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Introduction
By the year 2050 two-thirds of the growing world population are expected to live in 
urban areas (Bolay 2020). The sustainable planning and development of cities will greatly 
impact global economic, environmental, and social challenges, which demand interdis-
ciplinary approaches to urban science (Acuto et al. 2018).

In recent decades, the interdisciplinary field of complex network science has pro-
vided models and methods, which today impact everyday life (Milgram 1967; Watts 
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and Strogatz 1998; Barabási and Albert 1999; Brin and Page 1998; Page et al. 1999). Net-
work modeling approaches for urban systems can be traced back almost 300 years (Euler 
1741) and the abstraction of urban areas into geometrical models continues to form 
the basis of modern urban science (Porta et  al. 2006a, b; Batty 2008; Barthélemy and 
Flammini 2008; Barthélemy 2011; Courtat et al. 2011; Chan et al. 2011; Barthélemy et al. 
2013; Barthélemy 2016; Sharifi 2019). The combination of complex network models, 
urban science applications, and mathematical methodology from the field of numerical 
linear algebra is at the heart of this paper.

The main contribution of this paper is the development of a general methodology for 
two aspects of the spatial analysis of urban public transport networks. Exemplary results 
are given for major German and European cities. Figure 1 gives a schematic overview 
of the developed methods, which we describe further in the following paragraphs. This 
paper is accompanied by publicly available python implementations of all developed 
methods.1

The first aspect of geometrical city modeling studied in this paper is represented by 
the determination of orientations of complex urban networks, which reflect differ-
ent urban organization patterns ranging from top-down planning to self-organization 
dynamics (Batty 2008; Barthélemy and Flammini 2008; Barthélemy et al. 2013). Ear-
lier works focused on the study of orientations of street networks (Courtat et al. 2011; 
Chan et  al. 2011; Gudmundsson and Mohajeri 2013; Mohajeri et  al. 2013; Boeing 

Fig. 1  Schematic overview of the methods introduced in this paper. Both aspects of geometrical city 
modeling rely on GTFS timetable data, which is described in the "Data" section. The methodology for the 
computation of public transport orientations using sequences of single-layer networks is described in 
the "Methodology" section. Details on the construction of the multiplex network representation of urban 
public transport systems are given in the "Multiplex network model" section. The methodology for the 
determination of the centrality of stops and lines of the multiplex networks using matrix function-based 
centrality measures is presented in the sections “Definition” and “Numerical methods”

1  https://​github.​com/​KBerg​ermann/​Urban-​multi​plex-​netwo​rks.

https://github.com/KBergermann/Urban-multiplex-networks
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2019). Our contribution to this aspect of geometrical urban analysis is to provide 
methodology and example results of orientations of public transport systems. We 
compare these to street network orientations obtained with existing methodology 
(Boeing 2017, 2019) and find interesting relations between the orientations of the two 
modes of transportation for the largest German and several major European cities.

The second aspect studied in this paper is the identification and ranking of the 
most central nodes of urban public transport networks. Complex network scientists 
have intensively studied a variety of different centrality measures in recent decades. 
Among the most prominent examples are degree, betweenness (Freeman 1977), 
closeness (Freeman 1978), and versions of eigenvector centrality (Bonacich 1987; Brin 
and Page 1998; Kleinberg 1999; Page et al. 1999). Urban science has been one of many 
disciplines to pose the natural question of identifying and ranking the most important 
entities of complex networks (Crucitti et al. 2006a, b; Porta et al. 2006a; Scheurer and 
Porta 2006; To 2015; Nourian et al. 2016; Agryzkov et al. 2019; Hellervik et al. 2019; 
Hong et al. 2019; Curado et al. 2021).

Our approach to the computation of centralities of urban public transport networks 
relies on two main ingredients: matrix function-based centrality measures and mul-
tiplex networks. The class of matrix function-based centrality measures (Katz 1953; 
Estrada and Rodriguez-Velazquez 2005; Estrada and Higham 2010; Estrada 2012; 
Benzi and Klymko 2013; Benzi and Boito 2020) has attracted a lot of attention in 
recent years but has not been used in the urban science literature yet. These measures 
have the interesting property to interpolate between the concepts of local degree and 
global eigenvector centrality (Benzi and Klymko 2015). Furthermore, these measures 
require less assumptions on the graph structure than classical eigenvector centrality, 
which makes them applicable to a wider range of problems.

For the network modeling we rely on a special class of multilayer networks. 
Research on multilayer networks exploded since 2014 when two survey papers uni-
fied terminology and gleaned the main aspects of a field, which had before been 
studied across various disciplines (Kivelä et  al. 2014; Boccaletti et  al. 2014). Multi-
layer networks provide the means for building increasingly realistic models of com-
plex systems as they allow entities to interact in different ways and on various levels. 
Urban science was one discipline to witness the rise of multilayer network modeling 
approaches in recent years (Strano et al. 2015; Barthélemy 2016; Alessandretti et al. 
2016; Aleta et al. 2017; Zheng et al. 2018; Curado et al. 2021).

Some recent works provide generalizations of centrality measures well-studied on 
single-layer graphs to the case of different multilayer architectures (De Domenico 
et al. 2015; Taylor et al. 2017, 2019, 2021; Wang et al. 2017; Tudisco et al. 2018; Wu 
et  al. 2019; Bergermann and Stoll 2021). Most importantly for this paper, the class 
of matrix function-based centrality measures has very recently been generalized to 
the case of layer-coupled multiplex networks. We adapt that methodology and study 
its applicability for the more general multiplex models of urban public transport net-
works. Highly efficient and scalable methods from numerical linear algebra enable 
the rapid and stable approximation of the centralities for small- to large-scale net-
works. We present various numerical results for multiplex networks with the num-
ber of physical nodes in the thousands and the number of layers in the hundrets and 
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extensively study the influence of the different hyper-parameters involved in the 
model.

Data
The focus of this paper lies on the analysis of urban public transport networks. For their 
realistic modeling we rely on the General Transit Feed Specification (GTFS),2 which 
defines a standardized format for public transport timetables used around the globe. For 
comparison and visualization purposes we also consider street networks. Here, we rely 
on the python package OSMnx3 (Boeing 2017) built on top of the open source platform 
OpenStreetMap.4 OSMnx can, amongst other things, be used to generate graph struc-
tures representing street networks according to user-specified queries and provides vari-
ous routines for their analysis. Note, that while OpenStreetMap also contains a public 
transport tagging feature, timetable information can not be expected to be as accurate as 
high-quality GTFS data, cf. https://​wiki.​opens​treet​map.​org/​wiki/​Public_​trans​port.

We consider the 36 largest German cities by population as well as 18 selected major 
European cities for which we could obtain complete GTFS data. The three German cit-
ies Bochum, Gelsenkirchen, and Magdeburg had to be excluded from our studies as no 
complete GTFS data was available.

For Germany, several high quality GTFS feeds are publicly available5 on a daily basis 
and this paper builds on the local public transport data set6,7 for April 22nd, 2021 (feed 
version “light-2021-04-22”). This data set covers over 20,000 public transport lines 
serving over 450,000 stops across Germany. However, only required and conditionally 
required files (no optional ones) are provided,8 e.g., no explicit information about route 
frequencies or transfer options between stops is provided.

We also obtained several individual GTFS data sets for 18 selected major European 
cities.9 However, as data integrity and availability varies among the different feeds, no 
common feed date could be guaranteed for all data sets. Instead, we downloaded the lat-
est complete data set available as of May 21st, 2021 in each case.

For all considered cities, we use polygons representing the administrative boundaries 
of the cities proper (excluding suburban areas) obtained via appropriate OSMnx queries 
to filter for all stops within the city limits. In GTFS terminology, all “routes” with at least 
one associated “trip” connecting at least two of the filtered “stops” are considered a valid 
line in the public transport network. In addition to the stops’ spatial coordinates, we 
process the fields “arrival time” and “departure time” of each “trip” from the file “stop_
times” to determine travel times between connected pairs of stops.

