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Introduction
The analysis of spatio-temporal point patterns appears in many areas of research related 
to crime, earthquakes, ecology, epidemiology, among many others. In this context, the 
identification of any connection between events and their evolution throughout space 
and time is of particular interest. Spatio-temporal event interactions, clustering or regu-
larity, and distances that inform about any of these interactions are important to under-
stand the underlying phenomenon under study. For example, Hegemann et  al. (2011) 
reconstruct gang rivalries in Hollenbeck with an agent-based model that employs geo-
graphical information to understand the hidden underlying network. Another example 
can be found in an ecological community level, where interactions of competition and 
facilitation among the trees are the main goal of the analysis. Thus, the combination of 
network and statistical analysis is needed to describe and summarize key features and 
dynamics of a particular phenomenon (Barthelemy 2018; Ferreira et al. 2020). The study 
of network dynamics faces many challenges. For instance, Jaros et al. (2013) discuss the 
difficulties of modeling them with time-variant properties, and they propose to model 
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time series of nodes and edges based on time-aggregated graphs. Likewise, Coscia et al. 
(2014) analyze the influence of spatial and temporal dimensions in mobility data. They 
analyze a data set of human trajectories, building complex networks at each time, and 
then studying the evolution of these dynamic networks varying the spatial resolution to 
find the optimal grid (Friedman et al. 2016).

For spatio-temporal point patterns, it is crucial to establish spatial and/or temporal 
distances for which the characteristics of the phenomenon under study change. In this 
line, Salje et al. (2016) analyze distances between sequential cases in a transmission chain 
and characterize transmission distances. Trifonova et al. (2019) use the juxtaposition of 
seismogenic features based on geological, geophysical and seismological data, and out-
line the areas with the highest earthquake capacity. Elliott and Wartenberg (2004) con-
sidered that spatially organized socio-economic effects can have important influence on 
the disease rates observed in small areas and on areas where some people are exposed 
to the effects of pollution. To study disease propagation in spatial networks (Lang et al. 
2018) apply a distance-based kernel to generate a range of spatial structures. Crime Pre-
vention Through Environmental Design (CPTED), a specific theory built for crime, is 
based on geographical juxtaposition and Cozens et al. (2019) show its importance given 
the impact of crime in public health, surveillance, sustainability, and quality of life.

Crime has also been analyzed through networks for many reasons. Indeed, network 
analysis handles crime organization (Scott and Carrington 2011), a key aspect study-
ing illegal acts. Actually, the network approach has been useful in scrutinizing terrorist 
groups in order to capture prominent delinquents (Borgatti et al. 2009). da Cunha and 
Gonçalves (2018) present a unique criminal intelligence network for different classes 
of federal crimes all over Brazil, and analyse its topological structure, robustness, and 
response to different attack strategies, among others. da Cunha et al. (2020) explore the 
networked nature of criminal behavior. They build a topic-view network on dark web 
and compare network disruption strategies with real police work.

Davies and Marchione (2015) propose a way to handle street thefts with event net-
works. Following the Knox-test idea (Grubesic and Mack 2008), they build networks by 
varying spatial and temporal radius, obtaining location similarities ties (Borgatti et  al. 
2009). Their procedure allows to observe the spatio-temporal closeness and the form 
of crimes, namely motifs, and find patterns with a fixed approach. Boers et  al. (2013) 
uses the development of a network of events to discover the patterns of spatio-temporal 
co-occurrences, and build an approximation to the synchronization of rains in differ-
ent areas in the South American Monsoon System; the concentration of places with the 
highest incidence in the rapid spread of heavy rains, coincide with the nodes that present 
the highest cluster coefficient. Co-occurrence patterns are related to the emergence of 
spatial clusters highly enriched with the structural information of the network, Nadini 
et al. (2020a). We can also find techniques to detect spatio-temporal patterns from dis-
covering subgraphs that occur with a particular frequency in the network, contributing 
to understanding the emergence of clusters or spatial buffers in particular time windows 
that are crucial to predict the new events’ probability of occurrence [24,43]. These sub-
graphs are motifs. For example, Davies and Marchione (2015), Atluri et al. (2018), Pas-
quaretta et al. (2021), Oberoi and Del Mondo (2021), Dang et al. (2018) are an excellent 
selection of papers related with methods for detecting patterns using subgraphs and its 
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properties. Jazayeri and Yang (2020) present a complete and updated review of motif 
discovery algorithms. In addition, motifs have allowed for the generation of important 
applications for decision-making in population dynamics, among which epidemiology, 
mobility and criminology stand out. Especially in criminology, motifs facilitate the emer-
gence of related embedded spatio-temporal patterns to establish mechanisms related to 
CPTED, allowing prioritization of geographic juxtaposition (GJ) in proximal, meso and 
criminogenic phenomena. Cozens et al. (2019) establish the impacts that distance has 
for the CPTED category, and define that the types of space-time events that can be cap-
tured by motifs are: Micro GJ (GJ factors acting at the crime location), Proximal GJ (GJ 
factors acting from locations close to the crime location), Meso GJ (GJ crime factors 
originating in areas more distant from the crime location), and Macro GJ (GJ factors 
acting as remote influences on crime regardless of the location of their origin in terms of 
physical distance from crime location.)

