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(global) web of connections from the regional (local) one. Therefore, we propose a new
mesoscopic model called the component structure that decomposes the network into
local and global components. Local components are the dense areas of the network,
and global components are the nodes and links bridging the local components.

As a case study, we consider the unweighted and undirected world air transporta-

tion network. Experiments show that it contains seven large local components and
multiple small ones spatially well-defined. Moreover, it has a main global component
covering the world. We perform an extensive comparative analysis of the structure of
the components. Results demonstrate the non-homogeneous nature of the world air
transportation network. The local components structure highlights regional differ-
ences, and the global component organization captures the efficiency of inter-regional
travel. Centrality analysis of the components allows distinguishing airports centered

on regional destinations from those focused on inter-regional exchanges. Core analysis
is more accurate in the components than in the whole network where Europe domi-
nates, blurring the rest of the world. Besides the world air transportation network, this
paper demonstrates the potential of the component decomposition for modeling and
analyzing the mesoscale structure of networks.

Keywords: World air transportation network, Community structure, Component
structure, Mesoscopic structure, Core structure

Introduction

Air transport plays an essential role in the current context of globalization by reduc-
ing the distance between countries. Whether it is for the movement of millions of peo-
ple or goods, thousands of flights are made per day, impacting the global economy and
even public health (Colizza et al. 2006). Subsequently, the spread of the COVID-19 pan-
demic is mainly due to the world air transportation network. This pandemic leads to the
bankruptcy of several airlines and affects the tourism and trade industry. That is why
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researchers have been interested in the air transportation network for a long time to
study its structure, dynamics, and robustness (Zanin and Lillo 2013).

One can consider three levels of analysis of a network (macroscopic, microscopic,
mesoscopic). Macroscopic analysis characterizes the entire network topology through
a set of global measures. Microscopic studies investigate the network properties at the
node or link level. Mesoscopic analysis concerns groups of nodes or links sharing similar
features. There are two popular mesoscopic structure models: the community structure
and the core-periphery structure. Although there is no consensus on their definition,
both are related to the non-homogeneous density observed in real-world networks. The
common understanding is that communities are dense areas of the network sparsely
connected (Fortunato and Hric 2016). The core-periphery structure considers that a net-
work comprises a dense, cohesive core and a sparse, unconnected periphery (Borgatti
and Everett 2000). These mesoscopic structures are observed in most real-world net-
works. While they find numerous applications and explain a broad range of phenomena
in networked systems, none of them is well-suited to disentangle the local interactions of
nodes within their dense area from their global interactions with the other dense areas
of the network. Inspired by the works reported in Ghalmane et al. (2019), Guimera et al.
(2005), we propose a new mesoscopic representation of a network, called the component
structure. Indeed, the authors show that considering the interplay between intra-com-
munity links and inter-community links in a modular network allows defining effec-
tive centrality measures. While these works focus on computing centrality measures in
modular networks, our proposition is more general. Our goal is to distinguish between
the local and global influence of various groups of nodes or links. To this aim, the pro-
posed model decomposes a network into local components and global components. The
local components are isolated, dense parts of the network that can be uncovered using
a community detection or a multicore detection technique. The global components are
the subnetworks joining the local components. One extracts them easily, based on the
links between local components. Although it also relies on dense areas of the network as
the community or core-periphery structures, the component structure offers a comple-
mentary view of the network mesoscopic organization. Indeed, components are isolated
networks that can be analyzed separately. Furthermore, as the overlapping community
structure, it does not operate a partition of the network. Indeed, in overlapping commu-
nities, a node can belong to multiple communities. In the component structure, a node
can belong to a local and a global component. It is the case of the nodes linked to the
other groups.

Our work departs from recent studies focusing on robustness (Lordan and Sallan
2019), and multilayer modeling (Lordan and Sallan 2017; Dai et al. 2018) of the air trans-
portation network. Our main concern is to use the world air transportation network as
a case study to evaluate the ability of the component structure representation to get a
better understanding of the network mesoscopic organization. Therefore, we concen-
trate on the monolayer network representation of the world air transportation network.
However, one may note that the component structure can be interpreted as a multilayer
representation where the layers are the local components. Nodes and links connecting
the various local components form the global components. The main contributions of
this paper are as follows:
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1 We introduce an alternative mesoscopic network structure called the component
structure where local components are dense subnetworks, and the global compo-
nents account for their interactions.

2 We use the component structure to study the structure of the world air transporta-
tion network. The local components characterize its regional organization, and the
subnetworks forming the global components represent their interactions.

3 The regional characterization of the world air transportation network is not based on
geographical considerations, but it relies on the density of the interactions.

4 This representation allows us to distinguish the regional impact of an airport from its
influence worldwide.

5 We perform an extensive topological analysis of the component highlighting the

regional and inter-regional differences of the world air transportation network.

The rest of the paper is organized as follows. Section "Litterature review" reports a
review of related studies of the air transportation network. Section "Component struc-
ture of a network" introduces the definition of the component structure, and it gives an
algorithm to uncover it. Section "Uncovering the dense parts of the world air transpor-
tation network" describes the data used in the experiments and examines the network
community structure. Section "Local component structure of the world air transporta-
tion network" reports the analysis of the local component structure and section "Global
component structure of the world air transportation network" analyzes the global com-
ponent structure. Comparisons with the whole world air transportation network are
reported in section "Comparison of the world air transportation network with the large
components". Section "Degree centrality analysis" presents the results of a comparative
analysis of the degree centrality of the components and the world air transportation net-
work. Section "Core analysis" discusses the results of the core structure analysis. Finally,

we conclude in section "Conclusion”.

Litterature review

One can distinguish three levels of study of the air transportation network: worldwide,
regional and national. Based on this classification we present some influential contribu-
tions. For more information the reader can refer to the following surveys (Rocha 2017;
Lordan et al. 2014).

Several studies have been devoted to the properties of the worldwide air transporta-
tion network. In Guimera and Amaral (2004) Guimera et al. conduct the first exhaus-
tive analysis of the world air transportation network. Considering airports as nodes and
direct connections as links, the authors show that the degree and betweenness central-
ity exhibit a power-law distribution. Their work also reveals that highly connected cit-
ies are not the ones with high betweenness centrality values. This feature contradicts
the classical preferential attachment formation model with a geographical distance con-
straint (Yook et al. 2002). They propose a new model which generates nodes with large
betweenness and small degree based on geopolitical considerations. Indeed, only a few
airports in each country are permitted to connect to airports of other countries, regard-
less of the geographical distance.
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In Guimera et al. (2005), the community structure is investigated. Results show that
communities correspond to geographical areas. Seven city roles are defined based on the
proportion of intra-community links and extra-community links. Three roles distinguish
the highly connected nodes. “Provincial hubs connect cities in their community. The
“Connector hubs” are in the majority linked to cities outside their community. Finally,
“Kinless hubs” share their links uniformly with all the communities. In the four non-hub
categories, the “Ultraperipherical” nodes have no inter-community links. “Peripheri-
cal” nodes share most of their links with nodes in their community. “Nonhub connec-
tor” nodes have many links with nodes outside their community, and “Nonhub kinless”
nodes share their links uniformly with all the communities. The main contribution of
these works is to highlight the importance of geopolitical considerations in the forma-
tion mechanism of the air transportation networks and the various role of cities.

Inspired by fractality analysis, in Sun et al. (2017) the authors consider six types of
nodes from fine-grained to coarse-grained granularity: airport, city, spatial areas of 100
km diameter around hubs, spatial areas of 200 km diameter around hubs, sub-national
territory, country. Links are direct connections between nodes. The network analysis
shows that all networks are small-world and disassortative. Furthermore, the cluster-
ing coefficient increases and the average path length decreases as the aggregation level
varies from fine to coarse. The community structures uncovered by Louvain are quite
consistent. It contains about ten communities corresponding to different geographical
boundaries.

Cheung et al. (2020) explores the evolution of the world air transportation network
during the period 2006—2016. In this weighted network, nodes are airports, and the total
number of passengers per year weights the direct fly links. The authors propose a new
metric called Global Airport Connectivity Index, measuring the importance of airports
in global passenger movements. It combines degree, closeness, eigenvector central-
ity measures, flow betweenness, and an indicator of regional importance. Building on
the work of Guimera et al. (2005), they classify the airports into regional hubs or global
hubs, depending on their embeddedness in their community and their Global Airport
Connectivity Index. Results show that the average degree and the density increase over
time. Furthermore, North America, Russia, and China focus on developing regional
hubs, while West Europe and the Middle East concentrating on emerging global hubs.

Some studies focus on the regional air transportation network. In Lordan and Sallan
(2017), the authors investigate the European airport network where nodes are Euro-
pean cities, and links account for direct flights. It appears that the degree follows a two-
regime power-law distribution and that the network possesses the small-world property.
Using the k-core, they decompose the network into three layers: the core (max k-core),
the periphery (k-core of degree one), and the bridges between the core and the periph-
ery. The analysis shows that the core contains the global European cities. The leisure air
travel origins and destinations compose the bridges. Finally, the local destinations con-
stitute the periphery. A robustness study shows that the network is more vulnerable to
the isolation of a combination of core and bridge nodes.

In Dai et al. (2018), the authors investigate the evolution of Southeast Asian air
transportation over the period 1979-2019. Results indicate that the number of hubs
increases in this scale-free network. Disassortative behavior increases with time due to
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a more pronounced hub-and-spoke configuration of small airports for better accessibil-
ity. Decomposition of the network into a core-bridge-periphery structure shows that
the core comprises the regional capital cities, the most economically vibrant secondary
cities, and tourist destinations. The periphery cities are in remote areas with declining
connectivity. High volatility over time characterizes the bridge nodes. The number of
connections and passengers increases mainly in the core layer and the bridge layer at the
end of the 20th century.

Lordan and Sallan (2019) use the Official Aviation Guide (OAG) subdivision to par-
tition the world air transportation network into seven global regions (Africa, Asia,
Europe, Latin America, Middle East, North America, Southwest Pacific). In these net-
works nodes are cities and links represent direct connections. Analysis shows that these
small-world networks exhibit a two-regime power-law degree distribution. Targeted
attack experiments based on the network’s decomposition into core, bridge, and periph-
eral nodes show that regional networks with a large core are more resilient than net-
works with a smaller core.

Much more works concern the national air transportation network of major countries
(US, China, India, Brazil) Wandelt et al. (2019). We summarize the main findings of the
following related studies where nodes are airports and links represent direct flights. The
common characteristics of all these networks is that hey all share the small-world prop-
erty and are disassortative. In Guida and Maria (2007) the authors investigate the Italian
network during three non-overlapping periods (June 1, 2005, to May 31, 2006—July 16
to August 14, 2005—-November 2005). Results are consistent across networks. Indeed,
the degree distribution and the betweenness centrality follow a double Pareto law. Their
findings also suggest that the networks exhibit a fractal structure. Furthermore, the
clustering coefficients are comparable and lower than those observed in a correspond-
ing random network. It also appears that some highly connected airports have a small
betweenness centrality.

In Bagler (2008) the authors investigate the network of India. They consider an
unweighted directed network and a network weighted by the number of flights by week.
The unweighted network has a truncated power law degree distribution. It is disassorta-
tive with a clustering coefficient one order of magnitude higher than the corresponding
random network. The weighted network presents a hierarchical structure. Its analysis
shows that highly connected airports share almost all the traffic, forming high traffic
corridors.

The Chinese network has been extensively studied (Du et al. 2017, 2017; Yang et al.
2021). In Wang et al. (2011) the authors show that its structure diverges from other
national networks. Indeed, the exponential is a better fit than the power-law for the
degree distribution. The explanation lies in the influence of the three main metropo-
lises (Beijing, Shanghai, and Guangzhou). The network is disassortative with highly con-
nected cities surrounded by poorly connected cities with direct links. This phenomenon
gets more pronounced as the degree increases. Indeed, small airports in China tend to
supply direct links to the top hubs bypassing the less developed regional ones.

Extensive research on the topology and the dynamics of the U.S. air transporta-
tion network have been performed (Jia et al. 2014; Xu and Harriss 2008). In Cheung
and Gunes (2012) the authors analyze its evolution over the period 1991-2011, and
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the study reported in Siozos-Rousoulis et al. (2021) concerns the period 2001-2016.
Overall, one does not observe considerable changes in the topological properties of
the networks. The number of airports and flight routes has increased according to
user demand. The network exhibits a truncated power law degree distribution. It
is highly disassortative, and this trend grows with time, suggesting a pronounced
evolution towards a hub and spoke structure over time. Similarly, with the world air
transportation network, some high betweenness centrality nodes such as Anchorage
cannot be considered hubs. The clustering coefficient decreases over time, and the
average shortest path increases. It is in line with hub and spoke organization where
peripherical airports connect to hubs providing long-distance flights.

Several papers are devoted to the analysis of the Brazilian air transportation net-
work (da Rocha 2009; Costa et al. 2018; Oliveira et al. 2020). In Couto et al. (2015),
the authors consider three networks: the network of national flight, the network of
international flight and the network with both type of flights. The network is scale-
free. Six communities corresponding to geographical areas (“North’, “Center/North’,
“Northeast’, “Minas Gerals’, “Southeast’, “South/West”) are discovered by Louvain.
The network is not resilient to targeted attack. Viracopos and Guarulhos are the key
airports in the national network and for international connections, and they have
the largest values of degree centrality and betweenness centrality. In addition, the
number of routes decreases while the number of passengers increases, causing a
higher level of occupation of aircrafts.

The analysis of the Australian network (Hossain and Alam 2017) shows that it
is scale-free. Its clustering coefficient is higher than its random network version
indicating a cohesive network where passengers can be easily rerouted. The aver-
age path length suggests that, on average, a passenger can reach every destination in
3 flights. Most of the traffic goes through an interconnected group of high-degree
nodes surrounded by low-degree neighbors. Centrality analysis shows that the more
connected nodes do not necessarily exhibit the largest betweenness and closeness
centrality values.

