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Introduction
Overview and motivation

Robustness and resilience describe the capability of the network to withstand failures 
and perturbations in its components and keep delivering services regardless of disrup-
tive events, either random or malicious, as, in a water distribution network (WDN), fail-
ures in pumping stations or valves and severe bursts in the main pipes.

Resilience, robustness, reliability and vulnerability are terms strictly linked and 
often confusingly used. Scholz et al. (2012) gives a comprehensive analysis of the dif-
ferent contexts in which the above terms are used. Evaluating robustness of complex 
and interconnected networks requires the identification and mapping of critical com-
ponents (i.e., nodes/edges) whose failure impairs the functioning of the network and 
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the assessment of how much this impacts the ensuing increase in vulnerability. The 
resilient operation of complex networks depends on their structural connectivity i.e., 
the existence of redundant paths between pair of nodes.

The most used analysis of vulnerability is carried out by studying different meas-
ures of the connectivity of the graph as expressed by centrality indices. According 
to a widely used metric (Latora and Marchiori 2007) an increase in vulnerability 
is the loss of efficiency as a consequence of the failure of a set of nodes/edges and 
their removal from the network. The structure and functions of the network strongly 
rely on the existence of paths between pair of nodes: when nodes and/or links are 
removed the length of such paths will increase and eventually some couples of nodes 
will become disconnected. A closely related analysis can be carried out using spectral 
graph theory: algebraic connectivity, given by the smallest positive eigenvalue of the 
Laplacian matrix of the network, was introduced in Fiedler (1973). The larger is the 
algebraic connectivity and the more difficult is to cut the network into disconnected 
components.

The work presented in this paper focuses on analyzing the criticality of links 
towards the overall vulnerability of the network by combining notions from graph 
theory with probabilistic analysis of dissimilarity between networks.

While previously quoted approaches are based on average values of shortest paths 
the approach proposed in this paper is based on the node-to-node distance probabil-
ity distributions. These node related distributions are then aggregated into a network 
wise distribution. At this point the similarity between graphs can be associated to a 
distance between distributions. The 2 measures considered are the Jensen–Shannon 
(JS) divergence, based on Kullback–Leibler divergence, and the Wasserstein-1 (WST-
1, aka the Earth-Mover) distance based on optimal transport theory. Extensive com-
putational results, including two real-world water distribution networks, are reported 
comparing the distance-based approach with the traditional robustness metrics based 
on centrality measures, the loss of efficiency and spectral analysis.

Related works

The analysis of WDNs using measures and analytical tools from complex network the-
ory has been, at the authors’ knowledge, first suggested in the seminal paper (Yazdani 
and Jeffrey 2011) and further developed in Shuang et al. (2014), Archetti et al. (2015), 
Soldi et al. (2015). A closely related approach, spectral analysis, has been also used in 
Candelieri et al. (2017), Diao et al. (2016), Herrera et al. (2016), Maiolo et al. (2018) 
for assessing the resilience in WDNs.

Di Nardo et al. (2018) focuses on spectral techniques and shows how spectral met-
rics and algorithms support critical tasks of WDN management by just using top-
ological and geometric information. More recently Ulusoy et  al. (2018) proposed a 
hydraulically informed measure of criticality called water flow edge betweenness cen-
trality (WFEBC), built upon on shortest-path and random walks betweenness meas-
ures (Herrera et al. 2016, 2015). Shuang et al. (2019) is a wide survey of quantitative 
resilience methods of WDN including network base approaches. Diao (2020) extends 
this analysis to multiscale resilience in water distribution and drainage systems.
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In more general terms the very issue of differential robustness hinges on a notion of 
distance or similarity between networks or graphs. The distributional approach to net-
work dissimilarity has been suggested in Schieber et al. (2017).

Entropy based methods like Kullback–Leibler, and Jensen–Shannon are most widely 
used but can run into problems when the distributions have different supports. This lim-
itation might be relevant when a network has been derived deleting nodes/edges. For 
this reason, we have introduced in this paper the use of the Wasserstein distance. Was-
serstein distance in particular has become important in image analysis and text analysis 
(Bonneel et al. 2016). More references will be given in "Conclusions and perspectives" 
section. Here we only quote Deza and Deza (2009) for a general survey of distances, 
Cover and Thomas (2006) as a general introduction to information theoretic arguments 
and Villani (2008) for a mathematical framework of optimal transport problems which 
the Wasserstein distance belongs to.