Our main interest here is to use networks for analyzing patterns of events embedded 
in space-time. From its metrics and topological properties, it is possible to build approx-
imations of the co-occurrence, shift, and dependence between events (Wang and Zhang 
2020). Although, this research is motivated by the analysis of the space-time interac-
tions and the evolutionary behavior of certein types of crimes in the city of Medellin 
(Colombia), having reported the exact coordinates in space and time of each crime for a 
number of years, It can be extended to any spatio-temporal point pattern. The intrinsic 
richness of this type of data providing the exact locations is crucial for our approach 
and makes a difference with respect other alternative approaches which are more based 
on the analysis of aggregated data. We, following Landau and Fridman (1993), consider 
that it is important to analyze the dynamics of the networks, and choose one distance 
to relate events in the network so that it is suitable in practical resolutions and helpful 
for decision-makers (Cozens et al. 2019). In this context, all the literature above com-
mented do consider networks that neither preserve the topology nor vary with time. To 
solve this problem, we construct a new random generator of networks that preserves 
the topology of data and varies across time. Consequently, we extend the idea of Davies 
and Marchione (2015) by building a time series of event networks based on a division 
of the whole period into several time slots and spatial distances. Our new mechanism 
for generating randomized networks (ERGEN) maintains spatial locations fixed, var-
ies the order of the occurrence of events, standardizes the results to prevent the count 
of motifs being masked by the number of links, and allows for the comparison of net-
works across time. Note the importance of ERGEN to establish if the observed network 
meets some characteristics or if it is only a random arrangement. Specifically, we use this 
method here to find motifs. Furthermore, we adapt statistical tools such as change point, 
scan-statistics (SS), Runadi and Widyaningsih (2017) and Costa and Kulldorff (2009) and 
matrix standardization, to decide at which distance the amount of connectivities notori-
ously changes, and to control the bias caused by the network size (Nadini et al. 2020a). 
Finally, we explore the association between motifs.

The plan of the paper is the following. The methodological approach, including some 
background concepts, is presented in “Methods” section. The analysis of real data related 
to crime in Medellin is shown in “Real data analysis” section, and the paper ends with 
some concluding remarks in “Discussion and conclusions” section.
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Methods
In this section, we outline our methodological proposal. First, we consider a number 
of concepts that will appear in the rest of the paper for clarification and general setup. 
Then, we build time series of event networks using time slots and a set of spatial radii. 
We also describe some statistical tools for choosing the spatial distance that generates 
more connectivities. We finally present the ERGEN, that represents our novel contribu-
tion to analyze numerous motifs throughout space and time. See Fig. 1 for a graphical 
summary that will be further detailed.

Background concepts

A spatio-temporal point process is a random collection of points, where each point, 
called event in this context, is associated with the time and location of such an event. We 
call a network a collection of interconnected things, or a configuration of relationships 
among a group of things or events (Kolaczyk 2009). A graph G is a mathematical struc-
ture composed by two sets: a set of nodes, V, and a set of links or edges E, such that each 
edge element ek = (vi, vj) ∈ E represents a connection between two elements vi, vj ∈ V  
(Rahman 2017). In other words, a graph is the mathematical abstraction of a network 
represented by G = (V ,E) such that E ⊆ V × V  . A graph is directed if each edge ek 
is associated with a direction, that is, (vi, vj) is different from (vj , vi) (Rahman 2017). A 
directed graph without a path that starts and finishes in the same node is named Direct 
Acyclic Graph (DAG). If a weight is assigned to each node or edge in a graph, it is call a 
weighted graph (Rahman 2017). Finally, for V ′ ⊂ V  and E′ ⊂ E , an induced graph is a 
subgraph G′ = (V ′,E′) ⊂ G that, on its restricted node set V ′ , contains exactly the links 
that G has (Kolaczyk and Csárdi 2014).

A crucial concept we will be using throughout the paper is the idea of motifs. A net-
work motif is a subgraph occurring far more frequently in a given network in compari-
son to general random graphs (Kolaczyk 2009). An event network is a graph in which 
its nodes are events and some links are placed between close pairs, i.e. nearby events in 
space (Davies and Marchione 2015). Some properties related to an event network are the 
following: (a) The number of events is a random variable, and so the number of nodes; 

Fig. 1  Column t contains all times of the registered events, and t′ column shows the N time slots in which 
the whole period is divided. Columns Gt′Dq

 illustrate the construction of networks and multivariate time series 
of motifs counts, Yt′Dq

 , at each time t′ and each distance Dq , q = 1, . . . , z . These motifs counts, Yt′Dq
 , have to be 

standardized as mentioned in “Empirical random network event generator (ERGEN) and motifs” section. The 
numbers with each network are the amount of edges for that case; that is, SS
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(b) The links depend on event locations, and so the event network does not support links 
between far events. In other words, the links are fixed and conditioned on the events 
locations. Now, a sequence of random elements Z over time is called a time series and 
it is usually denoted as {Zt , t ∈ T ⊂ R} . So, {Gt , t ∈ T } is a time series of event networks 
where each Gt is an event network itself.

The structure of a graph G is said to be analyzed in a macroscopic way if there is an 
interest on global characteristics about the whole graph G. Instead, the microscopic 
approach studies properties of the elements of graphs, for example of nodes, subgraphs, 
etc. (Trøjelsgaard and Olesen 2016).