The polygons used to filter public transport stops from the GTFS data sets are also 
deployed in all OSMnx routines used in the context of this paper. For our analysis, we 

2  https://​devel​opers.​google.​com/​trans​it/.
3  https://​osmnx.​readt​hedocs.​io/​en/​stable/.
4  https://​www.​opens​treet​map.​org/.
5  https://​gtfs.​de/​de/​feeds/.
6  https://​gtfs.​de/​de/​feeds/​de_​nv/.
7  https://​downl​oad.​gtfs.​de/​germa​ny/​nv_​free/​latest.​zip.
8  https://​devel​opers.​google.​com/​trans​it/​gtfs/​refer​ence.
9  https://​trans​itfee​ds.​com/l/​60-​europe.

https://wiki.openstreetmap.org/wiki/Public_transport
https://developers.google.com/transit/
https://osmnx.readthedocs.io/en/stable/
https://www.openstreetmap.org/
https://gtfs.de/de/feeds/
https://gtfs.de/de/feeds/de_nv/
https://download.gtfs.de/germany/nv_free/latest.zip
https://developers.google.com/transit/gtfs/reference
https://transitfeeds.com/l/60-europe
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require filtering for streets within each city’s limits for two purposes: firstly, to produce 
street network orientation plots and, secondly, to create and plot street networks for vis-
ualization purposes later in this paper.

The following two sections provide details on how the data is transformed into dif-
ferent graph structures. While a sequence of single-layered graphs is sufficient for the 
determination of public transport network orientations we introduce a more sophis-
ticated modeling approach based on multiplex networks for the determination of the 
most central stops and lines of the networks.

Public transport network orientations
Urban areas in large parts of the world have undergone rapid expansion in past decades 
and are expected to grow further (Bolay 2020). Global economic, environmental, and 
social challenges will be crucially impacted by future urban planning (Acuto et al. 2018). 
One of many important aspects of the growth of urban systems is their geometrical 
expansion (Porta et al. 2006a, b; Batty 2008; Barthélemy and Flammini 2008; Barthélemy 
2011; Courtat et  al. 2011; Chan et  al. 2011; Barthélemy et  al. 2013; Barthélemy 2016; 
Sharifi 2019). Previous works have identified very different mechanisms for the spatial 
evolution of cities ranging from top-down planning to self-organization dynamics (Batty 
2008; Barthélemy and Flammini 2008; Barthélemy et al. 2013). A recent work beautifully 
illustrates these different mechanisms by means of orientation plots of urban street net-
works on a global scale (Boeing 2019).

In this section, we consider orientations of both street and public transport networks 
of the 36 largest German cities by population as well as 18 selected major European cit-
ies specified in the previous section. We describe the developed methodology in a first, 
and illustrate and discuss the obtained results in a second step.

Methodology

For the determination of street network orientations we use readily implemented rou-
tines10 from the python package OSMnx (Boeing 2017) in combination with appropriate 
search queries, which follow the methodology described in Boeing (2019). This method-
ology relies on the creation of a primal (Porta et al. 2006a) undirected single-layer graph 
in which intersections are represented by nodes and streets by straight edges between 
them (ignoring curvature). The compass bearings of both directions (always including 
the reciprocal of any street bearing) of each street segment are recorded and added in an 
unweighted manner, cf. Mohajeri et al. (2013) for a discussion on weighting techniques. 
Afterwards, they are divided into 36 equal-sized bins with the cardinal directions located 
in the middle of the associated bins and plotted as a rose diagram.

Our first contribution to the geometrical analysis of urban systems is the investigation 
of orientations in public transport networks. To this end, we use GTFS data describing 
public transport timetables as specified in the "Data" section and we develop a meth-
odology for the computation of public transport network orientations similar to that of 
street network orientations.

10  https://​github.​com/​gboei​ng/​osmnx-​examp​les/​blob/​main/​noteb​ooks/​17-​street-​netwo​rk-​orien​tatio​ns.​ipynb.

https://github.com/gboeing/osmnx-examples/blob/main/notebooks/17-street-network-orientations.ipynb
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Our methodology also relies on the creation of single-layered graphs and the com-
putation of bearings between pairs of nodes. In our case, nodes represent stops within 
the city limits and edges represent connections of public transport lines between stops, 
which we also assume to be straight and which are also not weighted (by, e.g., segment 
lengths or travel times). Deviating from the street network case, we consider these edges 
to be directed. The edges’ directions are determined by the sequence of stops of, in GTFS 
terminology, each “trip” of each valid “route” of the urban public transport network. We 
realize this by successively processing all “trips” belonging to all valid “routes” as speci-
fied in the "Data" section. This procedure has the effect of assigning an implicit weight 
to all lines proportional to their operation frequency. An alternative approach would be 
to only process unique trips of all lines, which would, in the simplest case, lead to two 
copies of the same sequence of stops in reverse order. Interestingly, we empirically found 
only small deviations in the results of the two approaches, which we will comment on in 
the "Results and discussion" section. In both cases, most of the created directed graphs 
are chain graphs connecting only a small subset of the stops within the city limits. We 
then store the directed bearings (not including reciprocals) between all pairs of con-
nected nodes of all graphs, divide them into 36 equal-sized bins, and visualize the results 
in a rose diagram as in the case of street network orientations. Note that the computa-
tions of orientations of different public transport lines are entirely independent, which 
offers great potential for parallelization.

Results and discussion

The methodology for the computation of street network orientations described in the 
beginning of the "Methodology" section leads to the results displayed in Fig. 2 for the 
36 German cities under investigation. The results show that most large German cit-
ies’ street networks have two orthogonal preferential directions, which is consistent 
with previous findings (Chan et  al. 2011). How strongly pronounced these directions 
are, however, differs significantly: while, e.g., Halle (Saale) or Krefeld exhibit quite dis-
tinct cross-shaped patterns throughout the city area other cities like, e.g., Bielefeld or 
Mönchengladbach show almost equally distributed orientations. These differences likely 
reflect diverse historic city developments and urban planning approaches. Furthermore, 
the preferential directions seldomly coincide with the cardinal directions, but can often 
be linked to geographical constraints such as rivers or mountains. Some cities like, e.g., 
Lübeck or Rostock appear to comprise of two sets of orthogonal preferential directions 
prevailing in different regions of the city area.

At first glance, one might expect public transport network orientations to strongly 
correlate with street network orientations as buses and usually trams, which dominate 
the public transport system in most German cities, cf. the layer column in Table 1, oper-
ate on or alongside streets. However, as public transport stops are usually not located 
at street intersections but on street segments one could interpret public transport net-
works as dual graphs (Porta et al. 2006b) of street networks in which nodes represent 
streets and edges represent intersections and in which only a subset of street segments 
is equipped with public transport stops. In the case of a line following the same street 
between two stops the orientations of both networks will coincide, but as soon as a 
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public transport line takes a turn at a street intersection, the public transport bearing 
will point into a direction in between the two (often orthogonal) street orientations.

Figure 3 shows the public transport network orientations for the 36 considered Ger-
man cities. In contrast to the street network orientations of the same cities in Fig. 2 the 
public transport network orientations lack clear orthogonal preferential directions for 
most cities. Instead, one often observes only one blurred preferential direction consist-
ing of several bins of the rose diagram with no or only a weakly pronounced second 
orthogonal direction. Interestingly, this one blurred preferential direction often approxi-
mately coincides with the one preferential direction of the corresponding street network, 
which is closer to the east-west axis. None of the considered German cities has its most 
pronounced public transport direction closer than 45 degrees to the north-south axis.