The contributions of this paper

The key element in this paper is that nodes and graphs are represented as probability dis-
tributions: this allows a richer representation of the structural properties of the network 
than that enabled by the average values of shortest paths and other connectivity metrics. 
The probability distribution associated to each node, of the node to node distance, is a 
signal of the relative importance of that node in the graph. The node related distribu-
tions can then be aggregated into a distributional representation of the whole network.

The main contribution of this paper is the introduction of a new set of vulnerability 
metrics given by the distance between the probability distributions of node–node dis-
tances between the original network and that resulting from the removal of nodes/
edges. These metrics allow the formulation of measures of criticality of single edges in 
the network.

Two distances have been analysed: Jensen–Shannon divergence based on information 
theoretic arguments and Wasserstein (WST) distance (aka the Earth-Mover) distance, 
based on optimal transport theory. The computational results confirm that the values 
of the distances JS and WST are strongly related to the criticality of the removed nodes/
edges and can capture numerically the impact of the deletion of a specific node/edge. A 
key advantage of the Wasserstein distance is that, under quite general conditions speci-
fied in Peyré and Cuturi (2019), it is a differentiable function of the parameters of the 
distributions which makes possible its use to assess the sensitivity of the network robust-
ness to distributional perturbations.

Organization of the paper

The structure of the paper is as follows: "Entropy based measures of distance between 
networks" section describes entropy-based measures of distance, in particular JS, 
between networks. "Wasserstein distance" section describes distances, in particu-
lar WST, based on transport theory. "Experimental setting and computational results" 
section describes  the modeling and algorithmic structure of the analysis framework 
proposed and the computational results on the networks used in this study. Finally, in 
"Conclusions and perspectives" section some conclusions and perspectives are provided.
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To get a better focus on the main arguments, the background notions are contained 
in the appendices (A. graph basic definitions, network measures and spectral analysis, 
B. efficiency and vulnerability measures, and C. for the data and software resources).

Entropy based measures of distance between networks
Given a graph G(V ,E) we associate to each node i = 1, . . . , n a discrete probability 
distribution

as the fraction of nodes which are connected to i at a distance k. The distribution is 
displayed in Fig. 1. Figure 1a displays Anytown, used in the literature as a benchmark 
(Farmani et al. 2005): the associated graph G consists of 25 nodes and 44 edges.

The support of this distribution is 1, . . . ,D(G) where D(G) is the diameter of G. The 
distance distribution over the whole network is represented by the global histogram 
in Fig. 2.

(1)Pi(k) =
ni,k
n−1

Fig. 1  A schematic representation of Anytown (left). The node–node distance distribution of node 15 (right), 
highlighted in light blue in the network

Fig. 2  The node–node distance distributions at network level of G and G′
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Let G′ be the graph without the red edge and p and p′ the distributions PG(k) and 
PG′(k) . For Anytown D(G) = 8 and the two histograms are displayed in Fig. 2.

The most widely used distance measure is the Kullback–Leibler (KL) divergence

which has the drawback of being asymmetric and possibly infinite when there are points 
such that p = 0 and p′ > 0.

The Jensen–Shannon divergence is built on KL and is symmetric and always 
definite.

The use of Jensen–Shannon divergence in computing the dissimilarity between net-
works has been considered in (Schieber et al. 2017) along with the distance DJS:

Wasserstein distance
Wasserstein distance is a measure of the distance between two probability distribu-
tions. It is also called Earth Mover’s (EM) distance from its informal interpretation 
as the minimum cost of moving and transforming a pile of sand in the shape of one 
probability distribution to the shape of the other distribution. The cost is quantified 
by the amount of sand moved times the moving distance. If the distribution domain is 
continuous the formula for the Earth-Mover (EM) distance is:

where �(p, p′) denotes the set of all joint distributions γ
(

x, y
)

 whose marginals are 
respectively p and p′ . One joint distribution γ

(

x, y
)

∈ �(p, p′) describes one transport 
plan: intuitively γ

(

x, y
)

 indicates how much mass must be transported from x to y in 
order to transform the distribution p into the distribution p′ . Therefore, the marginal dis-
tribution of over x adds up to p 

∑

x γ
(

x, y
)

= p′
(

y
)

 and analogously 
∑

y γ
(

x, y
)

= p(x) . If 
x is the starting point and y the destination the total amount of sand moved is γ