This literature review’s main findings are that the topological properties are pretty
consistent across the various levels of studies. Indeed, the degree and betweenness
centrality exhibit a heavy tail distribution. Networks are small world and disassorta-
tive, with most nodes poorly connected to a few highly connected nodes. Neverthe-
less, the preferential attachment mechanism is not sufficient to explain the formation
of the networks. One needs to consider geographical constraints (borders) and polit-
ical and economic issues to get a better understanding of the network’s topology.
The clustering coefficient is higher than in random networks, and the average path
length allows to join any destination in few hops. Another critical finding concerns
the mesoscopic properties of the world air transportation network. Some studies
demonstrate that it exhibits a community and a core-periphery structure.

Component structure of a network
This section introduces the definition of the component structure and an algorithm
to uncover it based on the community structure.
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Definition

Community structure and core-periphery structure models assume that the density
is not homogeneous in a network. Dense areas form either the communities or the
core elements of the networks. These two mesoscopic representations share a dif-
ferent view of the remaining nodes or links. In the community structure approach,
communities are supposed to be sparsely connected by inter-community links. In
the core-periphery structure, peripherical nodes are poorly connected to each other
and with core nodes. To define the component structure, we retain both approaches’
common points of view, i.e., the network contains dense areas. Those dense areas are
localized in the network. Indeed, the vast majority of nodes interact with nodes con-
tained in their community or core. That is the reason why we call them local com-
ponents. Indeed, they share information with the rest of the network through a set
of proxy links and nodes that have a more global view of their environment. These
subnetworks tie together the local components. Consequently, the definition of the
component structure is quite simple. A network contains two sets of subnetworks: 1)
The dense parts of the network form the local components 2) Nodes and links shared
by any two local components form the global components. Note that once the dense
areas are extracted, global components identification is straightforward. Furthermore,
one can exploit the various definition of dense areas proposed either in the com-
munity detection literature or the multi-core-periphery studies to extract the local
components. In the following, we propose an algorithm that uses the community
structure approach.

Component structure detection algorithm
Building on the work of Ghalmane et al. (2019), we propose a component structure
extraction algorithm exploiting the community structure. Remember that a network
is decomposed into local components and global components. The local components
are isolated dense parts of the network. The global components are subnetworks join-
ing the local components.

The algorithm to uncover the component structure of a network proceeds as
follows:

1 Uncover the dense part of the network: Use a community detection algorithm to
uncover the community structure.

2 Extract the local components: Remove the inter-community links from the commu-
nity structure to form the local components.

3 Extract the global components: Remove the intra-community links from the com-
munity structure, and the subsequent isolated nodes.

Note that this representation is redundant. Indeed, a node can belong simultaneously
to a local component and to a global component. Such nodes at the frontier of the
communities are important locally and globally.

Figure 1 illustrates the decomposition process of a network into its components
on a toy example. First, one uses a community detection algorithm to partition the
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Fig. 1 The component structure detection algorithm. First, the community structure of the network is
uncovered. Second, the local components are obtained by eliminating inter-community links from the
community structure.Third, the global components are obtained by eliminating intra-community links and
subsequent isolated nodes from the community structure

network into a set of non-overlapping communities. Inter-community links joining
nodes in different communities are black. Nodes and intra-community links that bind
nodes in the same community share the same color. We observe three communities
respectively colored in red, yellow, and green. Removing the inter-community links
allows us to isolate the three local components. Each community forms a local com-
ponent, and it carries only local information. One obtains the global components
removing the colored links from the community structure (intra-community links)
and the subsequently isolated nodes. Global components act as bridges between the
dense areas of the network. They are important actors in the information diffusion
between the various dense parts of the network. As components are isolated sub-net-

works of the initial network, one can proceed to any type of topological analysis.

Uncovering the dense parts of the world air transportation network

In this section, we present the data set used in the experiments. We perform a compara-
tive analysis of the community structure uncovered by two popular community detec-
tion algorithms used to extract the dense parts of the network.

Data

Information on world flights has been collected from FlightAware. The data covers six
days (between May 17, 2018, and May 22, 2018), ensuring the inclusion of less frequent
connections (Alves et al. 2020). Nodes represent airports, and links represent direct
flights between two airports. For the sake of simplicity, the network is undirected and
unweighted. However, one can consider weighted and directed networks using the
appropriate analysis tools. The network contains 2734 nodes and 16,665 links. Table 1

reports its basic topological properties.
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Table 1 Basic topological properties of the world air transportation network

N lE| d L u ¢ A n

2734 16665 12 3.86 0.004 0.26 —0.05 0.09

N is the network size. |E| is the number of edges. d is the diameter. L is the average shortest path length. 4 is the density. £ is
the transitivity also called global clustering coefficient. 4 is the assortativity also called degree correlation coefficient. nis the
hub dominance

Community detection

The first step of the component structure detection algorithm consists in uncovering the
dense part of the network using a community detection algorithm. Community detec-
tion is a very active field of research. Classically, the goal is to build a network partition
into well-separated groups of nodes densely connected. In some situations, especially in
social networks applications, nodes can belong to several groups. Therefore, overlapping
groups are also investigated. Numerous algorithms inspired by different paradigms have
been proposed so far. They are based on different methods such as modularity optimiza-
tion, random walk or label propagation, among others. For complete coverage on this
fundamental issue, one may refer to surveys reporting comparative studies, challenges,
and open problems (Orman et al. 2012; Fortunato and Hric 2016; Javed et al. 2018; Papa-
dopoulos et al. 2012; Chunaev 2020; Cherifi 2018; Cherifi et al. 2019).

In our experiments, we use two influential non-overlapping community detection
algorithms, Louvain (Blondel et al. 2008) and Label propagation (LPA) (Raghavan et al.
2007). The goal is to compare the uncovered community structures. Indeed, the com-
munity structure can be represented by various partitions with competitive quality score
(Kirkley and Newman 2021).

Louvain is a modularity-based algorithm. Its fundamental principle is to maximize
the modularity at each call of the procedure. Two steps are repeated iteratively. Initially,
each node represents a community. Then, one computes the gain in modularity obtained
by moving each node in the community of its neighbors. The process stops when no
modularity improvement is possible. The second step consists of creating a new network
from the communities identified in the first step.

LPA is based on the label propagation method. It works as follows. At the initializa-
tion, assign a label at random to each node. Labels change at each iteration. Indeed, the
nodes adopt the most common label of their neighbors until label change is no more
possible. Groups of nodes sharing the same label form the communities uncovered by
LPA.

Community structure analysis

We compare the community structures using two quality score functions: modularity
and mixing parameter (Jebabli et al. 2018). Modularity compares the proportion of
intra-community links with the ratio of expected links in a random network model.
Typically, one considers that the community structure with the highest modular-
ity corresponds to the best partition. The mixing parameter is the fraction of inter-
community links. It reflects a strong community when it is near zero. The community
structure with the smallest mixing parameter is considered the best one. Table 2
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Table 2 Quality metrics of the community structures uncovered by Louvain and LPA community
detection algorithms: modularity, mixing parameter, NMI

Modularity Mixing parameter NMI
Louvain 0.63 0.13 0.77
LPA 0.59 0.14

 M2airports Do 105 airports
b . g 672 airports il )

657 airports

A B

Fig. 2 The community detection algorithms uncover similar communities. a Louvain reveals 3 communities
in North and Central America-Caribbean (airports in red), East-Southeast Asia (airport in black), and in
Russia-Central Asia-Transcaucasia (airports in blue). b LPA finds similar communities in these areas

reports the results related to the quality metrics of the community structures uncov-
ered by the two algorithms. The modularity values show that both community struc-
tures are well-defined. Moreover, it reveals that the community structure uncovered
by Louvain is of better quality. The mixing parameter values indicate a low proportion
of inter-community links. It corroborates the strong community structure measured
by modularity.

Although both algorithms uncover well-separated and dense communities with few
inter-community links, the community structures differ. Indeed, Louvain reveals 27
communities, while the community structure identified by LPA contains 130 com-
munities. This result is not unusual. A wide range of different community structures
can lead to community divisions with comparable quality scores. Even though these
partitions differ, they are consistent. They relate through a set of “building blocks”
that usually appear together in the same community (Riolo and Newman 2020). The
Normalized Mutual Information (NMI) measures the information shared by two par-
titions. It is widely used to compare community structures (Orman et al. 2012). When
the NMI is equal to one, the two partitions are identical. When it is null, the two
partitions are independent. Its high value reported in Table 2 confirms that both com-
munity structures have a lot in common.

One can classify the communities uncovered by the community detection algo-
rithms into two types. The first type corresponds to large size communities cover-
ing large geographical areas. Typically, these communities include several countries
and contain hundreds of airports. The second type of community covers small geo-
graphical areas (within a country or fewer countries) and has less than one hundred
airports. Louvain identifies seven large communities, and LPA discovers four large
communities. Among these communities, three are of comparable size and cover
the same geographical areas. Figure 2 represents the airports in these communities
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491 airports .-y 655 airports

491 in Europe

. 164in Africa-
Middle East-India

A B

Fig. 3 Communities uncovered by Louvain are grouped in a single community by LPA. a Louvain reveals two
communities in Europe (airports in brown) and Africa-Middle East-Southern Asia (airports in lavender). b LPA
finds a unique community covering the same geographical area

336 airports. ,

A B 25 air;;orts

Fig. 4 Large communities uncovered by Louvain split into multiple communities by LPA. a Louvain reveals
3 communities. The indigo points represent the airports located in Africa-Middle East-Southern Asia. The
orange points represent the airports located in Oceania. The cyan points represent the airports in South
America. b LPA uncovers 57 communities in the same geographical areas. There are 16 communities in
Africa-Middle East-Southern Asia, 28 in Oceania, and 13 in South America

with the same colors. They are located respectively in North and Central America-
Caribbean, East and Southeast Asia, and Russia-Central Asia-Transcaucasia. The
fourth large community uncovered by LPA regroup into a single community, airports
belonging to different communities uncovered by Louvain. Figure 3 illustrates this
behavior. Indeed, parts of European (brown color) and Africa-Middle East-Southern
Asia (lavender color) communities uncovered by Louvain merge in the same com-
munity (brown color) with LPA. Finally, the three other large communities uncovered
by Louvain (Africa-Middle East India, South America, Oceania) split into multiple
communities covering smaller geographical areas with LPA. Figure 4 illustrates this
behavior. For example, LPA divides into 28 communities the South America (orange
color) community of Louvain.

Local component structure of the world air transportation network

This section reports a comparative analysis of the macroscopic topological properties
of the local components. To this end, we use the community structure uncovered by
the Louvain algorithm to extract the components. Louvain uncovers 27 communi-
ties. Consequently, there are 27 local components. One can classify them according
to their size into two categories. The seven large local components contain more than
100 nodes, and the size of the 20 small local components ranges from 2 to 60. Large
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7.
- 112 airports

1.
657 airports

"~

215 airports 336 airports

Fig. 5 The seven large local components. (1) Airports in the North and Central America-Caribbean are in red.
(2) Airports in the European component are in black. (3) Airports in the East and Southeast Asia component
are in blue. (4) Airports in the Africa-Middle East and India component are in green. (5) Airports in the
Oceania component are in orange. (6) Airports in the South America component are in brown. (7) Airports in
the Russia-Central-Asia-Transcaucasia component are in indigo

components cover ample geographical areas, including several countries, while small
components are localized in a single country.

Numerous schemes exist for partitioning the world into regions. The OAG divides it
into seven regions: Europe, North America, Latin America, Africa, Asia, Middle East,
Oceania. The subdivision corresponding to the local components is slightly different (see
Fig. 5). Indeed, the large components cover the following regions: North-Central Amer-
ica-Caribbean (657 airports), Europe (493 airports), East-Southeast Asia (416 airports),
Africa-Middle East-Southern Asia (336 airports), Oceania (234 airports), South America
(215 airports) and Russia-Central Asia-Transcaucasia (112 airports). Altogether, they
include 90% of airports in the world. Note that the component division does not reflect
strict geographical divisions. It instead corresponds more to the political, cultural, his-
torical, and economic divide. For example, some African airports located in Morocco
and Tunisia belong to the European component because of the solid economic and his-
torical ties these countries share with Europe.

Analysis of the large local components

Basic macroscopic topological properties

The bar plots of Fig. 6 report the values of basic topological properties (diameter, aver-
age shortest path, density, transitivity, assortativity, hub-dominance) used to compare
the structure of the large local components. The shortest path length between node i
and node j is the minimal number of links between those two nodes. The diameter is
the largest shortest path between any two nodes of the network. It informs us about the
longest route. Results show that between six or seven flights are needed to reach the
most distant airports in the large local components. It is not the case in the Oceania and
Russia-Central Asia-Transcaucasia components. Indeed, in the Oceania component, a
maximum of nine flights are required. Whereas in the Russia-Central Asia-Transcauca-
sia component, one reaches the most distant airports in four flights. Consequently, if we
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Fig. 6 Basic topological properties of the large components. Each bar plot concerns a different property
(Diameter, Average shortest path, Density, Transitivity, Assortativity, and Hub dominance). The blue bar
corresponds to the large local component. The red bar corresponds to the large global component. For
assortativity, absolute values are plotted, but in reality, the values are negative

consider this worst-case scenario, it is better to travel in Russia-Central Asia-Transcau-
casia, and one should avoid Oceania.

The average shortest path length indicates how many flights are needed on average
to reach a destination. North- Central America - Caribbean and East-Southeast Asia
components are comparable with around 2.8 flights. It is easier to travel in Europe
with its average shortest path of 2,58. Destinations are easy to reach in the Russia-
Central Asia-Transcaucasia component. Indeed, one needs a little bit more than two
flights on average to reach his goal. One needs more flights to reach his destination

Page 13 of 50
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on average in Oceania, Africa, Africa-Middle East-Southern Asia, South America.
Indeed, the average shortest path ranges from 3,15 to 3,5 in these regions.