Moreover, the blurred tilted east-west-like preferential directions of the public trans-
port networks are often accompanied by a visually rather discontinuous distribution of 
bearings in the remaining directions. As there is a tendency for more continuous bear-
ing distributions for cities with many public transport lines we conjecture that part of 

Fig. 2  Street network orientations of the 36 largest German cities with valid GTFS data as described in the 
"Data" section. The plots were created using the OSMnx python package (Boeing 2017)
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the recorded orientations can be considered random, e.g., due to the effect induced by 
taking turns described above, which decouples public transport orientations from street 
network orientations. Cities with more lines and consequently a larger sample size of 
different bearings seem to get closer to the actual, relatively smooth bearing distribution. 
For instance, the bearing distribution of Mainz with only 39 lines appears much more 
discontinuous than that of Hamburg with 253 lines.

By the choice of considering directed edges in public transport networks the corre-
sponding orientation diagrams are nonsymmetric. However, the degree of non-symme-
try in Fig. 3 is rather small indicating that most lines serve the same sequence of stops 
roughly equally in both travel directions.

Comparing the two approaches of considering all “trips” per “route” against consider-
ing only unique “trips” the orientation plots using only unique trips are visually almost 
identical to those displayed in Fig. 3 for almost all 36 cities. Very few cities like Freiburg 
and Krefeld, which both comprise of few lines contain somewhat less pronounced tilted 
east-west axes, implying that the respective bearings belong to highly frequented routes.

Fig. 3  Public transport network orientations of the 36 largest German cities with valid GTFS data as 
described in the "Data" section
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For comparison, we also apply the methods described in "Methodology" section to 
18 selected major European cities. Figure  4 shows their street orientation diagrams 
while Fig.  5 illustrates the corresponding public transport orientations. The key 
observations made for the German cities hold true for roughly half of the consid-
ered European cities: street network orientations contain two orthogonal preferential 
orientations, which can sometimes be linked to geographical constraints, and main 
public transport network orientations tend to run along the east-west axis. Deviating 
from the latter observation, merely Nice clearly possesses a more pronounced north-
south orientation. Conversely, street orientations of, e.g., Athens, Rome, and Stock-
holm are quite equally distributed, which could suggest that self-organizing dynamics 
dominated the spatial expansion of these cities (Batty 2008; Barthélemy and Flam-
mini 2008; Barthélemy et al. 2013). The fact that Athens and Rome both have a his-
tory of being important European cultural centers for millennia might support that 
hypothesis. Interestingly, some cities like Luxembourg City, Oslo, and Stockholm, 
whose street network orientations are quite equally distributed, still show a clearly 
pronounced (tilted) east-west axis in the public transport network orientation plots.

Finally, we comment on some European cities with unique properties in at least one of 
the two orientation plots. The street network orientations of Brussels differ from other 
considered cities in the fact that the preferential directions are not orthogonal, but rather 
form an angle of 45 degrees. The public transport network orientations of Belgrade are 
remarkably nonsymmetric suggesting that a transport concept different from lines going 
back and forth along the same route with the same frequencies is in place. Lastly, Barce-
lona is the only city considered in this paper with two equally pronounced orthogonal 
preferential directions in both orientation plots. The latter observation is the result of a 
remarkable city planning effort by Cerdà in the year 1860 to connect the medieval core 
of Barcelona with surrounding villages by an extensive road network in the form of an 
orthogonal grid (Pallares-Barbera et al. 2011), which is certainly only one of many sto-
ries behind the graphics in Figs. 2, 3, 4 and 5.

All results presented in this section are reproducible with publicly available python 
codes.11 The code is designed according to the General Transit Feed Specification 
(GTFS) and should work on any valid GTFS data set making it easily utilizable for data 
of all regions around the world.

Multiplex network model
We now move to the second aspect of geometrical city modeling studied in this paper: 
the application of matrix function-based centrality measures to a multiplex network rep-
resentation of the urban public transport systems. To this end, we introduce the multi-
plex framework employed to formalize these systems. We discuss the relation between 
network centralities and orientations in the "Discussion" section.

Network models have a long history in urban science: going back almost 300 years to 
Euler’s Königsberg bridge problem (Euler 1741) it could be argued that graph theory was 
motivated by an urban science problem. Especially the abstraction of street networks to 

11  https://​github.​com/​KBerg​ermann/​Urban-​multi​plex-​netwo​rks.

https://github.com/KBergermann/Urban-multiplex-networks
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(almost) planar single-layer graphs has been the basis for many mathematical models of 
cities ever since (Barthélemy 2011, 2016). More recently, following the advent of mul-
tilayer graphs in various scientific disciplines (Kivelä et al. 2014; Boccaletti et al. 2014), 
urban science profited from the flexibility provided by multi-layered network structures 
to construct more realistic models of complex interactions (Aleta et  al. 2017; Curado 
et al. 2021; Alessandretti et al. 2016; Zheng et al. 2018; Strano et al. 2015). Some of these 
works consider multi-layered public transport networks in which layers correspond to 
either lines or modes of transportation.

Fig. 4  Street network orientations of 18 selected European cities for which valid GTFS data could be 
obtained via https://​trans​itfee​ds.​com/l/​60-​europe. The plots were created using the OSMnx python package 
(Boeing 2017)

Fig. 5  Public transport network orientations of 18 selected European cities for which valid GTFS data could 
be obtained via https://​trans​itfee​ds.​com/l/​60-​europe

https://transitfeeds.com/l/60-europe
https://transitfeeds.com/l/60-europe
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In this section, we introduce a primal (Porta et al. 2006a) multiplex representation of pub-
lic transport networks in which layers represent lines. We assume the layers to be node-
aligned so that each layer contains an instance of each physical node representing a stop 
within the city limits. We denote the number of physical nodes by n and the number of lay-
ers by L. Each copy of a physical node in any of the layers is called a node-layer pair.

We distinguish between two types of edges that can connect pairs of node-layer pairs: 
intra- and inter-layer edges. Intra-layer edges connect node-layer pairs belonging to the 
same layer whenever the corresponding line directly connects the two stops, i.e., if a line 
approaches stops A-B-C, then A and B as well as B and C are connected by an edge, but 
A and C are not. Inter-layer edges, on the other hand, connect instances of the same 
physical nodes belonging to different layers whenever both lines serve the correspond-
ing stop, i.e., if the stop can be used to change between the lines. We discuss mode-
ling approaches to assign weights to both intra- and inter-layer connections later in this 
section.

In our multiplex networks we restrict ourselves to undirected edges although directed 
models taking travel directions into account would appear suitable for the application, 
cf. our approach to network orientations in the "Public transport network orientations" 
section. Our choice accounts for the structure of the GTFS data, which contains multi-
ple different stop-ID’s, i.e., physical nodes per stop. This structure entails that, e.g., a bus 
stop with one stop on each side of a street but the same name is not represented by one 
but two physical nodes. Employing a strategy to aggregate stops with the same name 
is error-prone as it provokes unexpected behavior when different data providers use 
inconsistent stop naming logics, e.g., in- and excluding track numbers in stop names. In 
order to prevent in- and outbound traffic of a stop to be unequally distributed across two 
different physical nodes we use undirected edges, which equally represent in- and out-
bound traffic at the involved node-layer pair regardless of the current travel direction. 
In the example scenario described above this leads to both stop-ID’s carrying the same 
in- and outbound information. This way of “counting each connection twice” appears 
preferable over each node-layer pair of the network carrying only half of the information 
available for the respective stop.

More formally, the multiplex networks described so far can be defined as the mul-
tilayer graph G = (Ṽ , E (1), . . . , E (L), Ẽ) consisting of a common vertex set Ṽ for all lay-
ers, intra-layer edge sets E (l) for all layers l = 1, 2, . . . , L , and an inter-layer edge set Ẽ . 
Note that similar networks have been considered before, e.g., in Taylor et al. (2017, 2019, 
2021), Bergermann and Stoll (2021) but in this paper we employ a different notion of 
inter-layer edges, which is determined by the data.