Time series of event networks

We assume that the ocurrence of the events of interest is recorded in a study region 
R ⊂ R

2 during a certain interval of time [0,T ] ⊂ R . Let t ∈ [0,T ] ⊂ R be the time point, 
and let si = (xi, yi) ∈ R ⊂ R

2 , be the spatial location, so that (si, t) stands for the spa-
tio-temporal locations with t = 1, . . . ,T  and i = 1, . . . , n . Clearly, nT events have been 
recorded in total. Note that xi and yi are eastern and northern coordinates in a Cartesian 
Coordinates System. We emphasize here that these locations cannot be fixed or prede-
termined by any sampling design leading to a spatio-temporal point pattern. As we used 
here coordinates on a plane, the metric d(·, ·) that quantifies the spatial distance between 
any two events is the Euclidean distance. We follow the idea of Davies and Marchione 
(2015) to construct the time series of event network. Define the set A of all spatio-tem-
poral locations where events have occured as

We now define a set D = {D1,D2, . . . ,Dz−1,Dz} of spatial distances, and we split the 
temporal interval T into N time slots, obtaining

so that the first time slot is {t = 1, . . . ,T1} and so on (see the first two columns of Fig. 1). 
We denote the time slots as t ′ , so that t ′ = 1, . . . ,N  . Then, for example, events in the first 
time slot are given by {(si, t); i = 1, . . . , nt; t = 1, . . . ,T1}.

Considering all events appearing at each time slot t ′ , we define the set of nodes Vt ′ as 
those events that occurred in time slot t ′ . See dots representing the nodes in the third 
column of Fig. 1. With all the point pattern data, we obtain N sets of nodes Vt ′ given by

where nt ′ stands for the number of events in that particular time slot.
Let D be a generic spatial distance that connects events of Vt ′ (this D could be any of 

the spatial distances Di before considered). In other words, we connect events of Vt ′ if 
the spatial distance d(·, ·) between them is less than D while respecting their occurrence 
in time. For each time slot t ′ let

A = {(si, t); i = 1, . . . , n; t = 1, . . . ,T } si ∈ R
2, t ∈ R

{t = 1, . . . ,T1,T1 + 1, . . . ,T2, . . . ,TN−1 + 1, . . . ,TN = T },

Vt ′ = {(si, t
′); i = 1, . . . , nt ′ } t ′ = 1, . . . ,N ,

Et ′ = {(si, sj) : si, sj ∈ Vt ′ , si <time sj , d(si, sj) ≤ D}
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be the set of links. See an example of linked pairs of dots in the third column of Fig. 1. 
Consequently, we define the collection of graphs {Gt ′ = (Vt ′ ,Et ′)} with t ′ = 1, . . . ,N  as 
the time series of event networks. These graphs are examples of geometric graphs (Davies 
and Marchione 2015) and also of Directed Acyclic Graphs (Barber 2012).

Note that we do not consider a set of temporal radii, to keep things simple but our 
method has room for this. Additionally, to avoid subjectivity in the selection of D, we 
propose to studying a number of networks with different spatial radii contained in 
D = {D1,D2, . . . ,Dz−1,Dz} . So, we will have a time series of event networks for each 
Dq ∈ D , namely {Gt ′ }Dq . Each element of {Gt ′ }Dq will be denoted as Gt ′Dq

∈ {Gt ′ }Dq , 
q = 1, . . . , z . We illustrate these time series in columns 3, 6 and 9 of Fig. 1, sorting the 
columns according to Dq . In addition, an illustrative example of each element involved at 
each step of the methodology is depicted in Fig. 2.

A change point analysis to relate events in an optimal way

We now aim to choose the ideal Dq ∈ D to set up the time series of event networks. 
Therefore, it is of interest to detect where the structure of the whole graph changes qual-
itatively in space (Csárdi and Nepusz 2006). Thus we propose a macroscopic analysis 
that studies change points. First, we present an approach based on scan statistics (SS) 
which assumes that networks are nested. Then, we use the idea of Edge Difference Dis-
tance, making unsupervised classification to classify Dq ∈ D . We associate nestedness 
with a hierarchical organization, given that the network built with the smaller distance is 
contained in the network with the second smaller distance, and so on.

Fig. 2  Toy example. For illustrative purposes, we assume the spatio-temporal pattern occurs at 5 
spatio-temporal locations. In the first time slot, the events occur three times ( t1, t2, t3 depicted in black) and 
in the second time slot they occur two times ( t4, t5 depicted in red). The arrows are oriented according to the 
time-order of events inside each time slot. For each time slot and each distance, spatial motifs are counted. 
Links generated with the first distance, D1 , are in black and links generated with the second distance, D2 , are 
in blue. On the right side, we show the vector time series of motif counts for each case. Note that for each 
distance there is a time series of these vectors. Also, for each time point there is a sequence of vectors that 
depends on the set of distances. Finally, we show by extension the set of links for each spatial motif for the 
case t′ = 2,D2
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The SS method (Wang et  al. 2014) was developed to detect change points in a 
time series of graphs with the same order. It detects changes based on dense com-
munities. Thus, within each time slot t ′ , the index will be the radius Dq ∈ D instead 
of time, leading to compare nested networks: if Dq ≤ Dw then Gt ′Dq

⊆ Gt ′Dw for each 
Gt ′Dq

∈ {Gt ′ }Dq and Gt ′Dw
∈ {Gt ′ }Dw . We will have a total of z SS for each t ′ = 1, . . . ,N  . 

We indeed use here a spatial SS. For a fixed time slot t ′ , as an statistic for the SS 
method, we consider the total count of edges between any pair of events, that is, the 
amount of interactions between the spatial events. Figure 1 shows an illustration of 
such edges counts, that is, SS, for each Dq at each time slot t ′ . See also Fig. 2 for an 
illustration of the methodology for two time slots and two radii. We indeed are look-
ing for such distances at which the total number of interactions shows an excessive 
increase of connections.