Let N the number of nodes and |E| the number of edges of a network. Its density
measures the proportion of connected nodes as compared to the maximum number of
possible connections. It is given by:

_2xE| :
F=NN -1 (1)

Density is a marker of easiness to travel. Ideally, one would like to reach any destina-
tion with one flight. However, local components are all sparse for economic reasons.
This parameter highlights different situations. Russia-Central Asia-Transcaucasia ranks
first with a density value of 0.068. Europe (0.042) and East-Southeast Asia (0.029) fol-
low. For the remaining components, the gap broadens. Indeed, South America (0.022)
and Africa-Middle East-Southern Asia (0.021) have comparable densities. Oceania and
North- Central America—Caribbean components (0.017) are at the end of the scale.
Transitivity measures the proportion of triangles into a network. It refers to the prob-
ability that two nodes connected to a third one are also directly connected. It is given by:

__ 3 number of triangles

number of triplets 2)
Transitivity captures the local cohesiveness of a node. It reflects the easiness of reach-
ing neighboring airports. The larger its value, the more easily passengers can be trans-
ferred to reach their destination if a direct flight becomes unavailable. From this point
of view, Europe and East and Southeast Asia components are the most transitive, with
around one-third of triangles. Transitivity is slightly below for the Africa-Middle East-
Southern Asia (0.28) and North- Central America—Caribbean (0.27) components. One
step beyond, Russia-Central Asia-Transcaucasia (0.23) and South America (0.22) pre-
sent similar behavior. Finally, the Oceania component is the less cohesive, with 18% of
triangles.

Assortativity or degree correlation indicates the mixing pattern of nodes. Assorta-
tivity value ranges between —1 and 1. If it is close to 1, nodes with a similar degree
tend to be linked together. In this case, the network is assortative. Instead, if it is close
to —1, low degree nodes tend to associate with high degree nodes. In this case, the
network is disassortative. All the components are disassortative. This general pattern
corroborates the tendency of hub-and-spoke organization, where a few intercon-
nected hubs collect the traffic of peripherical low-degree destinations. Based on the
observed values, we can form three groups. The first contains Russia-Central Asia-
Transcaucasia, South America, North- Central America—Caribbean components with
transitivity ranging from —0.39 to —0.32. The second group including Oceania, East,
and Southeast Asia, and Europe, with values ranging from —0.22 to —0.20 exhibits
a less pronounced disassortative pattern. Finally, Africa-Middle East-Southern Asia
with a value of —0.15 has a more homogeneous mixing. Indeed, airline deregulation
is not yet fully implemented for political and geographical reasons. Hub dominance
represents the proportion of nodes connected to the highest hub within a community
(Lancichinetti et al. 2010). In this work, we adopt the definition for the components.
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In this case, it represents the proportion of nodes connected to the largest hub within
a component. It is computed as the ratio between the degree of the largest hub of the
component ¢ and the size of the component c. Its value ranges from O to 1. Let k;, the
degree of node i, n, the number of nodes of a component ¢ and K = {ky, k2, ... kn_ }
the set of the nodes’ degrees. The component hub dominance is defined as follows.
max(K)
ne) =——- (3)
ne
Hub-dominance allows identifying the level of centralization of the components. The
higher the hub dominance, the more fragile the network to a targeted attack on its
principal hub. We can distinguish three categories of components. The first category,
the Russia-Central Asia-Transcaucasia component, is highly centralized. Indeed, the
Domodedovo airport has a direct link with 73% of the airports. This ratio indicates over-
centralization, with the majority of people from all over the region traveling through
Moscow. This predominance is prejudicial to interregional relations. In the second cat-
egory, the major hubs share direct flights with around one-third of airports in their com-
ponents. Amsterdam, Beijing, and Atlanta international airports are those major hubs
respectively in Europe, East, and Southeast Asia, and North- Central America — Car-
ibbean components. In the last category formed by Africa-Middle East-Southern Asia,
Oceania, and South America, the main hubs (Dubai, Sydney, and S&o Paulo) are less
influential. They allow reaching directly around 20% of the destinations in their region.
Small-world networks have short path lengths and high clustering. It is a common
property of numerous real-world networks. Instead, small path length and low clus-
tering are characteristics of random networks. Table 3 reports the clustering coef-
ficients and the average shortest path lengths of the seven large local components and
their corresponding random networks. It shows that the clustering coefficients C of
the components are significantly higher than random network values C,,,,;. Further-
more, the average shortest path length values L of the large local components are in
the same order of magnitude as their corresponding random network L,,,,;. There-

fore, one can conclude that large local components are small-world.

Table 3 Small-world property of the components

c C rand L L rang
North and Central America-Caribbean 0491 0.0185 2.88 2.892
Europe 0.462 0.044 258 2.348
East and Southeast Asia 0.511 0.028 2.89 2.687
Africa-Middle East-Southern Asia 0.504 0.0187 3.25 3.178
Oceania 0481 0.010 35 4.039
South America 0.359 0.015 3.15 3.528
Russia-Central Asia-Transcaucasia 0495 0.069 2.23 2.531
Large global component 0.11 0.014 3.28 313
World air transportation network 0.46 0.005 3.86 345

Cand Cygng are respectively the clustering coefficients of the local components and the random network with same number
of nodes and links. L and L 44 are respectively the average shortest path length of the components and their corresponding
random network
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Fig. 7 Degree distributions of the large local components. Empirical distribution (dot), estimates (line).
The distributions under test are: power law (PL), truncated power law (TPL), log-normal (LN) and stretched
exponential (S-EXP). The values in bold are the parameters of the best fit according to the Kolmogorov—
Smirnov test

Table 4 Kolmogorov-Smirnov goodness of fit values (KS-test) for the degree distribution of the

components
Power law Truncated Log-normal Stretched
power paw exponential

North and Central America-Caribbean 0.073 0.012 0.011 0.01
Europe 0.136 0.024 0.038 0.032

East and Southeast Asia 0.105 0.157 0.025 0.023
Africa-Middle East-Southern Asia 011 0.021 0.012 0.015
Oceania 0.150 0.078 0.050 0.056
South America 0.061 0.014 0.015 0.027
Russia-Central Asia-Transcaucasia 0.176 0.051 0.033 0.035
Global component 0.103 0.025 0.024 0.123

Distributions under test are power law, truncated power law, log-normal, and stretched exponential. The smallest value (in

bold) corresponds to the best fit

Degree distribution

The degree of a node corresponds to its number of links. The degree distribution P(k) of a

network is estimated using the fraction of nodes in the network with degree k. The degree

distribution of many real-world networks is generally well-approximated by a power law

(P(k) = k—¢, where « is a positive exponent). Figure 7 represents the empirical degree

distribution and four density estimates (power-law, truncated power-law, log-normal,
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stretched exponential) of the large local components. The power law possesses a single
parameter, while its alternatives have two degrees of freedom. Table 4 reports the values
of the Kolmogorov-Smirnov (KS test) goodness of fit test. The smaller the value, the bet-
ter the fit. Note that the two-parameters density functions outperform the power-law in
any case. These results corroborate previous studies (Broido and Clauset 2019). Indeed,
the power law is a good fit for a wide range of degrees before deviating for large degrees.
One can explain this phenomenon with the cost of adding new destinations. Indeed, the
preferential attachment mechanism, typical of scale-free networks, where new nodes
connect preferentially to highly connected nodes, tends to weaken. Due to space and
time constraints, highly connected airports tend to limit their connections. Therefore,
the distributions with two parameters distributions better approximate this behavior.
Note that none of the distribution under test is a better fit for all the local components.
Whatever, they are very similar, and they are all characterized by heavy-tails.

If we refer to the power-law exponent, it seems that the large local components
exhibit a hub-and-spoke configuration. Three categories emerge. The first category
with the smallest exponent value concerns the European component. As it includes the
most significant proportion of hubs, it is the one with the less pronounced hub-and-
spoke structure. The North and Central America-Caribbean, East and Southeast Asia,
Africa-Middle East-Southern Asia, and Russia-Central Asia-Transcaucasia components
form the second category. These components have almost the same proportion of hubs.
Finally, the last category includes the Oceania and South America components. These
components have the smallest proportion of hubs. The vast majority of the air traffic
goes through these hubs. Thus, these components are more hub-and-spoke. Remember
that the hub-and-spoke configuration is economically efficient, but it is more vulnerable

to targeted attacks.

Degree-degree distance distribution of the local components

The power law assertion for the degree distribution is controversial (Broido and
Clauset 2019; Voitalov et al. 2019). Thus, the authors of Zhou et al. (2020) pro-
pose to characterize real-world networks using the degree-degree distance 7,
n@,j) = max{k,',kj}/min{ki,lg}. n is defined for each link. They show that for many
real-world networks, the power law is a better fit for the degree-degree distance dis-
tribution as compared to the degree distribution. This feature is more pronounced for
dense networks.

The degree-degree distance distribution of each large component is estimated. The
results reported in Fig. 8 show that this distribution describes better the scale-free prop-
erty of the components. Indeed, for three components (East and Southeast Asia, Africa-
Middle East-Southern Asia and Russia-Central Asia-Transcaucasia), their degree-degree
distance distribution follows a truncated power law, which is a power law with a cut-
off. Whereas, the degree distribution of two components follow a truncated power law.
The degree-degree distance of the North and Central America-Caribbean, Europe, and
South America components can be better modeled by a Log-Normal law. In the Oce-
ania component, the degree-degree distance distribution follows a stretched exponential
(Table 5).
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Fig. 8 Degree-degree distance distributions of the components. Empirical distribution (dot), estimates (line).
The distributions under test are: power law, truncated power law, log-normal and stretched exponential. The
values in bold are the parameters of the best fit according to the Kolmogorov-Smirnov test

Table 5 Kolmogorov-Smirnov goodness of fit values (KS-test) for the degree-degree distance

distribution.
Power law Truncated Log-normal Stretched
power law exponential

North and Central America-Caribbean 0.117 0.021 0.009 0.014
Europe 0.091 0.013 0.01 0.025
East and Southeast Asia 0.101 0.012 0.019 0.022
Africa-Middle East-Southern Asia 0.127 0.013 0.022 0.017
Oceania 0.146 0.282 0.060 0.054
South America 0.136 0.190 0.025 0.030
Russia-Central Asia-Transcaucasia 0.103 0.022 0.025 0.024
Global component 0.103 0.022 0.025 0.024

Distributions under test are power law, truncated power law, log-normal, and stretched exponential. The smallest value (in
bold) corresponds to the best fit

Distribution of airports by country

Figure 9 A illustrates the distribution of the number of airports across the large local
components. One can see that they are a bit unevenly distributed. Indeed, the three
most significant components (North-central America-Caribbean, Europe, East-South-
east Asia) contains almost two-thirds of the airports (64%). The Fig. 9b—h report the dis-
tribution of airports by country in the seven large local components. We can distinguish
three typical cases. In the first case, one country predominates heavily. It is the case in
the North America-Caribbean component. Indeed, 61% of the airports are located in
the United States. It is followed by Canada, with 14% of the airports. The remaining
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Fig. 9 Figure a represents the proportion of airports in each main local component of the world air
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Fig. 10 The twenty small local components. The blue circles show the significant small components (size
greater than five airports). The green circles show the small components with sizes up to five airports. The
geographical areas not appearing in the figure do not contain small components

countries have a share far below 10%. The same situation characterizes the Russia-Cen-
tral Asia-Transcaucasia component. Russia has 70% of the airports. Kazakhstan comes
in the second position with 14% of airports.

In the second case, the gap between countries is less pronounced. (See Fig. 9d,f,g).
It includes the East and Southeast Asia, Oceania, and South America components. In
these components, the two first countries share more than 50% of the airports, and the
others generally contain less than 10%. For instance, in the East and Southeast Asia com-
ponents, China has the largest ratio of airports (37%), followed by Japan (14%). Australia
(46%) and New Zealand (14%) dominate in Oceania. Brazil (37%), Colombia (20%), and
Argentina (16%) dominate in South America.

The last case concerns the European and Africa-Middle East-Southern Asia components

(See Fig. 9c, e). In these components, the proportion of airports by country is more evenly
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distributed. For instance, France covers 10% of airports, and the United Kingdom has 9% of
airports in the European component. In Africa-Middle East-Southern Asia, 18% of airports

are in India and 11% in Iran.

Analysis of the small local components

Figure 10 presents the airports included in the twenty small local components. They group
airports from a single country or state. Among these components scattered in North and
Central America-Caribbean, Europe, and Africa-Middle East-Southern Asia areas, nine
contain less than five airports (3 in Canada, 3 in Europe, 2 in Africa). In the following,
we consider only significant small components containing more than five airports in the
analysis.

Alaska possesses five significant small local components. Three of comparable size serv-
ing around thirty airports and two with fourteen and eight airports. As many towns cannot
be reached by road, air transportation is well-developed, leading to the small local com-
ponent organization in the different regions of Alaska. One to three airports in each com-
ponent receives flights from outside and serves cities located inside the component. For
example, the Fairbanks Airport serves the majority of the airports in its component (See
Fig. 17 in appendix).

Canada contains two significant small components. The largest one connects 60 airports
in the three territories: Northwest, Yukon, Nunavut.In these areas, cities are mainly reach-
able by plane due to climatic conditions and lack of road infrastructure. This component
is well-connected with the rest of the country. Indeed, 12 airports share external liaisons
with 17 airports outside the component. The second small component located in Ontario
contains 25 airports. This star-shaped component is centered in Sioux Lookout, “The Hub
of the North” It is reachable by three airports (Thunder Bay Airport, Red Lake Airport, and
Kenora Airport) (see Fig. 17 in appendix).

Europe has three significant small local components in Norway, Green-Land, and Scot-
land, with respectively 25, 10, and 7 airports. Located in northern regions, they are not easy
to reach by other modes of transportation. The component in Norway is well-connected
to the rest of the network, with ten airports sharing 23 liaisons with airports in other com-
ponents. The Scottish component covers Orkney, an archipelago to the north of mainland
Scotland. Only the airport of the largest city (Kirkwall) allows reaching this star-shaped
component. Finally, one can attain the Green Land small local component that relies heav-
ily on air transportation through two major airports (Kangerlussuaq and Godthaab/Nuuk)
(see Fig. 17 in appendix).

