Menon 2011). The most prevalent and widely 
characterised of these are the so-called resting state networks, termed the Default-Mode 
(DMN), Salience (SN) and Central Executive (CEN) Networks as well as those active 
during sensory and motor tasks including: the sensorimotor, visual and auditory net-
works (Ryali et al. 2016). The mechanisms underlying these networks are interdependent 
with recruitment of one network often necessitating the further recruitment of other 
networks (Karahanoğlu and Van De Ville 2017). Conversely, some networks are known 
to be largely mutually antagonistic in activity, with DMN and SN activity generally being 
anticorrelated with sensorimotor-like activity in resting wakefulness (Vidaurre et  al. 
2018).
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Although state space modelling of brain dynamics is a relatively young field, one key 
finding has been the multi-scale modularity of brain states. In particular, Louvain mod-
ularity-based community detection applied to the temporal graph of state transitions 
has shown that states are organised modularly into communities under a variety of con-
scious conditions including resting wakefulness and sleep (Vidaurre et al. 2017; Stevner 
et al. 2019).

In order to construct a set of plausible brain states models we train a number of 
HMMs with different numbers of states on resting state data. We then utilise our novel 
cross-validated maximum entropy procedure, based on the maximum entropy princi-
ple, to select the HMM that best generalises across subjects (Jaynes 1957). We convert 
the selected HMM into a dynamic graph model by transforming the state covariance 
matrices into weighted, directed graphs based on the regional correlations within each 
state and node attributes given by the state mean activity. The intralayer network which 
we term the Markov Information Matrix of the states is motivated by an interpretation 
of brain states as realisations of an underlying Markov blanket or network as in Hipólito 
et al. (2021).

Ranking the importance of networks within the brain

We perform two-level Louvain community detection to discover important commu-
nities of brain states (temporal communities) and brain regions within a state (spatial 
communities). We use community centrality statistics to identify the hub states of key 
activity in each network. Within each hub state we look at spatial community structure 
to determine the key actors in the dynamics of the model that may be important to the 
overall dynamics of wakefulness across subjects.

Random walks provide an effective way to construct representative samples from a 
graph in a way that preserves local structure (Dupont et al. 2006; Leskovec and Falout-
sos 2006). In complex interdependent data sets random walk sampling can be used to 
remove baseline levels of interdependence and discern the most robust relationships 
in a one dimensional model, by conditioning out local inhomogeneity in noisy activity 
(Luecken et  al. 2018). Here, we extend this principle to network sampling across two 
dimensions, space and time. Our method is based on a non-parametric random walk 
statistic that combines a temporal walk between layers with a spatial walk between 
regions. We use random walks to sample plausible patterns of functional network activ-
ity from the local functional activity background. We then use the samples as a bench-
mark against which to score functional coordination in our spatial communities. This 
statistical score, termed the T-score, is simple to compute given the graph model and 
putative network and is inspired by a similar method for analysing large, complex pro-
tein graphs with metalayer information (Luecken et al. 2018).

Our method allows us to determine which spatial communities are highly co-activated 
or inactivated relative to the expected dynamics across states in that brain area, provid-
ing a generalisable procedure to determine functionally relevant brain state communi-
ties. Our within state community functional associations largely agree with macroscopic 
analysis of the state functional activity maps, but provide an additional layer of informa-
tion in the form of networks that provide clarification and depth to our understanding of 
brain states at the mesoscale.
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Metatextual and network analysis of brain state models

We use the powerful metanalysis tool, Neurosynth (Yarkoni et  al. 2011), to determine 
functional associations between each brain state, it’s most important networks and 
important functional terms from the literature. Neurosynth provides scores based on 
either correlations between brain images and the occurrence of a predefined set of terms 
in the literature or, in conjunction with the NIMARE package (NiMARE 2019), a poste-
riori probabilities of associations between the image and an exhaustive list of literature 
terms. Using these tools and images derived from our brain states, termed functional 
activity maps, we provide evidence to corroborate the modular processing hypothesis 
in resting wakefulness (Reichardt and Bornholdt 2006). Key to our findings is that the 
states associated with resting state networks tend to self-associate while being anticor-
related with sensorimotor associated states.

Methods
In the following sections, “Acquisition and pre-processing of fMRI data for HMM mod-
elling" and “Model specification and generalisability” sections, we explain the preproc-
essing of the data and define the state space (HMM) model and novel model selection 
criterion. We will see that each brain state s can be thought of as a pattern of activity 
represented by a weighted graph G(s) = {V , a(s),W (s)} in which each node is a brain 
region x ∈ V  , (with |V | = D nodes), each with a level of functional activity a(s)x attrib-
uted to x. Similarly, each edge in G(s) is weighted by W (s)x,y ∈ W (s) the level of informa-
tion flow from region x to region y ∈ V  (edge absence is represented by W (s)x,y = 0 ), 
with W (s)x,y  = W (s)y,x in general.