We choose a supra-adjacency matrix representation as the linear algebraic formulation 
of these multiplex networks (Kivelä et al. 2014; Taylor et al. 2017, 2019, 2021; Berger-
mann and Stoll 2021). The two different types of edges are represented by two separate 
matrices. The multilayer intra-layer adjacency matrix Aintra ∈ R

nL×nL contains the edges 
representing connections by public transport lines and is defined as the block-diagonal 
matrix
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with 0 ∈ R
n×n the matrix of all zeros. Each block-diagonal entry A(l) ∈ R

n×n corre-
sponds to the adjacency matrix of layer l. It contains the weight of the edge between 
the physical nodes i and j in layer l in the entry [A(l)]ij and zero if no edge is present for 
i, j ∈ {1, 2, . . . , n} and l ∈ {1, 2, . . . , L}.

The inter-layer adjacency matrix Ainter ∈ R
nL×nL contains the edges representing 

possible changes between public transport lines and is defined as

where

with l, k ∈ {1, 2, . . . , L} such that O(lk) ∈ R
n×n contains ones only on a subset of its diago-

nal entries. Thus, the presence of inter-layer edges depends on whether the lines repre-
sented by layers l and k both stop at a given physical node. We set the block-diagonal of 
Ainter to zero matrices 0 ∈ R

n×n as these entries would not represent a change of lines.
On the one hand, the above definition of Ainter is more general than those in Tay-

lor et  al. (2017, 2019, 2021), Bergermann and Stoll (2021), where each O(lk) is a full 
identity matrix, as it includes all combinations of up to n zero diagonal entries. On 
the other hand, the construction in Taylor et al. (2017, 2019, 2021), Bergermann and 
Stoll (2021) allows each layer-layer pair to be coupled with a different weight, while 
Ainter defined in Eq. (2) is unweighted. We will introduce the parameter ω in Eq. 
(3) to scale the inter-layer adjacency matrix, which can be interpreted as modeling 
a constant transfer time between all lines at all stops of the network. Note that all 
numerical methods would be equally applicable if each inter-layer edge was weighted 
individually.

The definitions in Eqs. (1) and (2) now allow us to define the supra-adjacency matrix 
A ∈ R

nL×nL of the multiplex network as

where ω ∈ R≥0 is a scalar coupling parameter that trades off the relative importance of 
intra- and inter-layer weights. Note that by our choice of undirected edges discussed 
earlier in this section we have A = AT throughout this paper.

We visualize the above definitions by a small example multiplex network in Fig. 6. 
The left plot shows a multiplex network that consists of three layers (two tram lines 
and one bus line) taken from the full multiplex network of the German city Freiburg. 
Only the subset of physical nodes served by these lines is included in the figure. The 

(1)Aintra = blkdiag[A(1), . . . ,A(L)] =











A(1)
0 . . . 0

0 A(2) . . . 0

...
...

. . .
...

0 0 . . . A(L)











,

(2)Ainter =











0 O(12) . . . O(1L)

O(21)
0 . . . O(2L)

...
...

. . .
...

O(L1) O(L2) . . . 0











,

[

O(lk)
]

ij
=

{

1, if i = j and physical node xi is connected between layers l and k ,
0, otherwise,

(3)A = Aintra + ωAinter,
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right plot shows the sparsity structure of the corresponding supra-adjacency matrix. 
Both illustrations distinguish the two types of edges by different colors.

We remark that the supra-adjacency matrix A of our public transport networks is 
characterized by a high degree of sparsity. This is true by the definitions in Eqs. (1) 
and (2), but our application is characterized by additional sparsity due to the facts 
that each line typically only serves a small subset of stops in the city and that most 
layers are approximately represented by chain graphs in which the number of edges 
is of the order of the number of non-isolated node-layer pairs. Table 1 illustrates the 
most important multiplex network properties of the 36 German cities considered in 
the "Public transport network orientations" section. It confirms the statements above: 
around 95–98% of the node-layer pairs in the networks are isolated, i.e., possess no 
incident edge and the number of intra-layer edges is close to the number of non-iso-
lated node-layer pairs for all networks.

Finally, we comment on our approach to assigning weights to the edges of the mul-
tiplex networks. Many weighted urban network models rely on choosing either the 
geographical distance (Crucitti et al. 2006a, b; Porta et al. 2006a) or travel times (Aleta 
et al. 2017; Bast et al. 2016) as weights, which is a sensible and straightforward choice 
for many problems like, e.g., routing algorithms. We, however, aim at applying matrix 
function-based centrality measures to the multiplex networks in which a node-layer pair 
is considered central if it is connected to many other node-layer pairs by short walks 
along edges with large weights. To decide what it means to be “close” to many node-layer 
pairs in a public transport network, we rely on the combination of two concepts: the 
frequency of the public transport line (Aleta et al. 2017) and a Gaussian kernel applied to 
travel times. Gaussian kernels have become a well-established choice of similarity meas-
ures in many data-driven applications (Schölkopf and Smola 2002; Von Luxburg 2007; 
Stoll 2020; Bergermann et al. 2021).

We define the frequency φ(l)
ij ∈ N as the number of connections that line l offers 

between stops i and j per day. Furthermore, we denote the travel time between node-
layer pairs (i, l) and (j, l) with i, j ∈ {1, 2, . . . , n} and l ∈ {1, 2, . . . , L} by (�t)

(l)
ij ∈ R≥0 and 

use a Gaussian kernel to define the similarity of them as exp

(

−

(

(�t)
(l)
ij

)2

σ 2

)

∈ (0, 1] . The 

scalar parameter σ ∈ R>0 determines the distribution of these similarities, e.g., 
σ ≪ (�t)

(l)
ij  leads to most weights being close to zero and σ ≫ (�t)

(l)
ij  leads to most 

weights being close to one. As this parameter scales the travel times of public transport 
lines in the urban network it can be interpreted as a “normalizing travel time”. Numerical 
experiments on the role of the parameter σ are presented in the "Influence of the nor-
malizing travel time" section. As described at the beginning of this section, edge weights 
are set to zero if the corresponding layer offers no direct connection. Note, that informa-
tion about both line frequencies and travel times can be extracted from GTFS data.

We allow different combinations of both weighting concepts by defining the intra-
layer weights as

[

A(l)
]

ij
=

{

w
(l)
ij , if (i, l) and (j, l) are connected,

0, otherwise,
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with w(l)
ij  equal to one of the following expressions:

With the fourth choice of weights we combine travel times and frequencies by multipli-
cation of the two individual weights. This leads to a (linearly) proportional dependence 
of the weight on the frequency and a (non-linearly) anti-proportional dependence of the 
weight on the travel time. With this weighting approach, stops connected to many other 
stops via highly frequented routes with short travel times will be recognized as most 
central. We compare the different weighting approaches in the "Comparison of different 
weight models" section.

As described in the "Data" section, files containing information on transfer options 
and transfer times between different public transport lines are not required but only 
optional in GTFS data. Hence, we do not possess knowledge of realistic transfer times, 
which are represented by inter-layer edge weights in our multiplex network formulation. 
We thus propose to utilize the unweighted inter-layer adjacency matrix defined in Eq. 
(2) and to include the cost of changing lines into the coupling parameter ω from Eq. (3) 
by defining a transfer time �ttransfer ∈ R≥0 , which we assume to be constant across all 
pairs of lines and all stops. For consistency, we also apply the same Gaussian kernel to 
�ttransfer whenever we include travel times in the weights of intra-layer edges. Thus, the 
inter-layer weights are given by

(4)

• 1, using no travel times and no frequencies,

• φ
(l)
ij , using only frequencies,

• exp

(

−

(

(�t)
(l)
ij

)2

σ 2

)

, using only travel times,

• φ
(l)
ij exp

(

−

(

(�t)
(l)
ij

)2

σ 2

)

, using both travel times and frequencies.