Finally, in Africa-Middle East-Southern Asia, the most significant small local compo-
nents are in Algeria (9 airports) and Kenya (6 airports). In Algeria, these airports, located
in the Sahara, serve tourist and oil-producing areas. The Tamanrasset and Ouargla airports
connect the other airports of this component. The airports that are in the small local com-
ponent in Kenya regroup touristic venue. The Nairobi Wilson Airport is the center of this

star-shaped component (see Fig. 17 in appendix).
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Table 6 Basic topological properties of the significant small local components (size greater than five

airports)

Location N |E| d L Lyana C C rand u 4 A n
Canada 60 80 12 5 3.77 0.28 0.05 0.045 0.2 —0.18 0.18
Canada 25 27 5 245 3.38 0.17 0.108 0.09 0.056 —0.57 0.7
Alaska 29 33 6 2.8 3.20 02 0.065 0.08 0.07 —0.56 0.68
Alaska 27 37 5 2.5 32 0.45 0.037 0.11 0.17 —0.38 0.62
Alaska 27 40 4 24 2.80 0.6 0.078 0.11 0.24 —0.44 0.54
Alaska 14 15 4 2,25 2.74 0.08 0.217 0.16 0.063 —0.63 0.62
Alaska 8 [§ 3 0.6 2.35 0.04 0.112 0.21 0 —0.75 0.5
Norway 25 49 4 2.37 2.37 0.68 0.142 0.16 0.39 —043 0.5
Greenland 10 14 4 2 2.08 0.49 0229 0.31 0.38 —04 0.67
Scotland 7 1" 2 147 1.57 0 0523 0.52 0.5 —047 1
Algeria 9 10 4 2 1.78 0 0.33 0.28 0 —0.73 0.5
Kenya 6 5 3 1.86 2.06 0 0 033 0 —0.74 0.8

N is the network size. |E| is the number of edges. d is the diameter. L is the average shortest path length. L,5p4 and Cgng are
respectively the average shortest path and the average clustering coefficient of the corresponding random network. it is
the density. ¢ is the transitivity. A is the assortativity also called degree correlation coefficient.7 is the hub dominance

Basic macroscopic topological properties

Table 6 reports the basic characteristics of the small components and the average short-
est path length and transitivity of equivalent random networks. Note that we do not esti-
mate the degree distribution because the components size is too small.

The diameter of the most significant small component in Canada is high. Indeed, it
takes twelve flights to travel between the most distant airports. Diameter is also high for
the small components located in the USA, Canada, Norway, Green Land, and Algeria. It
ranges from 6 to 4. Travel is easier in the Scotland component with a diameter of 2, and
Kenya with at most three flights to reach the most distant destinations.

One can distinguish three categories of components based on the average shortest path
lenght values. The first category contains the largest small local component, covering
the Canadian territories. An average of five jumps is necessary to join any two airports.
The second category regroups the components in Alaska, Ontario, and Norway. With
an average shortest path length ranging from 2,8 to 2,25, one reaches its destination on
average with less than three flights. Although destinations are national, it is pretty effi-
cient. Indeed, the shortest path length values are comparable to the large local compo-
nents. The third category contains Green land, Scotland, Algeria, and Kenya. With an
average shortest path length ranging between 2 and 1,47, one needs no more than two
flights to reach any destination on average in these star-based components.

Density shows that it is generally more challenging to get a direct flight for a destina-
tion in the small local components than in the large ones. Indeed, the components are
sparse. It is particularly true for the components located in Canada, Alaska, and Norway.
Density is much higher for the Green Land, Algeria, and Kenya components. The one
located in Scotland is the densest.

Overall, Transitivity is very low. Small components in Algeria and Kenya have no
triplets. In Alaska and Canada, their fraction of triangles is lower than 10%. In Europe
(Scotland, Norway, Green Land), small components are more transitive. Indeed, the
degree correlation values range from 30% to 50%.
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Fig. 11 Typical small local components structures. The left image presents an example of string-based
topology. It is the largest small local component in Canada. The right image gives an example of star-based
topology. It is the second largest small local component in Alaska

The small local components are generally more disassortative than the large ones.
Indeed, their degree correlation coefficient varies from —0.75 to —0.38. Canada’s
most significant small component is the only one deviating from this behavior with a
much smaller value of —0.18.

A large hub dominance is a common feature of the vast majority of the small local
components. The values ranging from 0.5 to 1 are characteristic of a star-based
topology. Once again, Canada’s most significant small component departs from this
typical behavior. Indeed, with a hub dominance value equal to 0.18, its topology is
more string-based.

Figure 11 illustrates the differences between these two topological organiza-
tions. In the string-based topology, the most connected nodes have almost the same
degree. In contrast, a few hubs can reach more than half of the nodes in the star-
based topology. Hubs in small components are gateways between other small air-
ports and between large airports and small airports.

Five small local components out of twelve share the small-world property. Two
in Europe (Norway, Greenland) and three in Alaska. Indeed, they have a similar
or lower average shortest path than a random network. Additionally, their cluster-
ing coefficient is higher than in similar random networks. The largest component
located in Canada is not small-world because of its high average shortest path
length. The other components exhibit a low clustering coefficient compared to ran-
dom networks.

To summarize, overall, small components appear in remote areas. They are usually
poorly connected, making travels uneasy in these distant areas of the mainstream
flows of travelers. They exhibit low transitivity and are highly disassortative. Their
topology is usually star-based and more rarely string-based. They can be more or
less connected to the main local component of their region.
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Fig. 12 aThe airports in the large global component. b The 8 small global components which are circled.
The size range are between 2 and 3 airports
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Global component structure of the world air transportation network

The global components contain the airports serving destinations outside their local
components through their inter-regional links. There are one large and eight small global
components. Figure 12 represents these components. One can notice that the large
global component contains 513 airports covering the world. Most of the small global
components are in the North and Central America-Caribbean area. Except for one of
them, which contains three airports, the other components contain only two airports.
One can see in Table 19 reported in the appendix, that 6 of them link airports in Canada
included in the large North-Central America-Caribbean with close airports from small
local components. The two others link two airports at the periphery of their component.
Therefore, we analyze the large global component that we call global component in the

following for short.

Analysis of the large global component

Almost 20% of the airports in the world contribute to the global component. This signifi-
cant proportion highlights the vitality of inter-regional exchanges. Its size (513 nodes) is
in between the size of the European (493 nodes) and the North-Central America-Carib-
bean (657 nodes) large local components. In contrast, the number of links is much lower
(2194). It compares to the number of links to East-Southeast Asia (2495) local compo-
nents, which contains 20% fewer airports (416). Therefore, we focus the comparative

analysis on these three local components.

Basic macroscopic topological properties

The diameter of the global component indicates that one needs a maximum of eight
hops to join two airports. It is one flight more than in the North-Central America-Car-
ibbean and East-Southeast Asia large local components, and two more flights compared
with the local component of Europe.

The average shortest path lenght indicates that it is not as easy to travel in this com-
ponent. Indeed, one needs more than three flights on average compared with less than
three flights for Europe, North-Central America-Caribbean, and East-Southeast Asia
local components. This parameter value is similar to the one observed in the Africa-
Middle East-Southern Asia and South America local components.
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Density values indicate that it is as challenging to travel in the global component as it is
in North-Central America-Caribbean local component.

Transitivity is very low. Indeed, the fraction of triangles is 13%. It is almost two times
less than in North-Central America-Caribbean component, and three times less than
in the most transitive local component (East-Southeast Asia). Even Oceania, which is
the less transitive local component, contains 18% of triangles. This result is expected.
Indeed, it is more difficult to find an alternative to reach a destination in inter-regional
routes often served by long-hauls.

The component is disassortative. Its degree correlation coefficient is comparable with
that of the European, the East and Southeast Asia, and the Oceania components.

It has the lowest hub-dominance compared to the large local components. Indeed,
the most prominent hub (Frankfurt Airport) allows reaching only 20% of airports in the
components. This value is slightly lower than in the Africa-Middle East-Southern Asia,
Oceania, and South America local components

Table 3 indicates that it is a small world. Indeed, its average path length is in the same
order of magnitude as the equivalent random network. Furthermore, its clustering coef-
ficient, even low, is ten times higher than for an equivalent random network.

These results are pretty interesting. They indicate that despite being not under the
control of any particular airline, the inter-regional network is quite efficient. Indeed, it
compares favorably with the regional component organization of the most advanced
local components. Quite naturally, with minimum planning, it allows making worldwide
travels almost as easy as regional travel. Being less centralized, it is also more resilient.
Unfortunately, its lack of transitivity makes it difficult to use alternative routes.

Degree and degree-degree distance distribution

Figure 13 shows the degree and degree-degree distance distributions of the large global
component. Visually, it is not so easy to point the differences between both distributions.
According to the KS goodness of fit test, the truncated power law better approximates
the degree distribution. The log-normal function is a better fit for the degree-degree dis-

tance distribution. Whatever, both distributions are heavy-tailed.
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Fig. 13 The degree (left) and degree-degree distance (right) distributions of the large global component.
Empirical distribution (dot), estimates (line).The distribution under test are: power law (PL), truncated power
law (TPL), log-normal (LN) and stretched exponential (S-EXP). The values in bold are the parameters of the
best fit according to the Kolmogorov-Smirnov test
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Distribution of the airports between regions

The pie-chart in Fig. 9i illustrates the distribution of the global component airports
between the seven regions corresponding to the local components. Comparing this
chart with Fig. 9a allows getting an idea about how the various regions are involved
in the global air routes. One can see that these distributions, although correlated, can
differ. Indeed, the regions with a big share of airports are not necessarily the most
active in inter-regional traffic.

For example, the North and Central America-Caribbean local component contains
the highest fraction of airports worldwide (27%). However, its share on the liaisons
with the other regions is 18%. It indicates that a high proportion of airports serves
local destinations. East and Southeast Asia exhibits a similar trend, with 17% of the
airports in the world but only 10% of the inter-regional routes. It is also the case for
South America and Oceania.

In contrast, Europe with its 20% of airports is more international with its 24% of
airports exchanging flights with other regions. This behavior is more pronounced for
Africa with its 14% of airports and 20% of inter-regional flights. It is probably due to
political and historical reasons. Indeed, Africa still lacks global airlines. The air traffic
flows mainly through Europe or the Middle East. Russia-Central Asia-Transcaucasia
is intensely involved in inter-regional exchanges even if it has a low proportion of the
world airports.

Comparison of the world air transportation network with the large
components

Basic macroscopic topological properties

The basic topological properties of the world air transportation network are reported
in Table 1.

The diameter of the world air transportation network is two to three times greater
than the diameter of the large components. While the longer route ranges from
4 to 8 flights in the components, it takes 12 flights to join the furthest destinations
worldwide.

Its average shortest path lenght is also higher compared to the components, but
the difference is more moderate. Indeed, one needs on average 3,6 flights to reach
any destination in the world compared to 3, 5 flights when traveling in the Oceania
component.

Density shows that it is more uneasy to reach remote locations in the world air
transportation networks than to travel in a single component. Indeed, the density is
one degree of magnitude lower than in Europe

Transitivity is a good feature of the world air transportation network. With 26%
of closed triangles, reaching a destination with a direct flight is as easy as traveling
in the Africa-Middle East-Southern Asia component or the North-Central America-
Caribbean component. Transitivity is higher than in the Oceania, South America, and
Russia-Central Asia-Transcaucasia components.

It is slightly disassortative. Indeed, its degree correlation coefficient is approxi-
mately ten times higher in the local and global components.
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Fig. 14 The degree (left) and degree-degree distance (right) distributions of the world air transportation
network. Empirical distribution (dot), estimates (line). The distribution under test are: power law (PL),
truncated power law (TPL), log-normal (LN) and stretched exponential (S-EXP). The values in bold are the
parameters of the best fit according to the Kolmogorov-Smirnov test

It has the lowest hub-dominance compared to the components. Indeed, the largest
hub (Frankfurt Airport) is linked to 9% of the airports worldwide. In the components,
this value range from 20% to 73%.

It shares the small world property with the large components. Indeed, its average path
length is low, and its transitivity is high compared to a similar random network, as indi-
cated in Table 3.

Degree and degree-degree distance distribution

Degree and degree-degree distance distributions of the world air transportation network
are reported in Fig. 14. The truncated power law is the best fit in both cases. This result
is in line with previous studies.

Overall, these results are very informative. They demonstrate the advantages of the
component structure representation to get a clear picture of the diversity of the world
air transportation network. Indeed, looking at the topological properties of the global
air transportation network can create an inaccurate view of the actual situation. The
regional and inter-regional situations are very diverse. Unfortunately, the network analy-
sis offers an “average view” of a non-homogeneous world. Therefore, one needs to inter-

pret these data very carefully.

Degree centrality analysis

Centrality measures aim to assess the importance of a node based on some topological
features. Degree centrality is among the most commonly used measure. It measures the
node influence with its number of links. This section investigates the degree centrality to
assess the influential airports according to the different views carried by the component
structure. First, we consider the large local components to uncover the top connected
airports at the regional level. Then, we use the large global component to rank the inter-
regional airports. Finally, we compare these results to the top connected airports in the
world air transportation network. This process allows us to highlight the differences

between these three levels of analysis.
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Table 7 Degree Centrality in the seven large local components

Large Local Component Airport City Country ID LR CP (%)
North and central America Caribbean  Hartsfield J Atlanta USA 187 1 2389
Dallas Fort Worth Dallas USA 172 2 3592
Chicago O'Hare Chicago USA 172 3 4018
Denver Denver USA 161 4 4764
George B Houston ~ Houston USA 146 5 49.77
Europe Schiphol Amsterdam Netherlands 162 1 3286
Munich Munich Germany 145 2 4036
London Stansted London UK 142 3 5172
Barcelona Barcelona Spain 137 4 5578
Frankfurt Frankfurt Germany 132 5 5679
East and Southeast Asia Beijing Capital Beijing China 133 1 3197
Guangzhou Baiyun ~ Guangzhou China 112 2 3725
Shanghai Pudong Shanghai China 112 3 4134
Chengdu Shuangliu - Chengdu China 95 4 4447
Taiwan Taoyuan Taipei Taiwan 87 5 4663
Africa Middle East- Southern Asia Dubai Dubai UAE 78 1 2314
King Abdudaziz Jeddah SaudiArabia 63 2 3056
Indira Gandhi Delhi India 60 3 3976
Chhatrapati Shivaji ~ Mumbai India 58 4 4213
Addis Ababa Bole Addis Ababa  Ethiopia 56 5 5133
Oceania Sydney K Smith Sydney Australia 5 1 235
Brisbane Brisbane Australia 48 2 31.19
Auckland Auckland New Zealand 36 3 3846
Melbourne Melbourne Australia 33 4 4059
Port M Jacksons Port Moresby P New Guinea 24 5 4871
South America G G A F Montoro Sao Paulo Brazil 48 1 2242
El Dorado Bogota Colombia 44 2 4065
Viracopos Campinas Brazil 42 3 4532
Jorge Newbery Buenos Aires  Argentina 41 4 6028
P J Kubistschek Brasilia Brazil 36 5 6448
Russia Central Asia- Transcaucasia Domodedovo Moscow Russia 81 1 7232
Pulkovo St Petersburg ~ Russia 49 2 8214
Sheremetyevo Moscow Russia 49 2 8482
Tolmachevo Novosibirsk Russia 32 4 8571
Koltsovo Yekaterinburg  Russia 31 5 8571

The top five hubs for each large local component are reported. ID is the internal degree. It measures the number of
connections of an airport with airports located in its large local component. LR is the airport local rank in its component by
decreasing internal degree. CP is the cumulative fraction of connected airports represents the proportion of airports that
the top x local hubs can reach in their components

Exploring the regional hubs in the large local components
Table 7 lists the top 5 connected airports in the seven large local components called
regional hubs. It also reports the cumulative proportion of airports connected to the
regional hubs.