As we shall show, Hidden Markov Modelling with our new model selection method, 
provides a means to construct a dynamic state space model from multi-subject fMRI 
time series data in a data driven way. We use inter-regional correlations to determine the 
state graphs and use the temporal relationships between states to determine the directed 
interlayer edges (see Fig. 1C). Lastly, in “Louvain and hierarchical temporal clustering”, 
“Community hub selection”, “Identifying functionally important spatial communities” 
and “Analysis of states and communities with NeuroSynth” sections we set out methods 
to explore the spatiotemporal modular and functional structure of these multiplex brain 
state models.

Acquisition and pre‑processing of fMRI data for HMM modelling

Ten minutes of whole brain fMRI activity were recorded separately for each of N = 15 
wakeful subjects (with eyes closed) as part of a previous study (Mhuircheartaigh et al. 
2013). The brain volumes produced by the scanner were aligned to the MNI152 stand-
ard brain template (Fonov et al. 2011). This resulted in a high dimensional time series of 
each subject’s fMRI (BOLD) signal for each voxel, with a temporal resolution of 3 s and a 
spatial resolution of 2 mm3 (Woolrich et al. 2009).

Recordings were collected separately from each subject. Of the 200 volumes recorded 
per subject (each time point is one volume), four dummy volumes were removed to 
exclude any non-steady-state magnetisation effects. This was followed by motion cor-
rection with MCFLIRT (Motion Correction FMRIB’s Linear Image Registration Tool), 
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spatial smoothing using a Gaussian kernel of 5 mm full width half-maximum, global 
intensity normalisation, and temporal high-pass filtering with a cutoff of 0.02 Hz to 
remove low frequency scanner drift. Automated removal of non-brain tissue was ini-
tially performed before statistical analysis using BET (Brain Extraction Tool), with fur-
ther manual correction in FSLview. Further spatiotemporal artefact removal was carried 
out by independent component in FSL melodic (Woolrich et al. 2009).

We selected regions of interest in our study based on the Harvard-Oxford (HO) proba-
bilistic cortical and subcortical brain parcellations, which assigns to each voxel a prob-
ability for each brain region. We assign each voxel a unique region identity according to 
the maximum probability across regions in the HO parcellation. Excluding white mat-
ter regions the resulting parcellation of 63 Regions of Interest (ROIs) includes 48 corti-
cal and 15 subcortical brain regions (Caviness et al. 1996; Makris et al. 2006). ROI time 
series were calculated using the ROI spatial mean BOLD signal at each time point. This 
results in a D = 63 dimensional time series with T = 196 time points per subject. Each 
of the D constituent ROI time series were temporal mean subtracted and normalised by 
the standard deviation.

Model fitting presents two challenges, the first is that the time taken to fit the model 
scales with parametric complexity, and the second is that a poorly parametrised model 
may lead to overfitting or underfitting. To address these challenges, dimensionality 
reduction by principal components of the original D dimensional time series was per-
formed to reduce parametric complexity while also reducing overall noise. This approach 
is justified by the generally low embedding dimension of most real world data, including 
neuroimaging data (Ma et al. 2018; Shen and Meyer 2008). In order to balance dimen-
sionality reduction and retention of signal, Parallel Analysis is used (see Additional file 1: 
Section 1) to obtain a D × d eigenmatrix A of the first d < D eigenvectors (Horn 1965). 
This method assumes roughly linear separability of uncorrelated noise from signal, but 
has been shown to outperform a number of methods, including maximum likelihood 
estimation, in simulation (Humphreys and Montanelli 1975). The reduced d dimensional 
time series {X∗

n,t}t∈NT is then inputted to train a noise reduced HMM model of the data.

Model specification and generalisability

We use the HMM-MAR package to train HMMs with multivariate normal observations 
by Variational Bayes (Vidaurre et al. 2016), whilst separating the data by subject into dis-
tinct trials of length T. For further details on model fitting see (Vidaurre et  al. 2016). 
Figure 2A shows how observations of the fMRI BOLD signal at each time point are mod-
elled across subjects. Dynamics for each subject are modelled and fitted using a shared 
set of states S with finite S = {1, 2, . . . ,K } and Markov transition matrix P.

We give a brief overview of HMM dynamics. We note that a key parameter, for these 
dynamics, the number of brain states, K = |S| , that best generalises these dynamics 
across subjects is unknown. Consequently, we introduce a novel framework for selecting 
K based on an information theoretic criterion that maximises generalisability by maxim-
ising entropy of the state dynamics across subjects.