Fig. 6  Example public transport multiplex network with L = 3 selected layers of Freiburg (corresponding to 
two tram layers and one bus layer) and n = 126 stops. The graphics were created with the python package 
pymnet (Kivelä 2017). Left: Visualization of the multiplex network. Intra-layer edges are marked dark blue and 
inter-layer edges are marked red. Right: Sparsity structure of the corresponding supra-adjacency matrix. Dark 
blue entries represent intra-layer edges and red entries represent inter-layer edges
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Future public transport models should include realistic individual transfer times for all 
stops and all combinations of lines serving these stops. From an implementation point of 
view these transfer times would be easy to include in our multiplex model without caus-
ing any issues for our algorithms. We envision that more detailed knowledge of transfer 
times (including distances and walking times between different lines at the same stop) of 
practitioners can lead to more advanced city-specific multiplex public transport models 
in the future.

Matrix function‑based centralities
Methods to identify and rank the most important nodes of complex networks have a 
long history in complex network science (Katz 1953; Freeman 1977, 1978; Bonac-
ich 1987; Brin and Page 1998; Kleinberg 1999; Page et al. 1999). Among many others, 
urban networks have been a key application of a variety of centrality measures including 
degree, closeness, betweenness, and different variants of eigenvector centralities (Cru-
citti et al. 2006a, b; Porta et al. 2006a; Scheurer and Porta 2006; To 2015; Nourian et al. 
2016; Wang and Fu 2017; Agryzkov et al. 2019; Hellervik et al. 2019; Curado et al. 2021).

In this section, we consider matrix function-based centrality measures (Benzi and 
Boito 2020; Estrada and Higham 2010; Estrada and Rodriguez-Velazquez 2005; Benzi 
and Klymko 2013; Katz 1953; Bergermann and Stoll 2021), which interpolate between 
local degree centrality and global eigenvector centrality (Benzi and Klymko 2015). An 
advantage of this class of centrality measures over eigenvector centrality is its more gen-
eral applicability.12 Recently, the class of matrix function-based centrality measures has 
been generalized to layer-coupled multiplex networks (Bergermann and Stoll 2021). We 
illustrate that the same methods are also applicable to the more general multiplex net-
work framework introduced in the "Multiplex network model" section. In the remainder 
of this section, we briefly motivate and introduce matrix function-based centrality meas-
ures and present efficient numerical methods for their computation as well as numerical 
results including a discussion of the impact of certain hyper-parameters.

Definition

Matrix function-based centrality measures are based on the application of the matrix 
exponential or the matrix resolvent function to the adjacency matrix of a network. We 
briefly motivate the definitions by considering walks on single-layer networks and refer 
the reader to Bergermann and Stoll (2021, Sec. 3) for more details. At the end of this 
subsection, we comment on the generalization of the definitions to the case of the multi-
plex networks introduced in the "Multiplex network model" section.

(5)ω = exp

(

−
(�ttransfer)

2

σ 2

)

∈ (0, 1].

12  Eigenvector centrality is defined by the eigenvector belonging to the largest eigenvalue of a suitable matrix like, e.g., 
the graph’s supra-adjacency matrix, cf. Taylor et  al. (2017, 2019, 2021). The unique existence of this eigenvector can, 
however, only be guaranteed if the assumptions of the Perron–Frobenius theorem are satisfied [Taylor et  al. 2021, 
Thm. 3.7]. This restriction does not apply to matrix function-based centrality measures, cf. e.g. [Bergermann and Stoll 
2021, Sec. 6.3] for an example. Note, however, that variants of eigenvector centrality circumventing this shortcoming 
exist, cf. e.g. Tudisco et al. (2018).
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In the case of an undirected and unweighted single-layer graph with n nodes, the 
entry [A]ij of the adjacency matrix A ∈ R

n×n is 1 if an edge is present between nodes i 
and j and 0 otherwise. Note that in the formalism introduced in the "Multiplex network 
model" section this corresponds to L = 1 and A = Aintra = A(1) . It is well-known from 
graph theory that an entry [Ap]ij of the pth power of such an adjacency matrix contains 
the number of walks of length p that exist between nodes i and j (Estrada 2012). While 
(local) degree centrality can be formulated in terms of the (first power of the) adjacency 
matrix and (global) eigenvector centrality in terms of the limit of adjacency matrix pow-
ers, matrix function-based centralities consider walks of all lengths. This approach can 
be represented by considering the adjacency matrix power series 

∑∞
p=0 A

p . Furthermore, 
one typically introduces a damping factor in this power series to control the magnitude 
of the entries of the matrix powers, which typically grows rapidly with p. The following 
two choices of damping factors lead to the power series of the matrix exponential (left) 
and the matrix resolvent function (right)

where I ∈ R
n×n denotes the identity matrix and β ∈ R>0 and 0 < α < 1/�max

13 denote 
scalar hyper-parameters. These parameters control the trade-off of locality and globality 
in the considered walks on the network by assigning more or less weight to longer walks.

The centrality of any given node i in the network is then revealed by the follow-
ing two expressions of these matrix functions: eTi f (A)ei denotes the diagonal ele-
ment of f (A) , which contains the weighted sum of walks of all lengths, which start 
and end at node i; eTi f (A)1 denotes the sum of the ith row of f (A) , which contains 
the weighted sum of all walks starting at node i (regardless of where they end). Here, 
ei = [0, . . . , 0, 1, 0, . . . , 0]T ∈ R

n denotes the ith unit vector and 1 = [1, 1, . . . , 1]T ∈ R
n 

the vector of all ones. This leads to the definitions of subgraph centrality (Estrada and 
Rodriguez-Velazquez 2005) (left) and resolvent-based subgraph centrality (Benzi and 
Boito 2020) (right)

as well as total communicability (Benzi and Klymko 2013) (left) and Katz centrality (Katz 
1953) (right)

The same definitions hold true for weighted graphs and although extensions to directed 
networks exist (Bergermann and Stoll 2021), we restrict ourselves to undirected net-
works in this paper, which leads to symmetric adjacency matrices AT = A.

It has recently been proposed to generalize the above definitions to the case of layer-
coupled multiplex networks by replacing the graph adjacency matrix by the supra-adja-
cency matrix of the corresponding multiplex networks (Bergermann and Stoll 2021, 

(6)
∞
∑

p=0

βp

p!
Ap = exp (βA),

∞
∑

p=0

αpAp = (I − αA)−1,

(7)SC(i,β) = eTi exp (βA)ei, SCres(i,α) = eTi (I − αA)−1ei,

(8)TC(i,β) = eTi exp (βA)1, KC(i,α) = eTi (I − αA)−1
1.

13 
�max denotes the largest eigenvalue of A and this choice of α ensures the existence of the inverse in Eq. (6) and deter-

mines the sign of all derivatives, cf. (Bergermann and Stoll 2021, Sec. 5.2.1) and the references therein.
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Sec. 4). We will demonstrate that all methods from Bergermann and Stoll (2021) for the 
symmetric case A = AT still apply for the more general multiplex networks introduced 
in the "Multiplex network model" section.

Note that by the construction of the supra-adjacency matrix defined in Eq. (3) the 
above quantities yield centrality values for all node-layer pairs, which allows to identify 
and rank the most central node-layer pairs of the network. Following Taylor et al. (2017), 
we call these values joint centralities and denote the joint centrality of physical node i in 
layer l by JC(i, l). However, we remark that the numerical methods introduced in the fol-
lowing subsection are unable to compute subgraph and resolvent-based subgraph cen-
tralities of isolated node-layer pairs, i.e., node-layer pairs without any adjacent edge. We 
set the centrality values of these node-layer pairs to 1, which is consistent with Eq. (6), in 
which the respective rows and columns of the supra-adjacency matrix power series are 
given by unit vectors.