For formalities about SS, we adapt here the proposal in Wang et  al. (2014). Let 
Ψt ′;Dq

(si) and Φt ′,t∗;Dq
(si) be two quantities that capture a local shift based on si ∈ Vt ′ , 

and are defined as follows.
For a given t ′ , Ψt ′;Dq

(si) is defined for all Dq ≥ D1 and si ∈ Vt ′ as

where Vt ′Dq
(si;Gt ′) = {sj ∈ Vt ′ : d(sj , si) ≤ Dq} is the set of vertexes with a distance at 

most Dq , and so Ω(Vt ′Dq
(si;Gt ′);Gt ′) is the subgraph induced by Vt ′Dq

(si;G
′
t) . Et ′(·) is 

the edge set and | · | denotes the cardinality of the set.
If we have two time slots t∗ ≤ t ′ , then for all Dq ≥ D1 and si ∈ Vt ′ we can also define

Finally, given G1 and G2 two graphs with the same order, with A1 and A2 their respective 
adjacency matrices, the Edge Difference Distance d(·, ·) is defined as the Frobenius norm 
of the matrix D = A1 − A2 (Hammond et al. 2013). We then consider the Edge Differ-
ence Distance to quantify the similarity between two graphs based on their adjacency 
matrices. With this, we construct a time slot similarity matrix to compare graphs under 
different spatial radii Dq.

For the detection and counts of motifs used in the analysis of spatio-temporal pat-
terns, there are some computationally efficient algorithms with highly significant sub-
graphs (see Kashani et al. 2009; Kobayashi et al. 2019. However, in our case, the motif 
detection algorithm must recognize the subgraphs formed inside the radius Dq , with 
the directionality of their edges depending on t. Thus we use the concept of temporal 
motifs defining them as “ . . . a class of valid isomorphic subgraphs, where the iso-
morphism is taken by including the similarity of the temporal order of the events”. 
In other words, according to this criterion, two subgraphs are isomorphic if they are 
topologically equivalent, and the order of their events is identical. We refer to Kob-
ayashi and Génois (2021), Kobayashi et  al. (2019), Nadini et  al. (2020a) and Nadini 
et al. (2020b) for insights on the algorithms and their validation. The algorithm that 
we propose prioritizes some subgraphs related to the spatio-temporal patterns of 
events, providing information on co-occurrence and shift. Co-occurrence and close 
co-occurrence is based on the proximity of events in space-time, based on two 

Ψt ′;Dq
(si) := |Et ′(Ω(Vt ′Dq

(si;Gt ′);Gt ′))|,

Φt ′,t∗;Dq
(si) := |Et ′,t∗(Ω(Vt ′(si;Gt ′);Gt∗))|.
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behaviors that Wang and Zhang (2020) called boost (which indicates that the event 
is related to memories of past events) and flag (which is related to the opportunism 
of the event due to the conditions of space-time). Finally, the shift has to do with the 
movement of the event from places where it has previously occurred. In this line, the 
motifs that we look for in the detection of these patterns are In-2-Star, Out-2-Star and 
2-Path, that we describe in “Empirical random network event generator (ERGEN) and 
motifs” section.

Empirical random network event generator (ERGEN) and motifs

In the microscopic approach, we explain the reasons behind the selection of several 
motifs. We then present the empirical random network event generator, an original 
contribution to handle problems with random order of networks over time. Finally, 
we study the correlation between the number of motifs. We study spatial motifs as 
building blocks to understand the underlying spatio-temporal process. In short: 

 Out-2-Star are subgraphs that impose an spatial order of events: from inside to outside. 
Basically, successive events are farther from each other comparing to their distance from 
past events.

 In-2-Star are subgraphs that represent another spatial order: from outside to inside. In 
other words, those are successive and far events.

 2-Path are subgraphs that display an interesting behavior of cases: Successive events 
move away from past events.

In this context, based on the observed events, we need to know whether the counts of 
each type of motifs are unusually high or unusually low, and thus establish patterns in 
the spatio-temporal configuration of events. We have one realization of the spatiotem-
poral pattern. Using ERGEN we generate B random networks and hence an empirical 
distribution of any measure of them. ERGEN carry out permutation of events time-
order. In particular, we are interested in counts of each type of motifs that we are analyz-
ing here. So, we find the empirical distributions of these motifs counts. Hence, we have 
to generate many random configurations of spatio-temporal point patterns and count 
each type of motifs at each of these random realizations. For this purpose, we consider a 
random sample generator of complex networks embedded in space and time, which we 
name here as ERGEN. Due to the fact that the order of Gt ′ is a random process, so is the 
size of Gt ′ , because it is a function of the graph’s order and Dq . Therefore, the number of 
any motifs will change as the amount of links changes, and this would mask the dynamic 
relationship between Out-2-Star, In-2-Star and 2-Path. As a solution, we standardized 
the corresponding counts of motifs. This procedure is summarized as follows: 
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1.	 For each radius Dq ∈ D and time slot t ′ = 1, . . . ,N  , we consider the time order of 
the set Vt ′Dq.

2.	 The time series of event networks represent how points appear successively in a spa-
tial neighborhood Dq at time slot t ′ . So, we consider all possible ways that events 
could happen, that is, a different arrangement of Vt ′Dq . Exchanging the order of 
points and keeping their spatial distance would maintain the map of hazard locations 
but would simulate different movements in time slot t ′.

3.	 Take B permutation samples of Vt ′Dq (taking all possible permutations would be 
intractable in practice).

4.	 Build B networks for each radius Dq and time slot t ′ . Then, 
{

Gt ′Dq

}B

b=1
 represents a 

sample of size B that shows different possible movements of points at the time slot t ′ . 
This approach maintains exogenous features, hazard locations and time slot t ′ . In 
fact, it is a sample generator of complex networks embedded in space and time.