In each HMM state trajectory, the initial state of each subject’s trial is selected 
independently at random. Under the Markov assumption of the model the resulting 
subject-specific state dynamics are assumed independent realisations of the same 
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stochastic process, Sn,t . For t > 1 , Sn,t is conditionally dependent on the previous time 
step Sn,t−1 so that

for s′ ∈ S . Each brain state s ∈ S is associated with an observation model 
O(s) ∼ MVN (µ∗(s),�∗(s)) . The O(Sn,t) model the row dimensionally reduced brain data 
X∗
n,t . In order to obtain the full model, the reduced model is then back-projected into D 

dimensional brain region space [see Eq. (2)].

Novel model selection criterion based on fractional occupancy

The Markov chain defined by P and any given initial state s0 ∈ S , has a unique sta-
tionary distribution πs that is independent of s0 assuming the chain is irreducible and 
the states are positive recurrent. The probability πs is the long run probability of the 
re-occurrence of state s. Selection of the number of these hidden states is carried out 
by cross-validated entropy maximisation over the related fractional occupancy distri-
bution. The fractional occupancy distribution κ is defined by subject n for each state s 
and given by

where P(Sn,t = s|M,X) is the posterior probability of state s occurring at time t given 
the model M and data X. The fractional is the probability of finding subject n in s over 
the entire trial of length T. The distribution κ for subject n is related to the stationary 
distribution πs by the well-known limit

That is to say that κ asymptotically approximates the long run average state dynamics of 
the model as trial length increases. Knowing this, our goal is to select the model whose 

(1)Pr(Sn,t = s|Sn,t−1 = s′,M) = Ps,s′ ,

κ(s, n|M,X) =
1

T

T∑

t=1

Pr(Sn,t = s|M,X)

κ(s, n|M,X)
T
−→
∞

πs.

(See figure on next page.)
Fig. 2  Flow diagram of the graph modelling and analysis pipeline. Following preprocessing of the fMRI 
data we obtain multivariate regional brain activity time series for all N subjects. Variational Bayes inference 
is then used to train HMMs (using the HMM-MAR package (Vidaurre et al. 2016)). A is a sketch of an HMM 
fitted to the Xn,t data for subject n and time point t. Each hidden brain state Sn,t �(Sn,t) has mean activity 
µ(Sn,t) and covariance �(Sn,t) (after backprojection). State change from Sn,t is determined by the transition 
matrix P. B The number of hidden states, K, is determined using mean subjectwise cross-validated maximum 
entropy, which is calculated over the fractional occupancies, κs,n,k for each subject-state pair up to K 
states. C Adjacency matrix of the interlayer temporal directed transition graph determined by the Markov 
transition matrix of the HMM, with temporal communities in red along the diagonal. D Each state itself can 
be considered a layer with edges relating brain regions by their correlation in activity derived from their 
modelled covariance �(s) , with node weights (regional mean activity) determined by µ(s) . Of the states, 
some are highly connected state hubs, h(U), belonging to a temporal community U (red shading). E Each hub 
state (layer) h(U) is analysed and internal spatial communities are determined. F Internal communities are 
ranked according to their level of coherent brain activity compared to many repeated random walk samples 
from the multiplex model. G The results of ranking summarised by the community T-score. High T-score 
corresponds to a higher than expected level of community coherent activity when compared to the rest 
of the multiplex graph in this brain area. We propose functions for highly ranked communities by mapping 
these regions onto a 3D functional activity map and compared them to maps and terms drawn from the 
neuroscience literature with NeuroSynth 
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fractional occupancy maximises the entropy pooled across subjects by maximising the 
objective function

where the model M(n, k) is the model trained using all trials except the data from sub-
ject n assuming k hidden states, and Xn is the trial data from subject n (see Fig. 2B).

By selecting the initial number of states K = arg maxH(k) , we appeal to the infor-
mation theoretic principle of maximum entropy which states that the model which 

H(k) = −

N∑

n=1

κ(s, n|M(n, k),Xn) log[κ(s, n|M(n, k),Xn)]

Fig. 2  (See legend on previous page.)
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maximises the uncertainty over the data tends to be the one that best approximates the 
true data distribution (Jaynes 1957). More specifically, our goal is to obtain a set of states 
with similar uncertainty about subject behaviour over the course of the experiment. We 
shall see in “Entropy relates to model selection” section that the goal of state-subject 
uncertainty maximisation relates closely to that of optimal model selection. We note 
that to the best of our knowledge this is the first application of such a subject-specific 
entropic criterion in state space model selection.

The state Markov information graph

First model parameters µ∗(s) and �∗(s) for state s from the HMM model M are backpro-
jected using the transpose eigenmatrix A to obtain a model in D dimensional brain space 
so that the full D dimensional model has mean µ(s) and variance �(s) defined over the 
ROIs and given by

Using the full model, each state s has normally distributed observations with mean 
µ(s)x and covariance �(s)x,y , for brain regions x, y ∈ V  . We use these to define a graph 
G(s) = (V , a(s),W (s)) over the set of R brain regions, node weights a(s) and edge 
weights W(s), which we take to be a proxy for the information flow between regions. 
More specifically, we estimate the weights W(s) by the correlation matrix |ρ(s)| , as 
derived from the state covariance matrix �(s).