(

x, y
)

 and 
the traveling distance is 

∣
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∣.
The expected cost averaged over all the 

(

x, y
)

 pairs can be computed as:

(2)PG(k) = µk = 1
n

n
∑

i=1

ni,k
n−1 = 1

n

n
∑

i=1

Pi(k)

PG = [0.147, 0.263, 0.297, 0.177,

0.083, 0.030, 0.003, 0]

PG′ = [0.133, 0.237, 0.290, 0.183,

0.100, 0.043, 0.010, 0.003]

(3)KL

(

p|
p+ p′

2

)

= ∫ p log
2p

p+ p′
dx

(4)JS
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(5)DJS(PG ,PG′) =
√

JS(PG(k),PG′(K )) ∈ [0, 1].

(6)W
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∣

∣
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Finally, we take the minimum among the costs of all sand moving solutions as the 
EM distance: the EM distance is the cost of the optimal transport plan.

This paper is concerned with the Wasserstein metric for discrete distributions—
specifically one-dimensional histograms-in the Euclidean space. We focus on con-
cepts related to the practical calculation of this metric. The Wasserstein metric is 
motivated by the classical optimal transportation problem first proposed in Monge 
(1781).

This problem received its modern linear programming formulation by Kantorovich 
(1942). There are two sets of points xi with i = 1, . . . ,m and yj with j = 1, . . . , n . The 
cost of transporting one unit from xi to yj is given by cij . The transport plan can be 
expressed in the form of an m× n matrix where the element γij represent the amount 
(of sand) transported from xi to yj . The central problem is to find the transport plan 
that minimizes the cost of total transportation cost which is the sum of the cost on 
the available roots 

∑m
i=1

∑n
j=1 cijγij.

Recently the Wasserstein distance has become a key tool in image processing (Bon-
neel et al. 2016) and machine learning (Frogner et al. 2015) and it has been used also 
for the generation of adversarial networks (Arjovsky et al. 2017; Weng 2019).

The formulation, of the WST distance for general probability measures requires 
sophisticated mathematical models (Villani 2008). Its computation raises challenging 
mathematical and computational problems (Peyré and Cuturi 2019).

In particular when the cost matrix is 0 on the diagonal and 1 elsewhere, Earth 
Mover distance is given by the l1 norm (Manhattan distance) of the difference 
between histograms.

In the case of water distribution networks, the distributions of node–node distances 
are discrete and 1-dimensional, as shown in Fig. 2, and the computation of WST dis-
tance reduces to the comparison of two 1-D histograms: the corresponding Wasser-
stein distance can be computed very efficiently by using a simple sorting.

There are two key advantages of WST over JS: also in the cases when the distribu-
tions are supported in different spaces, even without overlaps, WST can still provide 
a meaningful representation of the distance between distributions. Furthermore, a 
key advantage of WST is its differentiability. Both points are illustrated in the follow-
ing example (Fig. 3).

Let’s consider Z = U(0, 1) the uniform distribution on the unit interval. Let P be 
the distribution of (0,Z) (0 on the x-axis and the random varable Z on the y axis and 
Pθ = (θ ,Z).

•	 KL(P,Pθ ) = +∞ if θ  = 0 and 0 if θ = 0.
•	 JS(P,Pθ ) = log 2 if θ  = 0 and 0 if θ = 0.
•	 W (P,Pθ ) = θ if θ  = 0 and 0 if θ = 0.

Therefore, Wasserstein provides a smooth measure which is useful for any optimi-
zation and learning process using gradient descent (Arjovsky et al. 2017).

(7)
∑

x,y
γ
(

x, y
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∣
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In our WDN’s the support of PG(k) is given by the integers k = 1, . . . ,D(G) where 
D(G) is the diameter of G (“Appendix A.1”) (analogously for G′ ). When G′ is derived 
from G removing some edges, we have D(G′) ≥ D(G). Since we are in the particular case 
where the distributions are represented by histograms one can extend to G the support 
of G′ setting µG(k) = 0 for k = D(G)+ 1, . . . ,D(G′).

The informal interpretation of WST, from which its name Earth Mover is derived, is 
captured by the formula.

Experimental setting and computational results
In our problem the network space is given by the basic network G and the subgraphs 
obtained by the removal of one or more edges. The elements of this space are repre-
sented as probability distributions of node-2-node distances (Eq. 1) and aggregated into 
a distributional representations of the basic network and of the subgraphs (Eq.  2). In 
this space it takes place the computation of the Wasserstein distance. The result of this 
computation is mapped back into the network space as measures of network dissimilar-
ity and labels of criticality of individual components. In 4.1 the experimental setting is 
described.