As a result, we arrange the number of motifs of each 
{

Gt ′Dq

}

b
 in form of a matrix 

Yt ′Dq which also contains the original number of motifs given by Gt ′Dq . Our interest is 
in the subgraphs described above, so Yt ′Dq will have three columns and B+ 1 rows. 
Then, to solve the masking problem, we scale the original counts as S−

1
2

t ′Dq
(Yt ′Dq

− Ȳt ′Dq
) 

where St ′Dq is the sample covariance matrix for Yt ′Dq , and Ȳt ′Dq the associated mean. 
The multivariate time series of motif counts obtained is

Consequently, this approach makes it possible to analyze dynamic relationships of motifs 
regardless of the size associated with the network, and also to perform a multivariate 
time-series analysis using the standardized counts. The detection of patterns such as 
spatial and/or temporal concentration of events allow to propose intervention strate-
gies according to the application field. This methodology can be applied for zoning and 
gaining comprehension of the dynamic behavior of any type of spatio-temporal pattern. 
For example, in earthquakes it could provide additional parameters to assess the seis-
mic threat, in epidemiology it can show ways a disease can spread and general patterns 
of incidence and mortality rates. In addition, this proposal presents essential solutions 
to the typical problems of other validation techniques. Through the building networks 
algorithm and the Empirical Random Network Generator (ERGEN), this approach 
allows decision-making about the statistical significance of motif using empirical distri-
butions of standardized values of time series of motif counts. In fact, the ERGEN can be 
used to build empirical distributions of others networks measures. Note that this meth-
odology does not require models or additional assumptions.

Real data analysis
Medellín is the second most populated city in Colombia (DANE 2019) that has suf-
fered with crime for many years, being known as home of dangerous criminals. In 
2018 Secretaría de Seguridad de Medellín showed that 40% of the citizens felt 

(1)Yt ′Dq
=





#In− 2− Star
#Out − 2− Star

#2− Path





t ′Dq

t ′ = 1, . . . ,N , q = 1, . . . , z
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unsecure, and about 20607 theft complaints were received (Restrepo 2019). Further-
more, the police department recognizes the need of hiring almost 2.000 more police-
man to fight against homicide, theft and micro-traffic (Monsalve 2019). In this paper, 
we analyze street thefts occurred in Medellín from years 2003 to 2015. The urban ter-
ritory encloses an area of roughly 105 km2.

To analyze the spatio-temporal patterns of crime events in Medellín, we consider 
two aspects. First, the global behavior of these events is analyzed by considering the 
spatial units based on the geographical juxtaposition Micro GJ, Proximal GJ, and 
Meso GJ; therefore, we consider radii of 500, 1000, 1500, and 2500 m. Second, and 
regarding the temporal component, the study unit will be slots of hours within weeks 
per months, to accommodate the time slots established by the Colombian national 
police following the historical reports of crimes reported in databases. The hourly 
time slots are 00:00 - 05:59, 06:00-11:59, 12:00-17:59, 18:00-23:59, for every week in 
every month during the years 2003–2015. We present an alternative analysis using 
time bands in “A tool for exploratory analysis: identification of spatio-temporal pat-
terns by time bands” section.

For each event, we have the hour, day and spatial location. We note that 18528 
crimes were recorded in the considered period, with the following facts: 61% of the 
victims were men, the most dangerous neighborhood was La Candelaria, the most 
common type of theft was holdup (51% of all events) and the victims tended to be 
young, between 20 and 40 years of age. These events define a spatio-temporal point 
pattern. We use here monthly time slots, so we consider these events as a time series 
of spatial point patterns (see Baddeley et al. 2015). Figure 10 shows the spatial point 
pattern occurred on the first time window, January 2003, and the accumulated events 
until the last month of December 2015. We now proceed to analyze the dynamics of 
these thefts. First, we show construction and description of monthly time series of 
crime networks, then present the change point analysis to define the spatial distance 
at which networks change and finally we present ERGEN results.

Descriptive analysis of time series event networks

We built the time series of event networks with empirical spatial radii. We 
found that the network in Medellín is quite sparse with many isolated events: 
thefts tended to repel each other for distances less than 500  m within the same 
month. This is compatible with a regular or inhibitory point pattern (Bad-
deley et  al. 2015). Therefore, we decided to use the following bins (meters): 
D = {D1,D2,D3,D4,D5} = {500, 1000, 1500, 2000, 2500} , and constructed five time 
series of graphs {Gt ′ }Dq , Dq ∈ D , having an arrangement of data as shown in Table 1.

Given the importance of extracting all the information embedded in space and time 
through the linking of crime events, we analyzed all data from January 2003 to Decem-
ber 2015. By December 2015, a network contains all the motifs configured in space-time 
at a specific geographical distance (in this case, 500, 1000, 1500, 2000, 2500 m) (Fig. 3).

An attractive characteristic of this network is that they have a modular structure 
because most of them have one large component and two isolated components. 
Hence, the importance of analyzing some topological measures of these networks to 
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understand the spatio-temporal patterns that underline the events’ interactions. For 
this particular case, some results of the topological metrics of the event networks 
obtained in January 2005 in a radius of 1500  m are in Table  2. the spatiotemporal 

Table 1  Arrangement of network crime events in Medellín between 2003 and 2015, based on 
different spatial radii. Networks of monthly events, between 2003 and 2015 for each spatial distance 
defined by the geographical juxtaposition of the CPTED

Fig. 3  Event network of thefts in Medellín for all months in 2005 based on a spatial radius of D = 1500 . 
These networks are represented in space and reflect some suitable spatio-temporal patterns that allow to 
understand the spatio-temporal dynamics of crime events
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patterns of crime events in Medellin at radial distances of 1500  m have a mixture. 
Thus, within these network’s components we can identify vital information that helps 
to understand the dynamics of the phenomenon.