Here, a(s)x = µ(s)x are the mean regional functional activity at brain region x in s. The 
weighted edge (directed information flow) from regions x to y are

The resulting edge weights matrix W(s), defines a Markov transition matrix, a model of 
information flow between brain regions in state s in which information flow between x 
and y is defined both into x from y, W (s)x,y and out of x to y, W (s)y,x . Note this defines a 
potentially asymmetric and directed graph with edges (information flow) both into and 
out of x. The rationale for using such a Markov transition matrix to define edge weights 
is to convert the entire network into a dynamic Markov graph in which information is 
propagated probabilistically both in time and space. This is useful in particular in “Analy-
sis of states and communities with NeuroSynth” section.

Louvain and hierarchical temporal clustering

We perform Louvain modularity detection on the directed Markov transition and infor-
mation graphs (Blondel et  al. 2008). Suppose G = (V ,E,W ) is a potentially directed 
and weighted graph with vertex set V, edge set E and weight matrix W. The Louvain 
algorithm involves the greedy optimisation of an objective function Q(U) , termed the 
modularity score for U a partition of V (see Additional file  1: Section  2) (Girvan and 
Newman 2002; Newman 2006). The algorithm allows for a resolution parameter γ which 
determines the relative size of communities and goes to one as γ → ∞ (Lambiotte et al. 
2008).

(2)�(s) = A�∗(s)AT and µ(s) = µ∗(s)AT .

(3)W (s)x,y =
|ρ(s)x,y|

∑D
z=1 |ρ(s)

x,z|
.
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We use a form of the Louvain optimisation algorithm originally designed for undi-
rected networks but complement this with a version of the modularity Q(U) which has 
been adapted for directed networks in Nicosia et  al. (2009) and Leicht and Newman 
(2008). In order to assess the validity of this approach, a rough measure of the degree of 
symmetry in a weight matrix W can be given by the fraction of the energy of the adja-
cency matrix (as measured by the Frobenius norm) that is contributed by the symmetric 
part, Sym(W ) (see Additional file 1: Section 3) (Aggarwal 2020).

In the case of temporal communities, we determine the significance of the community 
partitioning by comparing Q(U) to an empirical distribution composed of modularity 
scores from 10,000 partitions constructed by random permutation of the community 
labels. In addition, in order to examine the state-subject relationships directly, we per-
form agglomerative hierarchical linkage clustering based on correlation in fractional 
occupancy κ using Ward’s method (Ward 1963).

Community hub selection

State hubs are the states most central to the dynamics of the model and facilitate the 
switching dynamics within each community. These are selected by maximising the com-
munity centrality z-score, z(s), for each community U ⊂ S (Guimera and Amaral 2005; 
Shine et al. 2016). This score measures the within community degree centrality of a node 
relative to the mean community connectivity (see Supplementary Information 4). Hubs 
are then analysed for their community structure, using the same Louvain algorithm as 
in “Louvain and hierarchical temporal clustering” section but this time on the directed 
brain state graph G(s).

Identifying functionally important spatial communities

Not all detected communities are as relevant to a state’s functional role as others. Per-
formance of these roles requires both functional activation and coordination of brain 
regions. To discern which communities are the most functionally cohesive, we rank 
communities by comparing to samples of regional activity from the full multiplex graph 
model (see Fig. 2C, D). We used random walks to sample plausible patterns of functional 
network activity and employ them as a benchmark against which to measure the level of 
coordination within spatial communities. Controlling for the local level of background 
activity in space and time allows for a more representative indication of functional cohe-
sion within brain networks identified by community detection than naive comparison of 
communities by community mean functional activity.

We introduce to neuroimaging the Functional Homogeneity, FH, as our community 
coherence measure, a statistic derived from the mean activity µ(s) and �(s) that is high 
when the community mean activity is most in agreement with the directions of maxi-
mum community functional connectivity and low otherwise. It is a measure of the 
alignment between the two key features of spatial communities, their level of shared 
information and activation. This measure is well suited for neuroimaging data, and is 
well established in computer vision and image classification where it is known as the 
covariance metric and measures the agreement between and within image classes (Li 
et al. 2019). The FH for a community C in a state s is
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where the superscript C refers to the submatrix given by removal of all rows and col-
umns not corresponding to regions in community C. This metric is key to the commu-
nity ranking procedure which follows a six step process: 

1	 Given a community C ⊂ V  in state G(s) we calculate FH(s, C).
2	 Sample a state s′ from the stationary distribution π.
3	 Select a region x ∈ C and sample |C| nodes from G(s′) starting at x ∈ V  in G(s′).
4	 Repeat steps 2 and 3 to construct a representative sample of paired states and brain 

regions (s1,C1), (s2,C2) . . . , (sL,CL)

5	 Calculate the T-score for functional cohesiveness of a subgraph 

 where I is the standard indicator function and rank the communities in s by decreas-
ing T-score.