The five top connected airports of the North and Central America-Caribbean compo-
nent are in the United States. They are in four different states (Illinois, Texas, Colorado,
Georgia). They are the most important of major airlines in the United States. Indeed,

each of these airports receives more or less 50 millions passengers per year. Hartsfield
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] Atlanta Airport is Delta Air Lines’ headquarter and one of its central hubs. It is one of
the busiest airports worldwide, with almost one hundred millions passengers per year.
The Dallas Fort Worth Airport ranks second. Located in Fort Worth, it is the primary
hub of American Air Lines and Southwest Airlines. The third hub of this component, the
Chicago O’Hare & Chicago Airport, is one of the main hubs of United Air Line (head-
quartered in Chicago) and American Air Line. Denver Airport is the fourth hub of this
component. It has the largest area in the United States. Headquarter of the low-cost car-
rier Frontier, it is a crucial hub for United Air Lines. The second important airport in
Texas, the George B Houston Airport, is this component’s fifth hub. It is one of the hubs
of United Air Lines. Altogether, these first five hubs connect half of the airports in the
component.

The top five hubs in the European component are in four different countries (Nether-
lands, Germany, UK, Spain). These airports are the stronghold of the biggest airlines in
these countries. The number of passengers ranges from approximately 70 millions to 20
millions per year. The Amsterdam Schiphol Airport is the first hub of this component. It
is the largest in the Netherlands and the most critical hub of KLM. It is also a very active
platform for low-cost carriers such as EasyJet, Vueling, TUI Air Lines, Corendon Dutch.
Munich Airport in Germany is second. It plays an essential role for Lufthansa Air Lines
and its low-cost subsidiary (Air Dolomity, Eurowings) to serve European destinations.
The London Stansted Airport in the United Kingdom is the third hub of the component.
It is a major airport for low-cost carriers such as Ryanair, Pegasus, Easy Jet (Dobruszkes
2006). Due to its geographical position and the high level of tourism in Barcelona, its
airport is very well connected. It receives about 20 millions passengers per year. Indeed,
the Barcelona airport in Spain is the fourth most connected airport. It is the primary air-
port of the Vueling Air Lines. Frankfurt in Germany, the fifth hub, is the main historical
airport of Lufthansa. While Munich is more focused on European destinations, Frank-
furt is devoted to international destinations. These five hubs allow reaching about 56%
of the airports of this component. The London Gatwick Airport (132 links) in the United
Kingdom, Charles de Gaulle Airport (129 links) in France, Dublin Airport (128 links) in
Ireland, Diisseldorf Airport (121 links) in Germany, and Ataturk Airport (121 links) are
the five other hubs. The top first ten hubs can reach 66% of airports of the component.
They are the home of the leading European carriers.

The largest four hubs in the East and Southeast Asia component are in different prov-
inces and municipalities of China. The fifth hub is in Taiwan. These airports receive
tens of millions of passengers per year. The most connected, Beijing Capital Airport, is
one of the busiest airports in the world, with almost 100 millions passengers yearly. The
Guangzhou Baiyun airport, the second hub of this component, is situated in the capital
of the provincial Guangdong in South China. It is a hub of the China Southern Air Lines,
which is headquartered in Guangzhou. The Shanghai Pudong Airport, situated in East
Asia, has the same degree as the Guangzhou Baiyun airport. It is a major hub of the
Shanghai and China Eastern Air Lines. The fourth hub, called Chengdu Shuangliu Air-
port, is in the capital of Sichuan province. Serving Central-western China, it is the cen-
tral hub of the Sichuan and Chengdu Air Lines. The Taiwan Taoyuan Airport is the fifth
regional hub in East and Southeast Asia. Serving Taipei, it is the largest airport on the
island. Together, these hubs are connected to 46,6% of East and Southeast Asia airports.
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The first five hubs of the Africa-Middle East-Southern Asia component span Africa,
the Middle East, and Southern Asia. Indeed, two are in the Middle East, two in India
and one in Africa. The first, Dubai airport, is one of the most important airports in the
world. It can handle more or less 100 millions passengers. It is the most critical hub of
Emirates Air Lines. King Abdulaziz Airport in Saudi Arabia ranks second. It is the larg-
est airport in terms of surface area. Located near Mecca, it receives many visitors from
different Muslim countries. The biggest airport in India, Indira Gandhi Airport, is third.
Situated in the capital Delhi, a cosmopolitan and tourist city, it receives a lot of people.
The Chhatrapati Shivaji Airport, located in the megacity of Bombay, the economic capi-
tal of India, is the following hub. It is the central hub of India Air Lines. The Addis Ababa
Bole Airport in the capital of Ethiopia is the fifth hub of the component. Due to its polit-
ical and geographical position, it connects Africa with the rest of the world. It is the hub
of Ethiopia Air Lines, the first airline serving Africa’s airports. These five hubs connect
about 51% of airports of the Africa-Middle East-Southern Asia component.

Among the top five hubs in the Oceania component, three are in Australia, one in New
Zealand, and one in Papua New Guinea. These airports receive less than 50 millions pas-
sengers per year. The Sydney Kingsford Smith Airport is the largest hub of the Oceania
component. Indeed, located in the capital city of New South Wales in Australia, Sydney
is a metropolis and touristic city attracting people coming from different countries. It is
the main hub of Qantas, the largest airline in Australia. The Brisbane Airport, situated in
the capital city of Queensland, is the second most connected airport in this component.
Like Sydney, Brisbane is also a tourist city that receives many people from different hori-
zons. It is the primary airport of Virgin Australia and a hub for Qantas. The third hub,
Auckland Airport, is the top airport in New Zealand and the base of Air New Zealand.
The Melbourne-Tullamarine Airport located in Melbourne ranks fourth. It is essential
for Jetstar Air Lines, based in Melbourne and Qantas. Melbourne is also a metropolitan
city that receives numerous tourists. The fifth hub of this component, the Port Moresby
Jacksons Airport, is the most influential airport of Papua New Guinea. Located near Port
Moresby, this airport is the largest hub of Air Niugini, headquartered in Port Moresby.
These five hubs serve 48,7% of the airports in the component.

Three of the top five hubs in the South America component are in Brazil, one in
Colombia, and one in Argentina. Guarulhos G A F Montoro Airport, the first hub, is
in Sdo Paulo, the most populated city in Brazil. The busiest in Brazil (Couto et al. 2015),
it is an essential airport for GOL (based in Rio de Janeiro) and ITA Air Lines (based in
Sao Paulo). The second hub in Columbia, the El Dorado Airport, is in Bogot3, the capital
of Colombia. It is the base for Avianca Air Lines. The Viracopos Airport in Campinas
ranks third. It has a regional vocation in Brazil (Couto et al. 2015). It is a hub for Azul
Brazilian Airlines, a low-cost airline. The Jorge Newbery Airport is the fourth hub of this
component. Located in Buenos Aires, the capital of Argentina, it is a hub for the largest
Argentina airline (Aerolineas Argentinas). The fifth hub, the Presidente ] Kubistschek,
is in Brazilia, the capital of Brazil. It is one of the hubs of GOL and LATAM Brasil Air
Lines. These five largest hubs reach around 64% of airports in this component.

In the Russia-Central Asia-Transcaucasia component, the top five airports are in
the major cities of Russia. They receive less than 50 millions passengers per year. The
Domodedovo Airport, located in Moscow, is the first hub. It centralizes about 72% of
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the routes. Sheremetyevo Airport in Moscow and Pulkovo Airport, the main airport

of St Petersburg, are tied for second. Together the two top airports in Moscow con-

centrate 80% of the destination of the component. Therefore, Moscow is the heart of

the component and the Russian air network in particular. This result corroborates the
findings reported in Tarkhov (2017). Indeed, this paper shows that since the fall of the
Soviet Union, the Russian air network is more and more centralized in Moscow. Almost

all flights (regional and international) transit through this city. The Domodedovo Air-

port is a hub of the Domodedovo Air Lines, and the Sheremetyevo Airport is a hub of

Table 8 Degree centrality in the large global component

Region Airport City Country ED GRR GRC
North and central America- Caribbean  John F Kennedy New York USA 62 1 9
Lester B Pearson Toronto Canada 45 2 19
Newark Liberty Newark USA 39 3 24
Miami Miami USA 36 4 27
Los Angeles Los Angeles USA 34 5 30
Europe Frankfurt Frankfurt Germany 106 1 1
Charles de Gaulle  Paris France 104 2 2
Atatlrk Istanbul Turkey 99 3 3
Heathrow London UK 89 4 4
Schiphol Amsterdam Netherlands 80 5 7
East and Southeast Asia Beijing Capital Beijing China 61 1 10
Suvarnabhumi Bangkok Thailand 57 2 12
Narita Tokyo Japan 56 3 13
Incheon Seoul South Korea 48 4 15
Hong Kong Hong Kong Hong Kong 47 5 16
Africa- Middle East- Southern Asia Dubai Dubai UAE 89 1 4
Hamad Doha Qatar 5 2 11
Abu Dhabi Abu Dhabi UAE 42 3 22
Cairo Cairo Egypt 34 4 30
Indira Gandhi Delhi India 31 5 32
Oceania Sydney K Smith Sydney Australia 26 1 41
Melbourne Melbourne Australia 20 2 57
Auckland Auckland New Zealand 13 3 96
Perth Perth Australia 13 3 96
Brisbane Brisbane Australia 12 4 106
South America Guarulhos-GAFM  Sdo Paulo Brazil 36 1 26
El Dorado Bogotd Colombia 30 2 36
Jorge Chévez Lima Peru 22 3 53
Ministro Pistarini Buenos Aires  Argentina 19 4 61
Rio G-T Jobim Rio de Janeiro  Brazil 18 5 69
Russia- Central Asia- Transcaucasia Sheremetyevo Moscow Russia 84 1
Domodedovo Moscow Russia 77 2
Pulkovo St Petersburg ~ Russia 47 3 16
Vnukovo Moscow Russia 31 4 32
Heydar Aliyev Baku Azerbaijan 23 5 51

The top five inter-regional hubs in each region are reported. ED is the external degree. It measures the number of
connections of an airport with airports located in the large global component. GRR is the global rank of the airport in its
region. GRC is the global rank in the global component is the airport rank in the global component by decreasing external

degree
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Aeroflot—Russian Airlines, the biggest in Russia. The Pulkovo Airport is the main air-
port of St Petersburg, the second-largest city in Russia. It is also an important airport
for Rossiya Airlines. Another hub of this component is the Tolmachevo Airport, located
near Russia’s major city, Novosibirsk. This airport has a regional vocation. It is an impor-
tant airport for the Novaport Air Lines. Situated in Yekaterinburg city, the Koltsovo
is the fifth most connected airport of this component. It is a vital hub for the Ural Air
Lines, based in the same city as the airport. These hubs reach around 85% of airports in
this component.

Exploring the inter-regional hubs in the large global component

We consider the large global component to extract the high degree airports. For com-
parative purposes, we classify the so-called inter-regional hubs in seven regions based
on their local component. Indeed, an airport in a global component is also a member of
a local component. Table 8 reports their coordinates and their external degree (number
of links with airports outside their local component). Their global rank in the compo-
nent is computed according to the decreasing order of their external degree. The global
rank in their region measures their relative global position in their region. Four out of
five of the top inter-regional hubs in the North and central American-Caribbean area
are in the USA. These hubs are located on the coasts, closer to the other regions. The
largest hub of this component is the John F Kennedy Airport, located in New York. This
gateway to the United States is the busiest airport for international flights, with around
fifty millions passengers yearly. It is an essential platform for American Airlines, Delta,
and Jet Blue. The most important airport in Canada, the Lester B Pearson Airport, is the
second-largest inter-regional hub. It connects Canada and the US to the other regions.
Situated in Toronto, it is the primary hub of Air Canada. Newark Liberty Airport ranks
third. This crucial hub of United Airlines serves the New York metropolitan area. Miami
and Los Angeles complete the top five. These airports allow reaching the United States
from South America and Asia, respectively. The top five European airports, Frankfurt,
Charles de Gaulle, Ataturk, Heathrow, Amsterdam, are the primary hubs of the leading
airlines in Europe, Lufthansa, Air France, Turkish Airlines, British Airways, and KLM,
respectively. Note that Frankfurt and Amsterdam Schiphol airports are also among the
five most important regional hubs. Charles de Gaulle Airport, the first French airport, is
located in Paris, the world-leading destination in the world. Thanks to its central posi-
tion, the Ataturk Airport is a vital hub where several air flights transit. Indeed, it is at a
gateway for Asia, the Middle East, and Africa. The fourth inter-regional hub is London
Heathrow, located in the top tourist city of the United Kingdom, London. It is the lead-
ing international airport in London.

While China dominates the regional hubs, inter-regional hubs are scattered in differ-
ent countries of East and Southeast Asia. Beijing Capital Airport is the inter-regional
hub. The Suvarnabhumi airport located in Bangkok, the capital city of Thailand, ranks
second. It is an important hub serving local (Thai Airways and Bangkok Airways) and
foreign airlines connecting to Asia, Oceania, Europe, and Africa. Narita, located in
Tokyo, the capital of Japan, is a hub for Japan Air Lines and All Nippon Airways. The
largest airport in South Korea, the Incheon Airport, is the fourth inter-regional hub.
Located on the coast in Seoul, which receives a million tourist passengers per year, this
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airport is an important hub for Korean Air Lines. The Hong Kong Airport is the primary
hub of Cathay Pacific and Dragon Air Lines, headquartered in Hong Kong.