Finally, we adapt the concept of marginal node (MNC) and marginal layer centralities 
(MLC) (Taylor et al. 2017). These quantities are defined as

and can be used to assess the importance of all physical nodes and layers of the multi-
plex network, which will play a key role in our interpretation of the results.

Numerical methods

We now discuss strategies for the numerical evaluation of the matrix function-based 
centrality measures defined in Eqs. (7) and (8). For small network sizes, many software 
packages provide accurate algorithms for the explicit evaluation of the matrix exponen-
tial and the solution of a regular linear system (an efficient numerical implementation of, 
e.g., (I − αA)−1

1 would solve the linear system (I − αA)x = 1 for the vector x ). These 
methods, however, quickly become infeasible for medium to large network sizes and we 
briefly present efficient and scalable approximations based on Krylov subspace methods. 
More details can be found in Benzi and Boito (2020) for single-layer networks and in 
(Bergermann and Stoll 2021, Sec. 5) for multiplex networks.

As we only consider undirected graphs, i.e., symmetric supra-adjacency matrices in 
this paper we rely on the symmetric methods introduced in (Bergermann and Stoll 2021, 
Sec. 5), which are based on the symmetric Lanczos method (Lanczos 1950; Golub and 
Van Loan 2013). In its kth iteration, this method constructs the kth column of an orthog-
onal basis Qk ∈ R

nL×k of the Krylov subspace

to a matrix A = AT ∈ R
nL×nL and a vector v ∈ R

nL . This allows the decomposition of 
A into the form A ≈ QkT kQ

T
k  , where T k = TT

k ∈ R
k×k has tridiagonal form. This 

approximation typically achieves a high accuracy for k ≪ nL , which makes the eigende-
composition T k = Sk�kS

T
k  easy to compute with standard methods. These two matrix 

factorizations can then be combined to compute total communicability and Katz cen-
trality by evaluating the quantity

(9)MNC(i) =

L
∑

l=1

JC(i, l), MLC(l) =

n
∑

i=1

JC(i, l),

(10)Kk(A, v) = span
{

v,Av,A2v, . . . ,Ak−1v
}
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where f is applied elementwise to the eigenvalues of T k (Higham 2008). The ith entry of 
the resulting vector then corresponds to the centrality value of the ith node-layer pair.

For subgraph and resolvent-based subgraph centrality we rely on an elegant relation 
between the symmetric Lanczos method, orthogonal polynomials, and Gauss quadra-
ture discussed by Golub and Meurant (1994, 1997, 2009), Golub and Welsch (1969), 
which can be used to compute lower and upper bounds on the sought quantities. The 
final result of this approach yields a lower Gauss quadrature bound, which reads

where the computation of T k = Sk�kS
T
k  relies on the basis of the Krylov subspace 

from Eq. (10) with v = ei . We refer to Golub and Meurant (2009); Golub and Welsch 
(1969); Golub and Meurant (1994, 1997) and Bergermann and Stoll (2021, Sec. 5.2.1) for 
theoretical background on this approximation as well as details on the construction of 
Gauss–Radau and Gauss–Lobatto rules, which yield an additional lower as well as two 
upper bounds on eTi f (A)ei . Note that due to the high degree of sparsity in the supra-
adjacency matrices of our multiplex public transport networks, Gauss quadrature rules 
can only be applied to the small subset of non-isolated node-layer pairs. As described in 
the previous subsection, the centrality value of the remaining node-layer pairs is set to 1.

All numerical methods introduced in this subsection scale linearly in the number of 
node-layer pairs under the assumption of sparsity in the supra-adjacency matrix, cf. 
(Bergermann and Stoll 2021, Sec.  5), and usually obtain highly accurate approxima-
tions in only around 10 Lanczos iterations. However, the quantities eTi f (A)ei require the 
approximation of a separate quantity for each non-isolated node-layer pair, which makes 
them computationally more demanding than the quantities f (A)1 , which only need to 
be computed once. As discussed in Bergermann and Stoll (2021, Sec. 6.1), the conver-
gence of Eq. (12) is usually faster than that of Eq. (11). A python implementation of the 
above methods is available at https://​github.​com/​KBerg​ermann/​Urban-​multi​plex-​netwo​
rks.

Results

In this subsection, we present numerical results of the different matrix function-based 
centrality measures applied to the multiplex network representation of several Ger-
man urban public transport networks. For the interpretation of the resulting rankings of 
node-layer pairs (representing stop-line pairs), we mainly rely on marginal node centrali-
ties defined in Eq. (9). This approach corresponds to the identification and ranking of 
the most central locations in urban networks, which has been the subject of many ear-
lier studies with different centrality measures (Crucitti et al. 2006a, b; Porta et al. 2006a; 
Scheurer and Porta 2006; To 2015; Nourian et  al. 2016; Agryzkov et  al. 2019; Curado 
et  al. 2021). We compare different weight models and matrix function-based central-
ity measures, which were introduced in the preceding sections. Furthermore, we study 
the impact of all involved hyper-parameters and close with a discussion of the obtained 
results including their relation to public transport orientations.

(11)f (A)1 ≈ QkSk f (�k)S
T
k Q

T
k 1,

(12)eTi f (A)ei ≈ eT1 Sk f (�k)S
T
k e1,

https://github.com/KBergermann/Urban-multiplex-networks
https://github.com/KBergermann/Urban-multiplex-networks
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Previous results from the literature on the application of centrality measures to urban 
transport networks indicate qualitative differences in the distribution of the most central 
nodes between the cases of public transport (Scheurer and Porta 2006; To 2015; Curado 
et al. 2021) and street networks (Crucitti et al. 2006a, b; Porta et al. 2006a; Nourian et al. 
2016; Agryzkov et al. 2019). As street networks are usually modeled as (almost) planar 
graphs in which the “closeness” of nodes is determined by their geographical distance 
the distribution of central nodes is usually characterized by a relatively smooth transi-
tion from more to less central nodes in terms of this geographical distance. For instance, 
one often observes approximately circular shapes of descending centrality around the 
most central node of such a network (Crucitti et al. 2006a, b; Porta et al. 2006a; Nourian 
et al. 2016; Agryzkov et al. 2019). Conversely, in public transport networks the “close-
ness” of nodes is typically tied to different indicators such as travel times or line frequen-
cies. This results in a less smooth distribution of node centralities with respect to the 
geographical position of the nodes. For instance, stops, which are geographically very 
close to the most central stop of a public transport network can be classified as non-
central if the two stops are not directly connected by any line (Scheurer and Porta 2006; 
To 2015; Curado et al. 2021). This general qualitative behavior is confirmed by the mul-
tiplex matrix function-based centrality measures and can be observed throughout the 
subsequent results. Note that a combination of the different modeling approaches by, 
e.g., adding car or walking layers to public transport networks could mitigate this effect 
and constitute an interesting future research direction.

To illustrate this general behavior for our modeling approach we start by considering 
marginal layer and marginal node subgraph centralities of the German city Halle (Saale) 
as a first example. Figure 7a illustrates the ranking of lines while Fig. 7b illustrates the 
ranking of stops in the corresponding multiplex public transport network. All marginal 
centrality plots in this paper employ a heat map color scheme consisting of six categories 
representing centrality value sub-intervals of equal length. While there is a tendency of 
geographically central stops to be classified as central public transport stops there are 
various exceptions in the form of dark blue (least central) stops in or around the city’s 
geographical center, cf. Fig. 7b. Instead, the comparison with Fig. 7a shows that there is 
a tendency of central stops to line up along important transport axes of the urban public 
transport system. It is also interesting to note that the orientations of the most central 
lines in Fig. 7a coincide with the preferential directions of the public transport network 
identified in Fig. 3.