6	 Determine whether the community represents a correlated or anticorrelated brain 
subgraph by the sign of EC [µ(s)] =

∑
x∈C µ(s)x.

The T-scores of all the communities in a specific state can then be used to order the 
states in terms of which are most likely to contribute to the functional cohesion of the 
state. Note that T(s, C) is a score between zero and one, with one implying that the com-
munity C is much more functionally cohesive than other comparable brain subgraphs in 
space and time. T-scores are not designed to be compared across states. These steps are 
summarised by steps E to F in Fig. 2.

Analysis of states and communities with NeuroSynth

NeuroSynth is a meta-analysis tool that takes in 3D images of brain activity (termed 
functional activity maps) in MNI152 standard space and returns a scored association 
(based on the Pearson correlation) between the activity maps and other images from 
published articles that directly reference a given term i (Yarkoni et al. 2011). We choose 
the six terms most clearly associated with resting state activity default mode, salience, 
executive, these are the resting state network terms and sensorimotor, auditory and vis-
ual, sensory network terms. We used these to characterise the mean activity of a given 
state s by projecting the activity pattern µ(s) back into 3D brain standard space (see Sup-
plementary Figure S-2A) and inputting the resulting map into NeuroSynth.

The resulting score for a state s and term i is denoted θi,s ∈ [−1, 1] , with 1 indicating 
perfect correlation between the state’s mean functional activity map and i and -1 indicat-
ing perfectly anticorrelated activity. We note that although these terms, while chosen to 
relate to known resting state patterns, are not equivalent and should be thought of as 
suggestive of a global pattern of activity (or its absence). We explore the activity of actual 
networks in our spatial community analysis “Community rankings reveal spatiotemporal 
modules of functional activity” section.

(4)FH(s,C) = µ(s)C
T
�(s)Cµ(s)C ,

T (s,C) =
1

L

L∑

l=1

I[FH(s,C) > FH(sl ,Cl)]
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We propose that the global score θ can also be considered a dynamically changing 
property of the system. Given a score θi,s for a term i and state s, the one step ahead pre-
dicted score is

We use this predicted score to examine the global properties of the activity observed 
after reaching a given state.

NeuroSynth can also be used in conjunction with the newly developed package 
NiMARE to directly calculate the posterior probability of terms from a large corpus of 
neuroimaging journal abstracts and images given a selection of brain voxels in standard 
space (NiMARE 2019). Due to the variability in brain region size, regions selected by 
community membership are downsampled by selecting 10,000 voxels with replacement 
from each community which was found to produce stable posterior probabilities up to 
the third decimal place.

We use NeuroSynth with NiMARE to determine a plausible function for each of our 
spatial brain region communities, selecting only those terms that are most a posteriori 
probable and which had a functional rather than anatomical interpretation (see Supple-
mentary Figure S-2B). We pass each community from each hub state through our spati-
otemporal community ranking method resulting in a ranked list of communities of brain 
regions per state and then pass each top ranked community through the NiMARE/Neu-
roSynth method to determine their most likely functional term associations. In order to 
be comparable with the global score θ , the NeuroSynth score is either a positive or nega-
tive association depending on the mean activity of the regions as suggested in “Identify-
ing functionally important spatial communities” section.

Validation of model framework

A detailed validation of key features of the modelling and analysis framework was car-
ried out using synthetic data (see Additional file 1: Section 5). This includes validation of 
the dimensionality reduction method as a means to reduce the computational demand 
of modelling while retaining community structure using the Adjusted Rand Index (ARI) 
(Rand 1971). Validation is also performed for the Markov Information Graph-based 
community detection and model selection procedures. Other key components of the 
model such as the HMM inference procedure have already been validated using syn-
thetic data with detailed simulations (Vidaurre et al. 2016, 2018).

Not all components of the modelling and analysis framework could be validated by 
simulation as it was considered beyond the scope of this document to generate realistic 
synthetic community functional homogeneity and NeuroSynth scores. The community 
importance ranking procedure is instead validated using real annotation metadata and 
the NeuroSynth tool.

Results
Results for our multisubject HMM model training and multiplex graph model analysis 
are given below.

(5)Et+1[θi,s] =
∑

s′∈S

Ps,s′θi,s′ .
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Dimensionality reduction

We select the appropriate number of principal components using the method of parallel 
analysis outlined in Additional file 1: Section 1. This resulted in a reduced set of d = 9 
dimensions that account for roughly 75% of the total variance, which are then used in fit-
ting the model. Validation of this approach using synthetic data is explored in Additional 
file 1: Sections 5.1 and 5.2.