The regional hubs, Dubai and Indira Gandhi Airport, are respectively the first and the
fifth inter-regional hubs in the Africa-Middle-East Southern Asia area. The Hamad air-
port is the second inter-regional hub in this zone. This airport, located in Doha, the capi-
tal of Qatar, is a gateway to Europe, Asia, Africa, and Oceania. It is the most important
hub for Qatar Airways. Abu Dhabi, the second-largest airport in the United Arab Emir-
ates, is also strategically located. It is the primary hub of Etihad Airways. The fourth hub
located in Cairo is the vital hub of Egypt Air.

In Oceania, the four regional hubs (Sydney K Smith Airport, Melbourne Airport,
Auckland Airport, and Brisbane Airport) are also the inter-regional hubs. In addition,
Perth Airport is an inter-regional hub. This airport, located on the coast of the capital
city of Western Australia, is an essential airport for Alliance Airlines. One can see that
Australian airports are the most influential in this area.

The two largest inter-regional hubs in South America (Guarulhos in Brazil and El
Dorado in Colombia) are also the two largest regional hubs. The third hub, Jorge Chavez
Airport, is located in Lima, the capital of Peru. It is the hub of different airlines such as
ATSA, LATAM Peru Airlines. The largest airport in Argentina, the Ministro Pistarini
Airport, located in the capital city of Argentina, has a vital role in international flights. It
is the hub of Aerolineas Argentinas.

In the Russia-Central Asia-Transcaucasia area, the top four inter-regional hubs are in
Russia. Note that the top three are also present in the list of the top five regional hubs.
The Vnukovo Airport is the fourth inter-regional airport. Located in Moscow, it is a
hub for the Azur Air Lines. It corroborates the extreme centralization of the Russian
air transport network in Moscow. The Heydar Aliyev Airport, located near the coast in
Baku, the capital city of Azerbaidjan, is the fifth inter-regional hub of the area. This air-
port is essential for Azerbaijan Air Lines.

Comparison of the regional and inter-regional hubs with the hubs of the world air
transportation network

We now compare the degree centrality of the nodes in the world air transportation net-
work with the various degree centrality measures of the components. Table 9 reports
information about the top 36 airports worldwide according to their total degree (the
sum of their internal and external degree). It also contains their total degree, worldwide
rank, local rank, and eventually global rank. For comparative purposes, airports are clas-
sified in the seven regions identified by the local components. At first glance, one can see
that the distribution among regions is not homogeneous. Indeed, Europe and the North
and Central America-Caribbean areas dominate, with 29 out of 36 airports in the world’s
top ranks.

Thirteen airports of the North and Central America-Caribbean component belong to
the top 36 of the world air transportation network. The top five are the top five regional
airports. The eight other airports include the first five inter-regional hubs. The other
three airports (Charlotte Douglas, McCarran, Detroit M Wayne) are regional hubs
ranked 6, 7, and 9 in the local component. In this part of the world, regional hubs are
more influential than inter-regional hubs. Indeed, the first inter-regional hub ranks nine
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Table 9 The top 36 hubs of the world air transportation network

Region Airport City Country Degree WR LR GR
North and central America- Carib-  Hartsfield J Atlanta  Atlanta USA 212 5 1 43
bean Chicago O'Hare Chicago USA 200 6 3 39
Dallas Fort Worth ~ Dallas USA 188 8 2 78
Denver Denver USA 165 12 4 197
George B Houston  Houston USA 165 12 5 66
John F Kennedy  New York USA 160 14 15 9
Newark Liberty Newark USA 152 19 10 24
Lester B. Pearson Toronto Canada 147 22 13 19
Los Angeles Los Angeles USA 144 24 11 30
Charlotte Douglas ~ Charlotte USA 141 26 6 137
Miami Miami USA 138 30 14 27
McCarran Las Vegas USA 133 33 7 162
Detroit M Wayne Detroit USA 133 33 9 120
Europe Schiphol Amsterdam Netherlands 242 1 1 7
Frankfurt Frankfurt Germany 241 2 5 1
Charles. de Gaulle Paris France 233 3 6 2
Ataturk Istanbul Turkey 220 4 10 3
Munich Munich Germany 186 9 2 23
Heathrow London UK 167 10 33 4
L da Vinci-F Rome Italy 158 15 16 14
London Gatwick London UK 157 17 45
Barcelona Barcelona Spain 156 18 63
Brussels Brussels Belgium 150 20 11 36
Adolfo Suarez Madrid Spain 150 20 17 17
Stansted London UK 143 25 3 46
Dublin Dublin Ireland 141 26 8 101
Dusseldorf Dusseldorf ~ Germany 141 26 9 59
Manchester Manchester UK 141 26 13 46
Vienna Vienna Austria 136 31 14 50
East and Southeast Asia Beijing Capital Beijing China 194 7 1 10
Shanghai Pudong  Shanghai China 147 22 3 28
Guangzhou Baiyun Guangzhou  China 135 32 2 52
Incheon Seoul South Korea 133 33 4 15
Africa- Middle East- Southern Asia ~ Dubai Dubai UAE 167 10 1 4
Russia- Central Asia- Transcaucasia ~ Domodedovo Moscow Russia 158 15 1 8
Sheremetyevo Moscow Russia 133 33 3 6

WR is the worldwide rank in the world air transportation network. It is computed using the total degree (internal and
external). LR is the local rank computed in the large local components. GR is the global rank in the global component. No
indication is given when an airport does not belong to the global component. Top inter-regional airports are in bold. Top
regional and inter-regional airports are in bold and italic. Others are top regional airports

in the world network. It shows that the air traffic in the North and Central America-Car-

ibbean zone focuses mainly on regional destinations. The rank of the regional airports in

the world air transportation network can be misleading because they are not the most

active in inter-regional traffic.

With 16 airports, European airports are the most numerous in the top 36 in the

world network. They are also among the most influential. Indeed, the top four world

airports are in Europe. The top of the ranking includes the top inter-regional and

Page 33 of 50



Diop et al. Applied Network Science (2021) 6:92 Page 34 of 50

regional airports (Frankfurt, Charles de Gaulle, Ataturk, London Heathrow, Amsterdam,
Munich, London Stansted, Barcelona). Five regional airports complete this list. Three are
in the UK (London Gatwick, Dublin, Manchester), one is in Germany (Dusseldorf), and
one is in Austria (Vienna). Note that Dusseldorf uses to be the second airport in Ger-
many before Munich took the lead. Two airports located in Rome and Madrid are more
focused on inter-regional traffic. These results suggest that European airports are more
oriented towards inter-regional connections.

There are four airports from the East and Southeast Asia area in the top 36 hubs of the
world air network. Two are in the top five inter-regional hubs (Beijing Capital, Incheon),
and two are in the leading regional hubs (Shanghai Pudong, Guangzhou Baiyun).
Remember that Beijing Capital airport, which ranks seven in the world air network,
is also the region’s top regional and inter-regional airport. This repartition between
regional and inter-regional hubs indicates a balanced regional and inter-regional traffic
dominated by China.

Dubai is the only airport in the top 36 world air network hubs for the Africa-Middle
East-Southern Asia area. Ranked 10 in the world network, it is an essential regional hub
(Ist) and inter-regional hub (4th).

There is no airport of Oceania in Table 9. The first airport from this region, the Syd-
ney K Smith Airport, ranks 84 worldwide. It is also the case for South America. Indeed,
Guarulhos-G A F M, the highest degree airport in Brazil, ranks 74 in the world air
network.

Two airports from the Russia-Central Asia-Transcaucasia zone are in the first 36 hubs
of the global air network. These airports in Moscow are the most important hubs in the
region at both regional and inter-regional levels.

To summarize, Europe and the United States dominate the world transportation net-
work in terms of centrality. The main drawback of using world air transportation to
evaluate the airports’ influence is that it cannot distinguish regional from inter-regional
importance. Consequently, large parts of the world are hidden due to striking regional
discrepancies. The component structure allows taking into account these regional dis-
parities. Indeed, airports at the bottom in the world network ranking, which are very
influential in their region, emerge. It is the case for airports such as the London Stansted
Airport, the Chengdu Shuangliu Airport, King Abdulaziz Airport, Sydney K Smith Air-
port, Guarulhos-G A F M Airport, and the Pulkovo Airport that are the most connected
in their region. Similarly, it brings to the attention that airports, such as Suvarnabhumi,
Hamad, Melbourne, El Dorado, and Heydar Aliyev, are crucial for inter-regional traffic.

Core analysis

In this section, we investigate the core structure of the components, and we perform a
comparative analysis with the core of the world transportation network. To this end, we
compute the max k-core. The k-core of a network is a sub-network in which a node has
at least k neighbors. One can extract the maximum k-core by removing nodes iteratively
from the network. Indeed, the 1-core, where each node has at least one link, is the whole
network. One forms the 2-core by removing all the nodes with one connection in the
1-core network. Then, one extract the 3-core by removing all the nodes with two links
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Fig. 15 Core of the large local components. The dots represent the airports, and K is the maximum k-core.
The core of the North and Central America-Caribbean component contains 42 airports. The core of Europe
contains 65 airports. The core of East and Southeast Asia contains 38 airports. The core of Africa-Middle
East-Southern Asia contains 26 airports. The core of Oceania contains 8 airports. The core of South America
contains 16 airports. The core of Russia-Central Asia-Transcaucasia includes 19 airports
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A World air transportation network B Global component
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Fig. 16 Figure A presents the 79 airports in the maximum k-core of the world air transportation network.
Figure B presents the 24 airports in the maximum k-core of the large global component. The red dots are the
airports and K'is the maximum k-core

in the 2-core, and so on until one reaches the core number max k-core for which it is
impossible to obtain the (k+1)-core.

Exploring the max k-core in the large local components
Figure 15 reports the airports included in the maximum k-core of the seven large local
components with the value of the maximum k-core uncovered. In the following, we use
indifferently the words max k-core and core for short.

The core of the North and Central America-Caribbean component contains 42 air-
ports sharing at least 29 connections. Except for Lester B Pearson Airport (first local
hub in Toronto, Canada) and the Cancun Airport (second hub in Mexico), these airports
are in the USA. Table 10 (in the appendix) reports the list of airports included in the
max k-core with their number of connections in the core, their rank in the local com-
ponent, and their national rank according to their local degree centrality. One can see
that top regional hubs outside the USA are not in the core. In addition, Nashville Air-
port, managed by Allegiant Air Lines, a low-cost airline, and Portland Airport, operated
by Alaska Air Lines, is also absent from the core. In contrast, US domestic airports of
minor importance in the local component but crucial at the national level integrate the
core. They are mainly located on the East coast of the United States. The presence of the
Lester B Pearson Airport and the Cancun Airport in the core reflects their high integra-
tion in the US transportation network. Indeed, Toronto is a main entry point to the US,
and Cancun is a valued holiday destination in the US.

The core of the European component includes 65 airports. This result is close to the
result reported in Lordan and Sallan (2017). Each airport in this core has at least 31
connections. In contrast with the North and Central America-Caribbean component,
these airports are scattered in 27 countries. The European component is not very large
compared to the others. One can consider it as a single geographic and economic space
facilitating the connection of the member countries. The proportion of airports by coun-
try is not homogeneous. Germany, France, United Kingdom, Spain, and Italy dominate
the core. Indeed, those are the major countries in Europe. The list of airports in the core
correlates well with the top regional hubs of the component (See Table 11 in the appen-
dix). Indeed, 59 airports ranked in the top 65 regional hubs belong to the core. The six
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missing airports are in Belgium (Brussels South Charleroi Airport), Italy (Il Caravaggio
Airport), United Kingdom (Birmingham Airport, Glasgow Airport), Portugal (Faro Air-
port), and Netherlands (Eindhoven Airport). Although well-connected, these airports
operate in the short and medium-haul segment, and they do not serve all of Europe. Six
airports in the core are not included in 65 first regional hubs: Ben Gurion Airport, the
first airport in Israel, Naples Airport, and Catania-Fontanarossa Airport in Italy, the Bor-
deaux-Merignac Airport and the Toulouse-Blagnac Airport in France, and the Menara
Airport in Marrakech, Morocco. Except for Israel with more links with Europe than with
the Middle East for political issues, those are mainly attractive regional tourist destina-
tions (See Table 11 in the appendix).

The core of the East and Southeast Asia component includes 38 airports. Each air-
port has at least 24 links with the others. One observes a very similar behavior to the
one encountered in the North and Central America-Caribbean component. Indeed,
China, with 33 airports, dominates the core (See Table 12 in the appendix). These
airports are in provincial and municipal capitals. Quite naturally, its “satellites” in the
region belong to the core. Indeed, four airports are located in Hong Kong (Hong Kong
Airport), Singapore (Singapore Changi Airport), Taiwan (Kaohsiung Airport and Tai-
wan Taoyuan Airport). Incheon Airport (South Korea) completes the core. Indeed,
there is a vast community of Chinese people in Korea and strong economic and politi-
cal relations between the two countries. Comparison with the top 38 regional airports
(see Table 12 in the appendix) shows that South-East Asia’s leading regional airports
(Malaysia, Thailand, Philippines, Vietnam) do not share enough links to belong to the
core. It is also the case for Japan’s main airports due to the political divide.

In the Africa-Middle East-Southern Asia component, the core contains 26 airports
distributed across twelve countries (See Table 13 in the appendix). At least, each air-
port in the core has 13 connections. These airports are essentially in the Middle East
and Southern Asia. Indeed, the Arabic peninsula includes ten airports; one is in Jor-
dan and one in Lebanon. Eight are in India, three in Pakistan, and one in Sri Lanka.
There is no African airport in the core, except for Cairo, predominantly linked to the
Arab world. There is also no airport from Iran. It must be related to the geopolit-
ical context. The core airports reveal the significant air traffic between the Middle
East and Southern Asia. Comparison with the top regional 26 airports reported in
Table 13 shows that 20 airports in the core belong to the 26 top regional hub set.
Leading regional airports of Iran (Mehrabad Airport and Mashhad airport), Ethiopia
(Addis Ababa Bole Airport), Kenya (Jomo Kenyatta Airport), and Nigeria (Murtala
Muhammed Airport) have less than 12 connections with the core airports. Conse-
quently, Africa is not part of the component core.