Comparison of different measures

We continue our discussion with the comparison of the four matrix function-based cen-
trality measures for the multiplex public transport networks defined in Eqs. (7) and (8) at 
the example of marginal node centralities of Cologne.

Figure 8 reflects the typical behavior of matrix function-based centrality measures 
that rankings produced by the four measures are similar but not equal (Benzi and 
Boito 2020; Bergermann and Stoll 2021). For the multiplex public transport networks 
considered in this paper one typically observes very similar results for SC and SCres 
as well as for TC and KC. However, SC and SCres typically show a centrality value dis-
tribution that is more uniformly distributed across the six centrality value categories, 
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which results in more stops being classified into the top three categories (marked in 
red and orange) than it is the case for TC and KC. The difference between the two 
groups of measures is that SC and SCres are defined by the matrix functions’ diagonal 
entries, while off-diagonal entries of the matrix functions are additionally included in 
TC and KC. This corresponds to SC and SCres only considering closed walks on the 
networks whereas TC and KC consider all walks. It thus follows that the inclusion 
of the off-diagonals amplifies the quantitative ranking of the stops due to a steeper 
distribution of the off-diagonals in comparison to the diagonal entries of the matrix 
functions.

Comparison of different weight models

We also compare the different weight models discussed in the "Multiplex network 
model" section. The modeling approaches include all combinations of in- and exclud-
ing travel times and line frequencies in the intra-layer weights w(l)

ij  as specified in Eq. 
(4). Whenever intra-layer travel times are included in w(l)

ij  we also include the transfer 
time between lines in the coupling parameter ω as defined in Eq. (5).

Figure  9 presents marginal node resolvent-based subgraph centralities of Stutt-
gart in the different scenarios. It shows that the inclusion of line frequencies has a 
larger impact on the centralities than travel times do. Interestingly, the exclusion of 
line frequencies has the effect of advantaging stops with large inter-layer degrees, 
i.e., stops with many transfer options. In the case of Fig. 9a, c this leads to “Stuttgart 
Universität” (Stuttgart university) being classified as the most central stop of the city 
albeit being geographically located near the city limit. Later in the "Impact of transfer 
times" section we discuss an interesting property of weight models without frequen-
cies regarding the influence of transfer times on marginal node centralities.

(a) Marginal layer centralities (b) Marginal node centralities

Fig. 7  Example of marginal layer and marginal node subgraph centralities of Halle (Saale). Central lines and 
stops are marked red and non-central lines and stops are marked blue. The entries in the supra-adjacency 
matrix are weighted with travel times and frequencies. The parameters are chosen β = 0.5/�max , σ = 5 , and 
�ttransfer = 5 . The street network in the background of the plots is created with the OSMnx python package 
(Boeing 2017). Left: Marginal layer centralities (corresponding to a ranking of the lines). Right: Marginal node 
centralities (corresponding to a ranking of the stops)
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Figure 9b, d, which include line frequencies, show what is likely to be a more expect-
able stop ranking for Stuttgart. Here, the increased frequencies of lines serving the 
geographical center of the city shift the highest ranked stops to this central region.

Overall, Fig. 9 suggests that travel times do not have a large impact on the obtained 
stop rankings. However, their inclusion adds an important ingredient for a realistic 
modeling of urban public transport networks as it allows the inclusion of transfer 
times between lines.

Fig. 8  Comparison of the four different matrix function-based centralities at the example of marginal node 
centralities of Cologne. Central stops are marked red and non-central stops are marked blue. The entries 
in the supra-adjacency matrix are weighted with travel times and frequencies. The parameters are set to 
α = β = 0.5/�max , σ = 5 , and �ttransfer = 5 . The street network in the background of the plots is created 
with the OSMnx python package (Boeing 2017)
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In the following three subsections, we discuss the influence of all involved hyper-
parameters on the obtained stop rankings. These parameters include the normalizing 
travel time σ , the matrix function parameters α and β , and the transfer time �ttransfer.

Influence of the normalizing travel time

Numerical experiments suggest that the normalizing travel time σ only has a small 
impact on the obtained rankings in a small parameter range: while increasing σ from 
0.2 to 2 (corresponding to 12 seconds and 2 min normalizing travel time, respec-
tively) slightly increases the number of highly ranked stops in the city center, a further 
increase of σ to 20 or 200 min has no noticeable effect.

From local to global

As proven for single-layer networks in Benzi and Klymko (2015) and as confirmed 
empirically for layer-coupled multiplex networks in Bergermann and Stoll (2021, 
Sec. 6), all four matrix function-based centrality measures defined in Eqs. (7) and (8) 
contain degree and eigenvector centrality as limit cases of the parameters α or β . In 
this subsection, we empirically confirm this behavior for marginal node centralities 
of our more general multiplex network models.

We illustrate this at the example of marginal node Katz centralities of Düsseldorf 
in Fig. 10. As discussed before, the admissible parameter range for α for this meas-
ure is given by (0, 1/�max) , where �max is the largest eigenvalue of the supra-adja-
cency matrix. In Fig.  10a, α = 0.01/�max is chosen to be close to the lower end of 
that interval, which corresponds to being close to degree centrality in which only 
direct neighbors of each node-layer pair are considered. The other extreme is repre-
sented by Fig. 10c in which α = 0.99/�max is chosen to be close to the upper end of 
the admissible interval, which corresponds to being close to eigenvector centrality in 
which nodes are considered central if their closest neighbors are also central.

It can be seen in Fig. 10a that the local case is characterized by a relatively uniform 
distribution of marginal node centralities into the six centrality categories. Further-
more, relatively central stops are geographically distributed across the whole city. 
In this situation, each local neighborhood can possess its own central stops, regard-
less of their relative importance for the whole city. Conversely, eigenvector centrality 
in Fig.  10c considers the stationary distribution of any initial distribution of walk-
ers on the node-layer pairs of the network. This often leads to localization effects 
(Martin et al. 2014), which entail a centrality distribution that is almost uniform for 
all but a few very central stops. The strength of matrix function-based centrality 
measures now lies in the fact that the choice of α allows to continuously interpo-
late between these two established concepts of centrality measures. In Fig. 10b, the 
choice of α = 0.75/�max illustrates this property by being “visually in between” the 
two extreme cases.

Impact of transfer times

In Eq. (5) we specified our approach to modeling a constant transfer time across all lines 
and stops of the network by means of the coupling parameter ω , which is defined by a 
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Gaussian kernel applied to the transfer time �ttransfer . We start by presenting an example 
of a multiplex network of Chemnitz in which intra-layer edges are weighted with travel 
times and line frequencies. However, an interesting property more frequently emerges 
when line frequencies are excluded from the intra-layer weight model. We conclude the 

Fig. 9  Comparison of different weight models at the example of marginal node resolvent-based subgraph 
centralities of Stuttgart. Central stops are marked red and non-central stops are marked blue. The subcaptions 
denote the respective intra-layer weights [A(l)]ij in the case that nodes i and j are connected in layer l. 
Otherwise, [A(l)]ij is set to 0 in all cases. The plots in the first column are obtained without frequencies, 
whereas the plots in the second column are obtained with frequencies. The plots in the first row are obtained 
without a Gaussian kernel applied to travel times, whereas the plots in the second row are obtained with a 
Gaussian kernel applied to travel times. Furthermore, the same Gaussian kernel is also applied to inter-layer 
transfer times in the second row. The parameters are chosen as α = 0.5/�max , σ = 5 , and �ttransfer = 5 . The 
street network in the background of the plots is created with the OSMnx python package (Boeing 2017)
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results section with a parameter study of the coupling parameter ω in the situation with-
out frequencies.