Entropy relates to model selection

Applying our cross validated maximum entropy Hidden Markov Model selection criteria 
by maximising the cross-validated entropy H(k), we obtain an HMM with K = 33 ini-
tial states. Figure 3 shows that the entropy maximum also coincides with the maximisa-
tion of the cross-validated Bayesian log-likelihood, which is a general indicator of model 
fit. To further reduce the risk of overfitting, we exclude those states that occur in less 
than 25% of subjects and renormalise P so that the rows again sum to one. The resulting 
model has a total of K = 27 brain states.

Network dynamics indicate clustering of activity patterns in space and time

Table 1 shows that states positively correlated with resting state activity terms are sig-
nificantly more likely to transition to states with similar associations and vice versa (see 
Supplementary Figure S-3 for linear model comparison). In contrast, states correlated 
with resting state terms tended to transition to states that are negatively correlated with 
the sensory terms. This suggests that states associated with the former resting state net-
works tend to co-occur to the exclusion of sensory and sensorimotor patterns of activity. 
These results indicate a spatiotemporal separation between resting state network activity 
and sensory activity.

States with high scores for sensory activity terms show a far weaker positive affinity for 
transition to each other than do the former resting state network terms. This suggests 
that concurrent activity in space and time is most likely between states with high rest-
ing state network activity. This pattern of concurrent activity is only weakly suggestive 

Fig. 3  Selection of the number of hidden states by minimising the negative cross-validated entropy. The 
axes show the negative cross-validated log-likelihood −cvLL (left) and negative cross-validated entropy −cvH 
(right). Qualitative similarities are evident between the two criteria suggesting deeper similarities between 
likelihood and entropy maximisation
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for sensory modes of activity. In contrast, robust mutually antagonistic spatiotemporal 
relationships between sensory and resting state network associations are present. We 
shall see in “Community rankings reveal spatiotemporal modules of functional activity” 
section this pattern of mutual exclusivity is mirrored by the most central states in the 
network or hub states at both the global (functional activity map) and the local (network 
community) levels. States show a general trend of transitioning from terms with one 
global activity association to another state that scores highly for the same association, 
suggesting some level of brain state inertia in the global pattern of functional activity.

Evidence for metatastate structure in wakefulness

In order to demonstrate the presence of temporal community structure, we performed 
hierarchical linkage clustering using the correlation in κ between subjects and states. We 
also calculated the normalised degree of symmetry in P, Sym(P) = 0.9921 indicating a 
degree of symmetry in P (with Sym(P) = 1 when P is completely symmetric). Figure 4A 
suggests a temporally clustered pattern of state fractional occupancy in which certain 
states are more likely to co-occur in one subset of subjects than in the other. Figure 4B 
shows the transition probability matrix P organised into communities by Louvain com-
munity detection, where γ = 0.48 (as selected by Variation of Information minimisation) 
(Lambiotte et al. 2008). Temporal communities indicate modules of clustered state tran-
sitions. This temporal community partition was tested for robustness by comparing the 
Q modularity statistic to 10,000 random partitions with the same community labels ( p = 
1e−4).

Each community, U ⊂ S , is characterised by a hub state h(U) determined by the state 
with the highest community degree z-score, a measure of state centrality to the tempo-
ral network (see Supplementary Figure S-1). Figure  4C, shows the long run probabil-
ity of state s re-occurence πs . Re-occurence and centrality to a community appear to be 
strongly correlated as states more central to their communities according to the z-score, 
z(s), also tended to have a higher stationary probability πs , with correlation coefficient 
ρ = 0.537 ( p = 0.004 ). This observation suggests that as mediators of network dynam-
ics, community hub states tend to re-occur, playing a central role in the overall network 
dynamics as well as in their own community.

Table 1  This table shows the relationships between NeuroSynth terms scores, calculated using 
the mean activity brain map for each state and the one step ahead projected score for each term 
according to the model (see Eq. 5)

Term scores for each state are correlated with the projected term scores one time step into the future (denoted by subscript 
t + 1 ) from the current state (bold is positive correlation, italic negative). False discovery rate corrected t test significance is 
marked as ** ( p < 0.01 ), * ( p < 0.05 ) and (*) for marginal results ( p < 0.1 ). The comparison between state scores for each 
term and the one step ahead predicted scores shows that there is a spatiotemporal relationship between resting state terms 
which are anticorrelated with sensory terms

DM S E SM V A

DMt+1 0.9866 ** 0.8201 ** 0.4601 * − 0.4416 * − 0.3939 (*) − 0.5488 **

St+1 0.8253 ** 0.9863 ** 0.3550 (*) − 0.5526 ** − 0.5302 * − 0.481 *

Et+1 0.4519 * 0.3615 (*) 0.9826 ** − 0.5203 * − 0.5241 * − 0.5753 **

SMt+1 − 0.4576 * − 0.5781 ** − 0.5215 * 0.9878 ** 0.1765 0.3128
Vt+1 − 0.3718 (*) − 0.5085 * − 0.5092 * 0.1683 0.9885 ** 0.1773
At+1 − 0.4874 * − 0.4226 * − 0.5364 * 0.2657 0.1733 0.9842 **
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Community rankings reveal spatiotemporal modules of functional activity