There are eight airports in the core of the Oceania component (see Table 14 in the
appendix). Each of them has seven connections. Thus, the core is a complete graph
(K7). Once again, a country dominates the core. Indeed, all airports are in Australia.
Three top regional hubs located in New Zealand (Auckland Airport), Papua New
Guinea (Port Moresby Jacksons Airport), and French Polynesia (Faa’a Airport) are not
in the core airports.
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Table 10 Core airports of the North and Central America-Caribbean component (42)

Airport City Country Coredegree Localrank National rank

Hartsfield J Atlanta

Dallas Fort Worth
Chicago O'Hare

Denver

George Bush Houston
Charlotte Douglas
McCarran

Minneapolis-St P/W-Chamberlain
Detroit MW County
Newark Liberty

Los Angeles

Philadelphia

Lester B. Pearson

Miami

John F Kennedy

Orlando

Washington Dulles

Salt Lake City

Ronald Reagan Washington
Phoenix Sky Harbor

Fort Lauderdale Hollywood
General E L Logan

San Francisco

Seattle Tacoma

Chicago Midway

La Guardia

Baltimore/W T Marshall
Cancun

Tampa

St Louis Lambert

San Diego

Cleveland Hopkins
Nashville

Cincinnati N Kentucky
Kansas City

Austin Bergstrom

Louis A N Orleans
Raleigh-durham
Pittsburgh

Indianapolis

John Glenn Columbus
General Mitchell
Licenciado Benito Juarez
Montreal/Pierre Elliott Trudeau
Vancouver

Portland

Calgary

William P Hobby
Tocumen

Atlanta
Dallas-Fort Worth
Chicago
Denver
Houston
Charlotte

Las Vegas
Minneapolis
Detroit
Newark

Los Angeles
Philadelphia
Toronto
Miami

New York
Orlando
Washington
Salt Lake City
Washington
Phoenix

Fort Lauderdale
Boston

San Francisco
Seattle
Chicago

New York
Baltimore
Cancun
Tampa

St. Louis

San Diego
Cleveland
Nashville
Cincinnati
Kansas City
Austin

New Orleans
Raleigh-durham
Pittsburgh
Indianapolis
Columbus
Milwaukee
Mexico City
Montreal
Vancouver
Portland
Calgary
Houston
Panama City

United States
United States
United States
United States
United States
United States
United States
United States
United States
United States
United States
United States
Canada
United States
United States
United States
United States
United States
United States
United States
UnitedStates
United States
United States
United States
United States
United States
United States
Mexico
United States
United States
United States
United States
United States
United States
United States
United States
United States
United States
United States
UnitedStates
United States
United States
Mexico
Canada
Canada
United States
Canada
United States
Panama

41

40
40
41

39
41

39
41

41

39
40
41

38
35
35
40
37
31

37
39
38
41

37
31

31

29
38
32
36
39
30
35
36
33
35
30
35
34
31
30
29
29
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30

33




Diop et al. Applied Network Science (2021) 6:92 Page 39 of 50

Table 10 (continued)

Airports not in the top 42 regional hubs are in bold. The core degree of a node is its number of links in the maximum k-core.
Local rank is the rank in the large local component. National rank is the airport rank in its country. Airports in the top 42
regional hubs and not in the k-core are in bolditalic

The South America component behaves similarly. Its core includes 16 airports situ-
ated in Brazil (See Table 15 in the appendix). These airports are mainly located on
the East coast. The less connected core member has eight links. Comparisons with
the top regional hubs reported in Table 15 show that six regional hubs do not have
enough links with Brazilian airports to belong to the core. These are the airports from
Argentina (Jorge Newbery Airpark, and Ministro Pistarini Airport), Columbia (El
Dorado Airport), Peru (Jorge Chavez Airport), Chile (Comodoro A M Benitez Air-
port) and Brazil (Tancredo Neves Airport).

The core of the Russia-Central Asia-Transcaucasia component is also dominated by
a single country Russia (see Table 16 in the appendix). Indeed, 14 airports are in Rus-
sia, 2 in Kazakhstan, and one in the capital cities of Uzbekistan, Tajikistan, Armenia,
and Azerbaijan. Each airport shares at least nine connections with the core. Those
ex-USSR countries have strong political relations that translate into solid intercon-
nections between their metropolises. Note that four of the 19 top regional hubs from
Russia are not in the core airports (Yakutsk Airport, Roshchino Airport, Irkutsk Air-
port, and Khabarovsk-Novy Airport).

To summarize, results show that leading countries widely influence the core of the
local components. Indeed, the USA, China, Australia, Russia, Brazil dominate their
region. The core reveals meaningful information about the national air traffic with its
foreign satellite destinations. The core of the European component is more homogene-
ously distributed between various countries, even though major countries dominate the
core. Finally, it appears that in the core of the Africa-Middle-East Southern -Asia com-
ponent, Cairo is the unique core airport in Africa. The air integration concerns the Mid-
dle-east and Southern Asia essentially.

Exploring the max k-core in the large global components

Figure 16b shows the core airports of the large global component. One can see that they
cover the different regions of the world, except Oceania and Africa. Five global core
airports are in North and Central America-Caribbean, nine in Europe, five in East and
Southeast Asia, four in Africa-Middle East-Southern Asia, one in South America, and
one in Russia-Central Asia-Transcaucasia. The maximum core of the global component
contains 24 airports in 18 countries. These airports are mainly located in the capital of
the countries and are managed by the largest airlines (see Table 17 in the appendix). Six
of the top 24 inter-regional hubs are not at the core of the global component. These air-
ports are in the United States (Newark Liberty), Spain (Adolfo S M-Barajas Airport),
Thailand (Suvarnabhumi Airport), Singapore (Singapore Changi Airport), Malaysia
(Kuala Lumpur Airport), and Russia (Pulkovo Airport). Although they have many links
in the global component, most of these connections are not with major core airports.
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Table 11 Core airports of the European component (65)

Airport City Country Coredegree Localrank National rank
Schiphol Amsterdam Netherlands 62 1 1
Munich Airport Munich Germany 61 2 1
London Stansted London UK 34 3 1
Barcelona Barcelona Spain 62 4 1
Frankfurt Frankfurt Germany 54 5 2
London Gatwick London UK 52 6 2
Charles de Gaulle Paris France 56 7 1
Dublin Dublin Ireland 58 8 1
Duesseldorf Duesseldorf Germany 48 9 3
Ataturk Istanbul Turkey 48 10 1
Brussels Brussels Belgium 57 11 1
Palma De Mallorca Palma de Mallorca ~ Spain 42 12 2
Manchester Manchester UK 49 13 3
Vienna Vienna Austria 49 14 1
Malaga Malaga Spain 49 15 3
Leonardo da V-F Rome ltaly 57 16 1
Madrid-Barajas Madrid Spain 58 17 4
Kastrup Copenhagen Denmark 52 18 1
S Arlanda Stockholm Sweden 46 19 1
Paris-Orly Paris France 39 20 2
Zurich Zurich Switzerland 54 21 1
Berlin-Tegel Berlin Germany 47 22 4
Alicante Alicante Spain 32 23 5
E. Venizelos Athens Greece 44 24 1
Oslo Lufthavn Oslo Norway 42 25 1
Geneva Cointrin Geneva Switzerland 53 26 2
Cologne Bonn Cologne Germany 37 27 5
London Luton London UK 34 28 4
Edinburgh Edinburgh UK 43 29 5
Nice-Cote d'Azur Nice France 46 30 3
Hamburg Hamburg Germany 47 31 6
Stuttgart Stuttgart Germany 33 32 7
London Heathrow London UK 47 33 6
H. Delgado Lisbon Portugal 51 34 1
Tenerife South Tenerife Spain 38 36 6
Vaclav Havel Prague Czech Republic 52 37 1
Marseille Marseille France 36 38 4
Gran Canaria Gran Canaria Spain 38 39 7
Malpensa Milano [taly 51 40 2
Saint-Exupéry Lyon France 37 42 5
Sabiha Gokgen Istanbul Turkey 31 43 2
Bristol Bristol UK 34 44 7
Warsaw Chopin Warsaw Poland 33 46 1
Liszt Ferenc Budapest Hungary 46 47 1
Basel-Mulhouse Mulhouse France 40 48 6
Malta Malta Malta 39 49 1
Venice Marco Polo Venice [taly 42 51 5
Berlin-Schonefeld Berlin Germany 35 52 8
G Marconi Bologna Italy 36 53 6
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Table 11 (continued)

Airport City Country Coredegree Localrank National rank
Pisa Pisa Italy 31 54 7
Ibiza Ibiza Spain 31 55 8
Helsinki Vantaa Helsinki Finland 35 56 1
Henri Coandaf Bucharest Romania 34 57 1
Riga Riga Latvia 34 58 1
Valencia Valencia Spain 31 59 9
N Kazantzakis Heraklion Greece 31 60 2
Nantes Atlantique Nantes France 34 62 7
Mohammed V Casablanca Morocco 31 63 1
Luxembourg-Findel Luxemburg Luxemburg 31 65 1
Ben Gurion Tel-aviv Israel 38 70 1
Naples Naples Italy 35 72 6
Bordeaux-Merignac Bordeaux France 31 76 8
Catania-Fontanarossa Catania Italy 35 77 7
Menara Marrakech Morocco 32 80 2
Toulouse-Blagnac Toulouse France 31 82 10
Brussels South Charleroi  Charleroi Brussels - 35 2
Il Caravaggio Bergamo Italy - 41 3
Birmingham Birmingham UK - 45 8
Faro Faro Portugal - 50 2
Glasgow Glasgow UK - 61 9
Eindhoven Eindhoven Netherlands - 64 2

Airports not in the top 65 regional hubs are in bold.The core degree of a node is its number of links in the maximum k-core.
Local rank is the rank in the large local component. National rank is the airport rank in its country. Airports in the top 65
regional hubs and not in the k-core are in bolditalic

In contrast, some airports have fewer connections, but their links are with the core air-
ports. It is the case for two airports in the North America-Caribbean region (Chicago
O’Hare Airport, Los Angeles Airport, and Washington Dulles Airport), Switzerland
(Zurich Airport), one in India (Indira Gandhi Airport), and one in Brazil (Guarulhos-
Governador A F Montoro Airport). The less connected airports in the core have at least
15 long destinations throughout the world. It compares favorably with the core of a
number of local components (Africa-Middle East-Southern Asia, Oceania, South Amer-
ica, Russia-Central Asia-Transcaucasia). Overall, Europe, North and Central America
Caribbean, and East and Southeast Asia are particularly well connected.

Comparison of max k-core of the components with the max k-core of the world air
transportation network

This section compares the core of the world air transportation network with the core of
the components. Figure 16a shows the core airports of the world air transportation net-
work. It contains 79 airports listed in Table 18 in the appendix. Similar to the core of the
European component, each airport has at least 31 links. Only five airports are not in the
European local component. One is in the USA (John F Kennedy), one is in the Middle
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Table 12 Core airports of the East and Southeast Asia component (38)

Airport City Country Core degree Local rank National rank
Beijing Capital Airport Beijing China 36 1 1
Guangzhou Baiyun Guangzhou China 35 2 2
Shanghai Pudong Shanghai China 33 3 3
Chengdu Shuangliu Chengdu China 36 4 4
Taiwan Taoyuan Taipei Taiwan 35 5 1
Kunming Changshui Kunming China 35 6 5
Incheon Seoul South Korea 29 7 1
Hong Kong Hong Kong Hong Kong 36 8 1
Shenzhen Bao'an Shenzhen China 34 9 6
Chongging Jiangbei Chongqing China 36 10 7
Xi'an Xianyang Xi'an China 33 11 8
Singapore Changi Singapore Singapore 24 12 1
Hangzhou Xiaoshan Hangzhou China 29 13 12
Xiamen Gaoqji Xiamen China 33 14 13
Changsha Huanghua Changcha China 32 17 14
Shanghai Honggiao Shanghai China 26 19 15
Wuhan Tianhe Wuhan China 32 21 16
Taoxian Shenyang China 26 22 17
Zhoushuizi Dalian China 25 23 18
Liuting Qingdao China 31 24 19
Nanjing Lukou Nanjing China 29 25 20
Zhengzhou Xinzheng Zhengzhou China 30 26 21
Taiping Harbin China 24 27 22
Tianjin Binhai Tianjin China 29 29 23
Fuzhou Changle Fuzhou China 29 32 24
Longdongbao Guiyang China 29 34 25
Taiyuan Wusu Taiyuan China 28 35 26
Sanya Phoenix Sanya China 28 37 27
Nanning Wuxu Nanning China 28 38 28
Ningbo Lishe Ninbo China 26 41 29
Nanchang Changbei Nanchang China 29 44 30
Kaohsiung Kaohsiung Taiwan 24 45 31
Haikou Meilan Haikou China 28 46 32
Yaogiang Jinan China 27 50 33
Hefei Luogang Hefei China 26 52 34
Wenzhou Longwan Wenzhou China 24 53 35
Guilin Liangjiang Guilin China 26 55 36
Lijiang Lijiang China 24 61 37
Suvarnabhumi Kuala Lumpur Malaysia - 15 1
Suvarnabhumi Bangkok Thailand - 16 2
Tokyo Haneda Tokyo Japan - 18 1
Ninoy Aquino Manila Philippines - 20 1
Don Mueang Bangkok Thailand - 28 2
Narita Tokyo Japan - 28 2
Kansai Osaka Japan - 31 3
Tan Son Nhat Ho Chi Minh City Vietnam - 33 1
Noi Bai Hanoi Vietnam - 36 2

Airports not in the top 38 regional hubs are in bold. The core degree of a node is its number of links in the maximum k-core.
Local rank is the rank in the large local component. National rank is the airport rank in its country. Airports in the top 38
regional hubs and not in the k-core are in bolditalic
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Table 13 Core airports of the Africa-Middle East-Southern Asia component (26)