Change point analysis

We now compare the several spatial radii Dq of the event networks to choose one in 
terms of practical and pragmatic decisions. We first calculated the SS monthly using 

Table 2  Network statistics for GJan2005,1500

In summary, the network has 50 thefts occurred in this month, with 121 pairs that occurred at distances of less than 1500 m. 
The thefts moved away from past crimes 123 times (2–-path), in 93 times a theft occurred between two far-removed events 
(In-2-Stars), and in 98 times the successive events after crime were far between each other (Out-–2-Stars)

Fig. 4  SS in January 2003, March 2009, October 2009, December 2010, September 2012 and November 2012

Table 3  Estimated change of point based on the SS

The change in the networks comes above 1500 m

Radius point change (m) Total

500 0

1000 0

1500 20

2000 96

2500 40
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the R package (Csárdi and Nepusz 2006) (see an example in Fig.  4). Following the 
statistical treatment to detect the change point in each month, we obtained the esti-
mated point changes shown in Table 3. As a result, the change in the networks comes 
above 1500  m. Thus, we suggest building networks with a radius around 1000  m 
because the structure changes qualitatively for 1500 ms or more.

We then calculated the monthly similarities of Gt ′Dq using the Edge Difference Dis-
tances across Dq to classify event networks. Table 4 shows the results of spatial scan 
statistics that allow to identify the behavior of clusters at each distance. The goal of 
this table is to detect the distance at which there are homogeneous networks. That is, 
the distance at which most of event networks are clustered; using unsupervised clus-
tering, we found that graphs built with Dq ≤ 1500 ms are always together in the same 
homogeneous cluster. This leads to the same remark of the SS analysis. Consequently, 
we relate events for Dq ≤ 1500 m distances since gangs change their acting zones by 
a little margin given the fact that they typically have greater city areas where they act 
most of the time (Hegemann et al. 2011).

Motifs analysis with the ERGEN

We used ERGEN with 10000 permutation to generate a random sample of complex 
networks at each t ′ and Dq . ERGEN randomizes the time-order of events. This allows 
to analyze the dynamics of observed subgraphs presented in “Empirical random net-
work event generator (ERGEN) and motifs” section, without the bias of the network 
size. First, We consider counts for each time window (Table 5). Clearly these counts 
depend on the size of each network and on Dq . For each Dq ∈ D , we built a multivari-
ate time series in the form 

{

Yt ′ = (#In− 2− Star, #Out − 2− Star, #2− Path)t ′
}

Dq
 

presented in Table 5.
Note that from the results of Table 5, it is not possible to compare motifs given the 

difference in network size. To solve this issue, we standardized all time series, see 
“Empirical random network event generator (ERGEN) and motifs” section. Table  6 
shows results for standardized time series S−

1
2

t ′Dq
(Yt ′Dq

− Ȳt ′Dq
) . Now, it is possible to 

compare counts of different type of motifs and to detect those that are significant. 
These results are illustrated in Fig. 5.

The scaled counts seem to be compatible with a stationary uncorrelated process. 
Indeed, for each Dq we calculated the multivariate Ljung-Box Statistics (Tsay 2013) and 

Table 4  Summary of repeated clusters using hierarchical clustering based on edge difference 
distances

Radius point change Cluster

1 2 3

500 ♥ ♥ ♥

1000 ♥ ♥ ♥

1500 ♥ ♥ ♣

2000 ♥ ♣ ♣

2500 ♣ ♣ ♣

Total 18 53 85
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Table 5  Counts of subgraphs of the time series of event networks

Table 6  Transformed counts of subgraphs using ERGEN

Fig. 5  Time series of the scaled counts of motifs for D = 1500 m obtained with the ERGEN. See Eq (1)
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we did not reject the hypothesis of no cross-correlation (see Fig. 6). The number of past 
motifs does not have a linear association with the number of present motifs. Thus, we 
perform a Principal Component Analysis (see Fig. 7).

In other words, for each Dq , q = 1, . . . , z , the components are: 

1.	 D=500

Fig. 6  p-values of the Ljung-Box statistic for the multivariate time series Yt′Dq
 . From left to right, we show the 

statistic for Dq = 500 m, Dq = 1000 m till Dq = 2500 m

Fig. 7  Factor maps of the principal component analysis
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(a)	 Out − 2− Star Vs In− 2− Star+2− Path

(b)	 In− 2− Star Vs 2− Path

2.	 D=1000

(a)	 In− 2− star Vs 2− Path

(b)	 Out − 2− star Vs In− 2− star+2− Path

3.	 D=1500

(a)	 2− Path Vs Out − 2− star+In− 2− Star

(b)	 In− 2− Star Vs Out − 2− star

4.	 D=2000

(a)	 In− 2− Star Vs 2− Path + Out − 2− star

(b)	 Out − 2− star Vs 2− Path

5.	 D=2500

(a)	 Out − 2− star Vs In− 2− Star+Two− Path

(b)	 In− 2− Star Vs 2− Path

It is important to remark that the number of past subgraphs does not have a correlation 
with their future number in this case. However, we performed a Principal Component 
Analysis (PCA) to explore association regardless of the time effect. The principal com-
ponents under Dq ≤ 1000 m build the same subgraphs, and for Dq > 1000 m compo-
nents tend to disorganize. Again, there is a qualitative difference between the networks 
built under 1000  m and the rest of them. We thus reinforce our recommendation of 
constructing networks with a radius of roughly D = 1000  m. Therefore, the principal 
components of the number of motifs in networks built with radius 500 and 1000 m are 
similar, but different from the rest. Again, as in the macroscopic analysis, there is a quali-
tative difference between the networks built under 500 and 1000 m and the others. The 
recommendation is to construct networks with radius of roughly D = 1000 m. Further-
more, there is a negative linear association between subgraphs for each time window t ′ . 
Despite the absence of linear association across time, for each t ′ , the excessive occur-
rence of one shape implies less quantities of others (Table 7).