Louvain community detection was performed for each of the community hub state 
graphs G(h(U)) for each community U in partition U  . We assessed the degree of 
symmetry in the Markov Information graph of each hub states and found that 
Sym(W (h(U))) > 0.99 for all communities U. Here, the Variation of Information was 
not used to select γ as differing recommended γ between hubs was found to produce 
communities of inconsistent and incomparable sizes; we thus select the resolution as 
γ = 2 for all hub states. This was found to produce median spatial community net-
work sizes that were sufficiently small on average (roughly 4 regions per community) 
for our community ranking method to efficiently sample the graph while also being 
large enough to detect functionally conserved brain state networks.

We perform NeuroSynth analysis by taking the mean functional activity maps gen-
erated for the hub states as input in combination with the resting state network terms 
default mode, salience, executive and the sensory network terms sensorimotor, audi-
tory and visual (see Supplementary Figure  S-2A for algorithmic explanation). The 
results in Table 2 suggests a separation between sensory and resting state activity in 
space and time with hub states scoring highly for either resting state or sensory terms 
but rarely both. Table 2 gives the highest ranked functional terms (filtering out purely 

Fig. 4  A summary of the subject state network dynamics. A Clustergram showing the relationships in 
Fractional Occupancy (FO), the proportion of time spent in a state clustered by subjects (vertically) and by 
states (horizontally). B The log of the state transition matrix P is shown, where states have been grouped 
along the diagonal, according to their community membership. C Pie chart showing the state occupancy at 
equilibrium (the probability of finding a subject in a state in the limit as time goes to infinity). Wedges in this 
pie chart are the individual hub states in each community according to the community z-score. These two 
scores share a significant 0.537 ( p = 0.004 ), indicating the importance of community centrality to long run 
behaviour
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anatomical terms) in each hub state for the top three ranked spatial network commu-
nities (using our ranking method). The top terms for each of the networks (communi-
ties) in the states largely coincide with the functional associations ascribed to each of 
the hub states themselves.

Exploring these relationships, we see that in some cases the connections between spa-
tial community function and hubs are direct. State 23 shows a positive association with 
observation and action in dominant spatial communities and a strong association with 
all three sensory network terms. State 11 shows a clear association with auditory activ-
ity as well as a top ranked community association with the term voice. In state 15, which 
shows a strong correlation with visual activity, the top ranked communities include posi-
tive associations with the face (a common object of visual processing).

In some states we see both strong positive and negative associations. Global negative 
asssociations are difficult to interpret in isolation as evidence of anticorrelated network 
behaviour within a state, however when paired with mesoscale information from the top 
ranked communities a stronger case is possible. State 32 appears mixed in activity but 
shows strong to moderate negative correlations with visual and auditory processing. The 
latter of these is corroborated by the anticorrelated speech network. State 30 is another 
state with mixed associations based purely on global functional activity, however, we see 
both moderate negative correlation globally with visual activity, and a specific negatively 
correlated community related to visual tasks or processing, suggesting a visual down 
state. A similar explanation can be used for state 5. State 23 is a sensory associated state 
with sensory associations at both the global and network scales. State 23 is negatively 
correlated with default mode activity. The default mode network is involved in language 
comprehension and reasoning, explaining the anticorrelated network associated with 
syntactic processing. Negatively associated communities may more generally suggest 

Table 2  Summary of the NeuroSynth results for the hub states

The terms scored by NeuroSynth are the resting state terms default mode (DM), salience (S), executive (E) and sensory terms 
sensorimotor (SM), visual (V) and auditory (A). The first rows of the table under hub states show the NeuroSynth correlation 
score between each of the hub states’ brain maps and the terms on the left (see Additional file 1: Figure S-2). The second 
section under terms shows the most probable terms associated with each of the top three communities identified by our 
ranking method, providing further information on the component functional communities of these states. The sign next to 
each term indicates whether the association is positive or negative (depending on the sign of the brain regions involved)