Figure 11 illustrates marginal node total communicabilities of Chemnitz with the con-
stant transfer time varying between 0 and 15 min. Assigning no cost for changing lines 
in Fig. 11a leads to Chemnitz’s stop “Zentralhaltestelle” to be ranked as the most central 
stop of the city by a large margin. The role of this stop is encoded in its name, which lit-
erally translates to “central stop”. The public transport system of Chemnitz is organized 
such that most of the city’s lines stop at this geographically central stop, i.e., it offers by 
far the most opportunities to change lines. However, this characteristic forfeits its signif-
icance as a cost for changing lines is introduced. Figure 11b shows that many other stops 
in- and outside of the geographical city center are classified as central when the transfer 
time is increased to 5 min. Figure 11c illustrates that a further increase from 5 to 15 min 
(and above) has no significant additional impact. This behavior, however, emerges only 
for a relatively small normalizing travel time of σ = 1 . For larger parameters σ or other 
cities with a more uniform distribution of inter-layer degrees this behavior is less pro-
nounced when line frequencies are included in the weight model.

Excluding line frequencies from the weight model leads to a stronger localization of 
marginal node centralities in the situation �ttransfer → 0 across different networks and a 
larger range of σ . The effect of the variation of �ttransfer and subsequently ω on marginal 
layer and marginal node centralities is illustrated in Fig. 12. Here, we observe an inter-
esting clustering behavior of marginal node centralities in the strong coupling limit in 
which ω approaches its maximum value of 1 corresponding to �ttransfer = 0 . These clus-
ters are determined by the stops’ inter-layer degrees, i.e., by the number of lines stopping 
at the corresponding stop. This behavior reflects the accessibility of a larger part of the 

Fig. 10  Marginal node Katz centrality plots of Düsseldorf with varying parameter α . The left figure 
corresponds to a local measure close to degree centrality, the right figure corresponds to a global measure 
close to eigenvector centrality, and the center figure corresponds to an interpolated intermediate situation. 
Central stops are marked red and non-central stops are marked blue. The entries in the supra-adjacency 
matrix are weighted with travel times and frequencies. The remaining hyper-parameters are chosen as σ = 5 
and �ttransfer = 15 . The street network in the background of the plots is created with the OSMnx python 
package (Boeing 2017)
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network when a larger number of lines can be used within a constant total travel time 
(defined as the sum of intra- and inter-layer travel times).

Another interesting observation in Fig. 12 concerns the peak in most marginal layer 
and marginal node centralities between ω = 0.01 and ω = 0.1 . This phenomenon has 
been similarly encountered in other applications before (Bergermann and Stoll 2021, 
Sec. 6.3) and is an interesting question for future research.

Discussion

The preceding subsections gave a detailed account of the differences between the intro-
duced centrality measures and weight models as well as the influence of all involved 
hyper-parameters. Earlier in this paper, we commented on conclusions obtained from 
public transport network orientations and their relation to the corresponding street net-
work orientations. We now discuss the relation between these two aspects of urban pub-
lic transport networks.

Figure 13 provides an overview of marginal node Katz centralities for all 36 German 
cities from Fig. 3 using a common set of hyper-parameters, which allows a direct com-
parison of the results. While we identified a clear pattern in the public transport net-
work orientations across all German cities the centrality plots in Fig. 13 give a mixed 
picture. Here, we observe various different distributions of central stops both in terms of 
the relative number of central stops per city as well as their geographical arrangement.

In Fig. 14 we focus on four example cities with rather different centrality distributions, 
which are not necessarily reflected in the corresponding public transport orientation 
plots. Figure 14a shows that Bielefeld has only a small number of central stops located at 
the geographical city center. This center is the origin of various sequences of light blue 
stops (indicating the second to last central category), which seem to equally spread out 
into all directions and not only into the preferential directions of the corresponding ori-
entation plot. Figure 14b reveals that several central stops are spread out over the city 
area of Munich. However, the connections between these central stops can not clearly be 
linked to the preferential direction of the corresponding orientation plot. In Fig. 14c, d 
and several other examples we observe highly central sequences of stops lining up along 

Fig. 11  Marginal node total communicability plots of Chemnitz with varying transfer time �ttransfer . Central 
stops are marked red and non-central stops are marked blue. The entries in the supra-adjacency matrix are 
weighted with travel times and frequencies. The remaining hyper-parameters are chosen as β = 0.5/�max 
and σ = 1 . The street network in the background of the plots is created with the OSMnx python package 
(Boeing 2017)
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major public transport axes. In some cases, the directions of these axes can be linked to 
the most pronounced bearings of the corresponding orientation plots, cf. Karlsruhe in 
Fig.  14d but also Braunschweig, Erfurt, Halle (Saale), Hanover, Münster, and Rostock. 
This pattern, however, can not be observed in other examples like Duisburg in Fig. 14c, 
Cologne, or Stuttgart.

We conclude that orientation plots of street and public transport networks are capa-
ble of revealing interesting high-level properties of urban systems. For a more detailed 
analysis of the geometrical properties of cities like, e.g., the spatial distribution of major 
transport axes additional measures must be taken into account. This manuscript pro-
poses multiplex matrix function-based centralities as one such measure.

Conclusion
We studied two geometrical aspects of urban public transport networks: orientations 
and centralities. We determined orientations of directed public transport networks of 
the 36 largest German as well as 18 major European cities and compared them to orien-
tations of undirected street networks. All considered German cities revealed two more 
or less pronounced orthogonal preferential street network directions, which can often 
be linked to geographical constraints. We found that most considered German public 
transport network orientations concentrate around the one of the two preferential street 
network directions, which is closer to the cardinal east-west axis. The same qualitative 
behavior could only be observed for a small subset of the considered European cities. 
However, north-south-like preferential public transport directions remained rare.

Furthermore, we formally introduced urban public transport multiplex networks in 
which nodes correspond to stops and layers to lines and applied multiplex matrix func-
tion-based centrality measures in order to identify and rank the most central lines and 
stops of the considered German cities. These measures generate rankings, which are 
consistent with previous investigations. In addition, they offer the benefit of being able 
to flexibly choose the desired degree of locality, possessing efficient and scalable numeri-
cal implementations, and being applicable to a wide range of problems. The influence 
of different hyper-parameters, which all have meaningful interpretations in terms of 
the urban science application, was thoroughly studied. Our study showed that matrix 

Fig. 12  Marginal layer and marginal node total communicabilities of Chemnitz with varying coupling 
parameter ω . The entries in the supra-adjacency matrix are weighted with travel times only. The remaining 
hyper-parameters are chosen as β = 0.5/�max and σ = 1 . The largest MNC for ω > 5 · 10−3 corresponds to 
the stop “Zentralhaltestelle” (engl.: “central stop”)
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Fig. 13  Marginal node Katz centrality plots of the 36 largest German cities with valid GTFS data. Central 
stops are marked red and non-central stops are marked blue. The entries in all supra-adjacency matrices are 
weighted with travel times and frequencies. The hyper-parameters are chosen as α = 0.5/�max , σ = 5 , and 
�ttransfer = 5 for all cities. The street networks in the background of the plots are created with the OSMnx 
python package (Boeing 2017)
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function-based centralities are capable of revealing insights into geometrical aspects of 
urban systems on a more granular level than orientation plots are.

We believe that multiplex models of cities, ideally combining various aspects like, 
e.g., various modes of transportation or additional aspects of urban life can contrib-
ute to a better understanding of urban systems. We hope that the presented meth-
odology can add to urban scientists’ toolkits and that city-specific modeling as well 
as parameter-tuning of domain experts yield further contributions to the economic, 
environmental, and social challenges lying ahead.

Abbreviations
GTFS: General transit feed specification (public transport data format); SC: Subgraph centrality; SCres: Resolvent-based 
subgraph centrality; TC: Total communicability; KC: Katz centrality; JC: Joint centrality; MNC: Marginal node centrality; 
MLC: Marginal layer centrality.
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