Table 7  Correlation matrix for the scaled counts in networks with D = 1000 m
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The results in Table  7 have direct consequences on decision-making. Police should 
move according to the dominant subgraph. For example, if 2-path is the dominant, after 
a theft occurs, police should make dynamic contours of 1000  m around the event till 
another crime appears, considering the likelihood that crime would not return. In fact, 
for D = 1000 m the classification of the dominating shape along time is possible using 
the individual coordinates in the principal components analysis, since the first compo-
nent separates graphs with many 2-paths (positive x axis), and graphs with many In-
2-stars (negative x axis); and the second component distinguishes graphs with many 
Out-2-stars (positive y axis). In fact, Fig. 8 represents the time series of the individuals 
projected on the first two components, with D = 1000 m.

Thus, positive values of the first time series (Fig. 8-top row represents the first compo-
nent) indicate that crime movements are dominated by 2-Path, meanwhile negative val-
ues represent an inward succession of crimes. For the second time series (Fig. 8-bottom 
row represents the second component), positive values indicate an outward sequence of 
thefts. Since these subgraphs are occurring more frequently in comparison to a random 
graph, we conclude that they are motifs.

Discussion and conclusions
We have proposed a general methodology for analyzing events embedded in space and 
time. We follow the network construction of Davies and Marchione (2015), but we have 
gone beyond and constructed a time series of event networks. This is a general method-
ology for any type of interacting events that evolve in space and time. The application 
of event networks for the detection of spatio-temporal patterns demonstrates the abil-
ity of capturing different types of configurations that generate these patterns. Although 
here we have focused on crime data, the method can be equally adapted to locations of 
infected people in a particular region to analyze the spread of the disease, social net-
works, or other types of health and environmental studies.

Fig. 8  Time series of the individual coordinates in the principal components x and y respectively
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The case of study in Medellín revealed numerous features. First, thefts tend to occur 
500 m further from past crimes within the same season when we constructed the time 
series of event networks. In other words, we recommend that police should patrol in big 
areas surrounding robberies (more than 500  m). Besides, our first approach to divide 
seasons was ad-hoc using months and another technique based on data would be valu-
able, see additional material in “Discussion and conclusions” section.

We defined a technique to recommend one particular distance radius to build the theft 
network. Macroscopic analysis indeed suggests that it is suitable to build the networks 
with roughly 1000 m, because graphs changed qualitatively from 1500 onwards; so it is 
better to keep shorter distances to relate events. We suggest repeating the analysis with a 
range of radii between 1000 and 1500 m to increase the accuracy of the network.

Since the number of subgraphs was masked by the size of network, we have proposed 
the empirical random network event generator to analyze them. With this approach, we 
found that quantities of past subgraphs are not correlated with future configurations 
but each month tends to be dominated by one shape between In-2-Star, Out-2-Star or 
2-Path guiding decision making in real time. The subgraphs presented in “Empirical ran-
dom network event generator (ERGEN) and motifs” section were motifs because they 
occurred more frequently in comparison to a random graph. It would be valuable to 
study the exogenous factors deeper and improve the ERGEN because it currently takes 
lots of computational time.

Based on crime theory, the results obtained with the application of event networks in 
the identification of patterns in the city of Medellín have two components that suggest 
the combination of several theories. The first component is that the types of motifs that 
frequently occur in networks, refer to crime patterns exercised by territorial controls. 
The empirical evidence that supports this statement is the interaction between criminal 
actors in their mission of being invisible to the authorities, developing a series of territo-
rial pacts in space-time, thereby increasing control in favor of the benefit obtained once 
the theft has been perpetrated. For example, there is a high similarity between crimes 
that occur late at night, especially at times where public force in the city is limited. 
According to crime theory, crimes committed late at night often tend to be controlled by 
actors with a high interference of territorial control. An emerging pattern of territorial 
control by illegal actors is observed by means of the sequential appearance of thefts in 
small areas for constant time slots.

The second component refers to aspects related to the CPTED (Crime Prevention 
Through Environmental Design), that can explain the significance and unexpected occur-
rences of motifs in this type of events. These results are in the macroscopic analysis (SS) 
since the changes in the properties of networks are due to the interaction of crimes with 
space-time. Thus, the configuration of neighborhoods becomes a determinant of the vul-
nerability of the victims. Therefore, the modification of the physical state of the neighbor-
hoods increases the diversity of crimes, and territorial controls are lost. Another element 
that reflected the connection with the CPTED theory is the topological number of 
changes of networks when increasing the radial distance, especially if the radius is larger 
than 1000 m. This dynamic is repeated in different geographical locations.

In case of applying this methodology to analyze motifs of order 4, which are a total of 
24, it would be necessary to apply dimensionality reduction methods, such as principal 
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component analysis to study the structure of correlation and determine the most relevant 
characteristics. Also it is necessary to incorporate the attributes of events in the analysis.