Term Hub state

13 11 15 32 23 5 24 30

DM − 0.0707 0.0528 − 0.0094 0.1085 − 0.3496 − 0.0341 − 0.095 − 0.1918

S − 0.0924 0.0506 − 0.1099 0.0714 − 0.2039 0.0164 0.026 − 0.0942

E − 0.2946 − 0.1984 0.0534 0.1736 − 0.085 0.1017 − 0.0772 0.1024

SM 0.4245 − 0.1793 − 0.0535 0.1239 0.2502 − 0.3186 0.2973 0.179

V 0.1544 − 0.0055 0.4604 − 0.536 0.2308 − 0.289 − 0.1644 − 0.1168

A 0.1574 0.2959 − 0.0946 − 0.1542 0.2725 0.039 0.1534 0.0306

Rank Commu‑
nity

1 −Reward + Voice − Incen-
tive

− Speaker + Action −Visual − Autobio-
graphical

− Basal

2 − Theory 
of mind

+ Memory + Action + Autobio-
graphical

+ Observa-
tion

+ Memory − Empathic − Memory

3 −Llan-
guage

−Action + Face + Syntactic − Syntactic + Voice − Auto-
nomic

− Visual
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decreased metabolic or functional demand for these in networks leading to a coordi-
nated down state.

Discussion
In this paper we present a fully unsupervised pipeline for characterising the spatiotem-
poral activity of neuronal brain states in terms of a multiplex brain state graph model. 
This pipeline involves the training of an HMM in order to obtain a multiplex spati-
otemporal directed brain state graph that represents the dynamics of subjects in resting 
wakefulness. We present a method for obtaining a set of states (layers) that generalises 
well over subjects and use this method to determine key states in the network dynamics. 
Lastly, we characterise the spatiotemporal components of the model that are most cen-
tral and most functionally coherent, characterising these using metatextual image analy-
sis of the neuroscience literature.

Our HMGM-based methodology reveals a rich array of complementary communities 
acting together to produce modes of neural behaviour during resting wakefulness. Cru-
cially, we have shown that patterns of activity resembling the resting state networks tend 
to co-occur and that these patterns tend to preclude sensory and sensorimotor patterns 
of activity. This modularity of brain state function has been suggested by others (Small-
wood et al. 2012; Vidaurre et al. 2017), but metaanalysis of terms associated with these 
functions allows us to characterise individual states and quantify their change in charac-
ter through time.

Within each hub brain state the division between functions was not clearly parti-
tioned, with many terms featuring communities with memory or autobiographical asso-
ciations, possibly suggesting an undercurrent of narrative thought which persists across 
numerous states. Alternatively, this may be due to artefacts caused by auditory memory-
related tasks studies in the NeuroSynth database. It is important to note that spatiotem-
poral state-based activity analysis is novel and so terms in the literature which derive 
from static models of activity may not map accurately onto dynamic patterns of activ-
ity. In particular, transient states may be smoothed out of these analyses meaning that 
new studies will need to be performed focusing on dynamic functional activity change at 
much shorter time scales in order to build up an understanding of function in dynamic 
brain states.

Some of the state global functional activity term associations, particularly negative 
ones, remain difficult to interpret. In state 13, there is a strong association with the term 
sensorimotor, however all of the top ranked communities for this state are negatively 
associated with functions that may have a closer association to resting state activity. This 
could be due to putative link between the central executive activity and reward observed 
in primates (Sigmund et al. 2001), but may also be due to ranking error or noise in our 
graph model. However, the roles of many states become more clear when combining 
functional information from either anticorrelated or correlated mesoscale communities 
with global tendencies in functional activity. We hypothesize that strongly cohesive anti-
correlated networks may be entering a coordinated down state due to changes in meta-
bolic or functional demand (Tomasi et al. 2017; Passow et al. 2015; Thompson 2018).

One issue with our approach is that the Louvain implementation we use with directed 
modularity does not fully capture the signal of edge directionality in community 
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detection (see Additional file 1: Section 2). This problem may be partially mitigated by 
the fact that we found the edge weights in question to not be highly asymmetric when 
measured as a fraction of matrix energy. However, a community detection methods that 
more directly account for directed edges, such as InfoMap (Rosvall et al. 2009), or the 
Markov structure of the model, such as Jin et al. (2011) may identify other other forms 
of community structure in our graph models that are worth investigation. In particular 
we intend to investigate more general implementations of the Louvain algorithm that are 
optimised for directed networks (Li et al. 2018; Dugué and Perez 2015).

Presently, our framework also does not fully take advantage of the multuiplex graph 
structure of the model, for example using multilayer community detection which can be 
complex to parametrise (Hanteer and Magnani 2020). However, a potential advantage 
of the HMGM framework is that it provides a way to ground the interlayer coupling 
parameters used in some multilayer community detection using a natural property of 
the model, the probability of state transition. In our future work we intend to investi-
gate multilayer community detection approaches to look at dynamic changes in network 
membership using coupling parameters based on the transition probabilities between 
state layers.

We plan to apply our multiplex analysis framework to conditions of altered conscious-
ness in deep anaesthesia and determine novel spatiotemporal networks that character-
ise this condition with comparison to our current graph model for resting wakefulness. 
In this way we hope to elucidate the complex network dynamics underlying conscious 
brain activity (Huang et al. 2021).
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