Airport City Country Core degree Localrank National
rank
Dubai Dubai United Arab Emirates 22 1 1
King Abdulaziz Jeddah Saudi Arabia 23 2 2
Indira Gandhi Delhi India 19 3 1
Chhatrapati Shivaji Mumbai India 20 4 2
Sharjah Sharjah United Arab Emirates 23 6 2
King Khaled Riyadh Saudi Arabia 24 7 2
Hamad Doha Qatar 19 9 1
Muscat Muscat Oman 25 10 1
Kuwait Kuwait Kuwait 22 1 1
King Fahd Dammam Saudi Arabia 24 12 3
Abu Dhabi Abu Dhabi United Arab Emirates 23 13 3
Cairo Cairo Egypt 14 14 1
Bahrain Bahrain Bahrain 22 15 1
Kempegowda Bangalore India 16 17 3
Queen Alia Amman Jordan 15 20 1
Chennai Madras India 18 21 4
Jinnah Karachi Pakistan 14 22 1
Prince Mohammad Bin Abdulaziz  Madinah Saudi Arabia 16 24 3
Beirut Rafic Hariri Beirut Lebanon 13 25 1
Rajiv Gandhi Hyderabad India 13 26 6
Bandaranaike Colombo Colombo Sri Lanka 17 27 1
Benazir Bhutto Islamabad Pakistan 13 28 2
Alama Igbal Lahore Pakistan 14 33 3
Cochin Kochi India 17 34 7
Calicut Calicut India 14 37 8
Trivandrum Trivandrum India 14 38 9
Addis Ababa Bole Addis Ababa Ethiopia - 1
Jomo Kenyatta Nairobi Kenya - 8 2
Mehrabad Teheran Iran - 16 1
Mashhad Mashhad Iran - 18 2
Murtala Muhammed Lagos Nigeria - 19 1
Netaji Subhash Chandra Bose Kolkata India - 23 5

Airports not in the top 26 regional hubs are in bold. The core degree of a node is its number of links in the maximum k-core.
Local rank is the rank in the large local component. National rank is the airport rank in its country. Airports in the top 26
regional hubs and not in the k-core are in bolditalic

East (Dubai), and three are in Russia (Sheremetyevo, Pulkovo, and Domodedovo). Note
that these top inter-regional hubs are in the gateway cities of their region. It also includes
all the airports of the European local components. In addition, European capitals (Kyiv,
Sofia, Belgrade), tourist destinations (Antalya, Larnaca, Tunis, Fuerteventura, Catania),
and Hannover airport in Germany join the core. Note that Hannover is the base of low-
cost companies serving metropolitan and leisure destinations.

Once again, these results reveal the importance of the component structure decompo-
sition. Indeed, the core of the world transportation network brings to fore Europe, and
it blurs the rest of the world. In contrast, the component structure allows dealing with
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Table 14 Core airports of the Oceania component (8)

Airport City Country Coredegree Localrank National rank
Sydney Kingsford Smith ~ Sydney Australia 7 1 1
Brisbane Brisbane Australia 7 2 2
Melbourne Melbourne Australia 7 4 3
Cairns Cairns Australia 7 6 4
Perth Perth Australia 7 7 5
Adelaide Adelaide Australia 7 10 6
Darwin Darwin Australia 7 15 7
Alice Springs Alice Springs  Australia 7 18 10
Auckland Auckland New Zealand - 3 1
Port Moresby Jacksons  Port Moresby =~ Papua New Guinea - 5 1
Faa’a Papeete French Polynesia - 8 1

Airports not in the top 8 regional hubs are in bold. The core degree of a node is its number of links in the maximum k-core.
Local rank is the rank in the large local component. National rank is the airport rank in its country. Airports in the top 8
regional hubs and not in the k-core are in bolditalic

Table 15 Core airports of the South America component (16)

Airport City Country Core degree Localrank National rank
Guarulhos-Governador André Sao Paulo Brazil 13 1 1
Franco Montoro

Viracopos Campinas Brazil 13 3 2
Presidente Juscelino Kubistschek  Brasilia Brazil 14 5 3
Rio Galeao-Tom Jobim Rio De Janeiro  Brazil 14 6 4
Tancredo Neves Belo Horizonte  Brazil 15 7 5
Congonhas Sao Paulo Brazil 10 10 6
Deputado Luiz E Magalhaes Salvador Brazil 12 11 7
Salgado Filho Porto Alegre Brazil 8 13 8
Afonso Pena Curitiba Brazil 10 14 9
Santos Dumont Rio De Janeiro Brazil 11 15 10
Pinto Martins Fortaleza Brazil 8 17 12
Guararapes-Gilberto Freyre Recife Brazil 8 18 13
Santa Genoveva Goiania Brazil 8 25 16
Eurico de Aguiar Salles Vitoria Brazil 8 26 17
Governador Aluizio Alves Natal Brazil 8 29 18
Leite Lopes Ribeirao Preto  Brazil 8 32 20
El Dorado Bogota Colombia - 2 1
Jorge Newbery Airpack Buenos Aires Argentina - 1
Jorge Chavez Santiago Chile - 9 1
Ministro Pistarini Buenos Aires Argentina - 12 2
Tancredo Neves Belo Horizon Brazil - 7 5

Airports not in the top 16 regional hubs are in bold. The core degree of a node is its number of links in the maximum k-core.
Local rank is the rank in the large local component. National rank is the airport rank in its country. Airports in the top 16
regional hubs and not in the k-core are in bolditalic

the non-homogeneous structure of the world transportation networks, highlighting the
similarities and the differences between the components.
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Table 16 Core airports of the Russia-Central Asia- Transcaucasia component (19)

Airport City Country Coredegree Localrank National rank
Domodedovo Moscow Russia 17 1 1
Pulkovo St. Petersburg Russia 18 2 2
Sheremetyevo Moscow Russia 15 3 3
Tolmachevo Novosibirsk Russia 14 4 4
Koltsovo Yekaterinburg Russia 18 5 5
Tashkent ashkent Uzbekistan 16 6 1
Vnukovo Moscow Russia 12 7 6
Astana Tselinograd Kazakhstan 9 8 1
Almaty Alma-ata Kazakhstan 10 9 2
Yemelyanovo Krasnoyarsk Russia 13 10 7
Zvartnots Yerevan Armenia 1" 13 1
Krasnodar Pashkovsky Krasnodar Russia 11 11 8
Dushanbe Dushanbe Tajikistan 12 15 1
Ufa Ufa Russia 9 16 9
Heydar Aliyev Baku Azerbaijan 10 18 1
Sochi Sochi Russia 12 19 9
Kazan Kazan Russia 9 22 11
Nizhny Novgorod Strigino  Nizhniy Novgorod Russia 9 23 12
Kurumoch Samara Russia 10 24 13
Norilsk-Alykel Norilsk Russia 9 26 14
Yakutsk Yakutsk Russia - 12 9
Roshchino Tyumen Russia - 14 10
Irkutsk Irkutsk Russia - 17 13
Khabarovsk-Novy Khabarovsk Russia - 20 18

Airports not in the top 16 regional hubs are in bold. The core degree of a node is its number of links in the maximum k-core.
Local rank is the rank in the large local component. National rank is the airport rank in its country. Airports in the top 19
regional hubs and not in the k-core are in bolditalic

Conclusion
In this work, we present a mesoscale structure called the component structure. Each
dense area of the network forms a local component. The subnetworks of nodes and links
joining the local components are the global components. Although quite simple, this
alternative mesoscopic representation presents multiple advantages. The exploration of
the world air transportation network illustrates its usefulness. First of all, it allows par-
titioning the world air transportation network into meaningful regional entities. Indeed,
similarly with communities, the local components do not partition the world according
to strict geographical considerations but on the internal exchanges in a region.
Experiments reveal seven large local components corresponding to geographical area
(North and Central America-Caribbean, Europe, East-Southeast Asia, Africa-Middle
East-Southern Asia, Oceania, South America, and Russia-Central Asia-Transcaucasia)
with blurred boundaries. Indeed, for example, some airports in North Africa belong to
the European component, because they share more links with Europe than with Africa.
Twenty small local components generally cover remote parts of a single country. There
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Table 17 Core airports of the global component (24)

Airport City Country Core degree  Global rank
Frankfurt am Main Frankfurt Germany 16 1
Charles de Gaulle Paris France 16 2
Atatlrk Istanbul Turkey 16 3
London Heathrow London United Kingdom 16 4
Dubai Dubai United Arab Emirates 19 5
Sheremetyevo Moscow Russia 19 6
Amsterdam Schiphol Amsterdam Netherlands 16 7
John F Kennedy New York United States 19 9
Beijing Capital Beijing China 18 10
Hamad Doha Qatar 17 11
Narita Tokyo Japan 17 13
Leonardo da Vinci-Fiumicino Rome [taly 16 14
Incheon Seoul South Korea 18 15
Hong Kong Hong Kong Hong Kong 17 16
Lester B. Pearson Toronto Canada 17 19
Abu Dhabi Abu Dhabi United Arab Emirates 17 22
Munich Munich Germany 15 23
Guarulhos-Governador A F Montoro  Sao Paulo Brazil 16 26
Shanghai Pudong Shanghai China 17 28
Zurich Zurich Switzerland 15 29
Los Angeles Los Angeles United States 16 30
Indira Gandhi Delhi India 16 32
Washington Dulles Washington United States 16 38
Chicago O’Hare Chicago United States 17 39
Domodedovo Moscow Russia - 8
Suvarnabhumi Bangkok Thailand - 12
Adolfo S Madrid-Barajas Madrid Spain - 17
Pulkovo St. Petersbourg  Russia - 18
Singapore Changi Singapoer Singapore - 20
Kuala Lumpur Kuala Lumpur  Malaysia - 21
Newark Liberty Newark United States - 24

Airports not in the top 24inter-regional hubs are in bold. The core degree of a node is its number of links in the maximum
k-core. Global rank is the rank in the large local component. Airports in the top 24 inter-regional hubs and not in the k-core
are in bolditalic

is one large global component distributed over the world. Eight small global components
join a large local component with neighboring small local components or close airports
at the periphery of their local components. The analysis of the component structure
reveals the regional diversity of the world air transportation network. Nevertheless, the
large components share some common characteristics. They are disassortative, small
world, and have a heavy-tail degree and degree-degree distance distributions. A star-
based topology generally characterizes the small components.

The comparative analysis of the degree centrality in the various components allows
disentangling the diverse role of airports. Local component centrality measure highlights
the regional importance of the airports, while the global component allows quantifying
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Table 18 These airports are not in the core of the European local component, but they belong to
the core of the world air transportation network

Airport City Country Core degree  Worldwide Local rank Global rank
rank
Dubai Dubai United Arab Emir- 40 10 1 5
ates
John F Kennedy New York United States 32 14 15 9
Domodedovo Moscow Russia 35 16
Pulkovo St. Petersburg Russia 36 63 2 18
Sheremetyevo Moscow Russia 49 36 3 6
Boryspil Kiev Ukraine 35 145 86 91
Tunis Carthage Tunis Tunisia 32 165 103 86
Sofia Sofia Bulgaria 31 218 9% 305
Fuerteventura Fuerteventura Spain 31 158 65 -
Antalya Antalya Turkey 31 137 65 156
Larnaca Larnaca Cyprus 33 156 88 1M1
Belgrade Nikola Belgrade Serbia 31 178 81 238
Tesla
Hannover Hannover Germany 32 171 75 476
Catania-Fontan- Catania Italy 37 177 75 440
arossa

Airports in the European local component are in black. Airports from other local components are in bolditalic. The core
degree is the number of links in the maximum k-core network. Worldwide rank is the rank in the world air transportation
network. Local rankis the rank in the large local components. Global rank is the rank in the global component

its influence in inter-regional exchanges. Note that some major airports are pretty active
at both levels.

In the same vein, the core analysis reveals that considering the air transportation net-
work as a whole can lead to misleading interpretation. Indeed, as Europe is more densely
connected than the rest of the world, most airports in the core are in Europe. Failing to
take into account the regional variations blur the picture. In contrast, core analysis of the
components proves very instructive about various regional and inter-regional situations.

In future work, we plan to explore multiple directions. The most straightforward is to
consider weighted and directed networks and other applications such as co-authorship
networks analysis. One can also look at the hierarchical structure of the representa-
tion. Indeed, components are networks that can also be split into components and so
on. It can be an excellent way to gain information about the fractal nature of real-world
networks. The interplay between the core-periphery and the component structure is

another direction of research.

Appendix
See Fig. 17, Table 19.
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Fig. 17 Small local components (size greater than 5 nodes). A Small components located in Alaska (USA). B
small components in Ontario (Canada). C Small components in Green-Land and Norway (Europe). D Small
component in Algeria and Kenya (Africa)

Table 19 Small global components

Airport City Country Local component number

Postville Postville Canada 10 (Canada)

Goose Bay Goose Bay Canada North and Central America-Caribbean
Val-d'Or Val Dor Canada North and Central America-Caribbean
Chisasibi Chisasibi Canada 7 (Canada)

Waskaganish Waskaganish Canada 7 (Canada)

Natashquan Natashquan Canada 9 (Canada)

Sept-lles Sept-lles Canada North and Central America-Caribbean
Lourdes de Blanc Sablon Lourdes-De-Blanc-Sablon Canada North and Central America-Caribbean
St Augustin St-Augustin Canada 9 (Canada)

Fort Chipewyan Fort Chipewyan Canada 7 (Canada)

Fort McMurray Fort Mcmurray Canada North and Central America-Caribbean
Timmins/Victor M. Power  Timmins Canada North and Central America-Caribbean
Moosonee Moosonee Canada 9 (Canada)

Nouadhibou Nouadhibou Mauritania 17 (Mauritania)

Gran Canaria Gran Canaria Spain Europe

Dongshan Hailar China East and Southeast Asia

Chita-Kadala Chita Russia Russia-Central Asia-Transcaucasia

The Local component number corresponds to the number in Fig. 10
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OAG: Official Aviation Guide; LPA: Label Propagation Algorithm; NMI: Normalized Mutual Information; TPL: Truncated
Power Law; PL: Power Law; LN: Log Normal; S-E: Stretched Exponential; ID: Internal Degree; LR: Local Rank; CP: Cumula-
tive fraction of connected airports; ED: External Degree; GRR: Global Rank of the airport in the Region; GRC: Global Rank
in the global Component; WR: Worldwide Rank; GR: Global Rank.
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