Appendix
Identification of the time slot

We here consider a note about a simple tool that can help to identify the time slot in 
case this is not clear based on the specific phenomena. Multiple correspondence analy-
sis (MCA) helps to choose the appropriate way to split times such that there is a clear 
correlation between hours and days, for example. This was not necessary in the case of 
hourly time slots of the police department because they have been stablished. Thus, we 
considered a correspondence analysis between days and hours (see Fig. 9), showing that 
light hours (between 6 and 18) on weekdays (Monday-Friday) report more thefts. Based 
on the distance between categories, the crimes on weekends are associated with early 
morning. So, this suggests the creation of a new variable named time slots Hour, a fac-
tor with two levels: Light hours (6–18), and Dark hours (19–5). The number of monthly 
thefts between the years 2003 and 2015 reveals a jump in 2013 and clearly suggests a 
non-stationary process. So, each month between the years 2013 and 2015 has a distinct 
behavior, supporting the idea of splitting the theft season.

The temporal and spatial ranges should come from informed decisions. Ripley’s K or 
pair correlation functions can also be used.

Table 8 shows the dynamics of event networks defined with police intervention action 
time slots. In studying the spatio-temporal dynamics of crime events in Medellín, it is 
necessary to analyze bands or areas of higher intensity and incidence defined by the con-
trol organisms. Table  9 shows how the algorithm works finding networks and interac-
tions of these spatio-temporal events at the same distances used in the monthly analysis 
and defined by the concepts of the geographical juxtaposition of the CPTED. One of the 
most important results obtained with this approach (see Table 10) is the change in the 

Fig. 9  First factorial map of MCA between hours and days
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radio of 1000 m, in comparison with the monthly analysis. The same behavior extends to 
a radius of 1500 m. The dynamics of crime events by time slots have a more significant 
geographical juxtaposition that dynamizes the configuration of a basic pattern for prior-
itizing risk management and crime prevention. To validate this result, Table 11 contains 
clusters based on the different geographical distances studied, and important and signifi-
cant changes can be observed in the motifs structure at distances less than 1500 m.

Table 8  Arrangement of network data crime events in Medellín in 2015, based on different spatial 
radius

Table 9  Summary of repeated clusters using hierarchical clustering based on edge difference 
distances, police time slot

Radius of point change (m) Total

500 0

1000 24

1500 74

2000 90

2500 24

Table 10  Estimated point change based on the SS, according to police time slots

Radius change of point Cluster

1 2 3 4

500 ♥ ♥ ♥ ♥

1000 ♥ ♥ ♥ ♣

1500 ♥ ♥ ♣ ♣

2000 ♥ ♣ ♣ ♣

2500 ♣ ♣ ♣ ♣

Total 21 101 82 8
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A tool for exploratory analysis: identification of spatio‑temporal patterns by time bands

To identify the spatio-temporal patterns by weekly time bands, for 2015, the typology 
and the number of reported crime events are key elements in the constructed data set. 
However, this analysis can be applied indifferently between 2003 - 2015 because the 
analysis is standardized.

For the first week of January, crimes do not present a defined spatio-temporal pattern 
since none of the defined motifs have a significant presence during each of the weekly 
time bands. That is, the crimes found in a radial distance of 500m are dispersed for this 
month. However, from the second week to the end of the month, the 2-Path motifs are 
predominant until week 4, followed by the Out-2-Star with two essential behaviors. The 
first one is in week three, where the Out-2-Star and 2-Path motifs are inversely related 
and in the same time slot. However, when carrying out an analysis between consecutive 
time slots, a spatial extension is observed that conditions sequencing of the events in 
the following time slot. Regarding the second behavior located in week four, the counts 
of the Out-2-Star and 2-path motifs are synchronous. This particular convergence of 
graphs configures the creation of zones with a high clustering coefficient (by triads) of 
crimes in the time bands where there is greater mobility of the population.

In February, the crime activity behavior is much more active because from the first 
week, the 2-Path motifs are repeated the most in each week of this month. Even as the 
weeks go by, it becomes more intense until it becomes concentrated in the early morn-
ing and afternoon time slots. In March, the first weeks are more intense between 06:00 
- 17:59 with the 2-path motifs, but then it reduces until disappearing in the last weeks of 
the month. This situation may be due to an accumulated effect from the previous month, 
which favors these motifs in the first part of March.

An important difference with the first quarter is in the number of motifs that were 
configured in this period; however, there is an important similarity with the previous 
quarter, and it is the predominance of the 2-Path motifs over the others. This result is 

Table 11  Identification of spatio-temporal patterns through the In-2-Star , Out-2-Star , 2-Path , triad 
motifs by weekly time bands of the first quarter of 2015, by distances of 500 and 1000

December (left), January (right)
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important because it allows us to infer that the conservation of this form speaks of a 
marked pattern in the first semester of the year and with greater intensity in the time 
bands of 06:00 - 17:59 between the second and fourth week. This result is an impor-
tant planning opportunity for the allocation of police resources to mitigate criminogenic 
events in a radius of 500 m.

In recent quarters, the importance of the 2-Path motif is preserved, as the most pre-
dominant pattern of the crime event in the city of Medellín in space-time. With a higher 
intensity since the second week (except September and November), something that is 
striking is that in every month in between, the last week is the most precise time to gen-
erate crime events throughout the city. This result is very interesting, because it seems to 
reinforce the hypothesis of the cost-benefit of criminal activity, since they are the dates 
on which most of the population receive pay for their work activities. Therefore, it is fre-
quent that the mobility of the population is mainly concentrated in the commercial areas 
of the city during the hours of 06:00 - 17:59.

The month of January continues the prevailing behavior of the 2-path motifs contin-
ues, followed by Out–2–Star and at the end of the month they promote the creation of 
clusters within the city, therefore it concentrates on some areas of the city, those coordi-
nates becoming the priority points for police management (Fig. 10).

Locations of thefts denounced in Medellín city (Colombia)
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