Experimental setting

The networks considered are:

•	 Neptun is the WDN of the Romanian city of Timisoara, with an associated graph of 
333 nodes and 339 edges.

•	 Abbiategrasso refers to a pressure management zone in Milan (namely, Abbiate-
grasso) with an associated graph consisting of 1213 nodes and 1391 edges.

PG = [0.147, 0.263, 0.297, 0.177,

0.083, 0.030, 0.003, 0]

PG′ = [0.133, 0.237, 0.290, 0.183,

0.100, 0.043, 0.010, 0.003]

δk = δk−1 + PG(k)− PG′(k)k = 1, . . . , max
(

D(G),D
(

G′
))

W
(

G,G′
)

=
∑

|δi| = 0.1767, DJS

(

G,G′
)

= 0.0718

Fig. 3  Two probability distributions P and Pθ . If θ  = 0 there is no overlap between P and Pθ
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The description of these networks is also given in “Appendix C”. As far as efficiency 
and algebraic connectivity measures are concerned, we have used the standard measures 
reported in the “Appendix B”.

The first step in the analysis is clustering in order to identify the specific edges whose 
removal induces a disconnection of the network. The number of clusters K is set accord-
ing to context information about the districtualization adopted by the water utility. Fail-
ures affecting also only one pipe may imply a reduction in the efficiency of the network 
and an increase in vulnerability. The software used is described in “Appendix C.2”.

The two real-world WDNs analyzed are very sparse (with density q lower or equal to 
0.006). The two real-world WDNs (given in “Appendix C.1”) are effectively planar and 
“almost” regular. This fact can be due to the fact that their structure is strongly con-
strained by spatial characteristics making a classification based on nodal degree distri-
bution less meaningful.

In particular their degree distribution does not follow a power law and measures, 
given in Table 1, for Neptun and Abbiategrasso, really set them apart from other kinds 
of networks like transportation, communications and social. The usefulness of measures 
based on centrality or spectral measures in assessing the increase of vulnerability or the 
loss of robustness is quite limited, according to our results, in WDN of realistic size.

Computational results

The computational results, which are quite unique in the literature given the size of the 
networks analysed, demonstrate that probabilistic distance measures show better capac-
ity to discriminate between different networks not only globally but also edge-wise. The 
results are organized around figures and tables. Figures 4 and 5 display (respectively for 
Neptun and Abbiategrasso) the output of clustering, that is critical edges whose removal 
generates a disconnection; these edges are highlighted in red.

Table 1 displays centrality measures. Table 2 efficiency, vulnerability, and algebraic 
connectivity. Table  3 the values of distributional distances compared with the loss 
of efficiency. The most relevant result is that using discrete probability distributions 
to represent the graph associated to the WSN, as well as all its elements, provides a 
novel and more effective analytical framework to assess similarity between two net-
works (Table  1), as well as the same network before and after some modifications, 
such as expansion, disruptions, etc. Especially in the case of disruptive events, the 
novel WST based analytical framework enable the definition and the computation of 
new and more discriminant criticality indices (comparison between Tables 2 and 3), 

Table 1  Topological measures

Measure Neptun Abbiategrasso

Density (q) 0.0061 0.0019

Link-per-node ratio (e) 1.0180 1.1467

Central point dominance (cb′ ) 0.2432 0.3100

Clustering coefficient (CC) 0.0000 0.0055

Diameter 57 83

Characteristic path length 23.7613 30.6126
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ideally applicable to any critical networked infrastructure (transportation networks, 
energy grids, communications networks, etc.). Another relevant benefit provided by 
the novel WST based analysis is that it can deal with distributions with different sup-
ports as well as sparsity, and it is not affected by different binning schemes. This is a 
relevant advance with respect to previous approaches based on probability distribu-
tions, for instance those based on the Kullback–Leibler or the Jenses–Shannon diver-
gences, which require to adopt some drawbacks for dealing with the two mentioned 

Fig. 4  Neptun WDN (clustering with K = 2): Critical edges (red) whose removal generates a disconnection

Fig. 5  Abbiategrasso WDN (clustering with K = 3): Critical edges (red) whose removal generates a 
disconnection
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issues. Even more important, the proposed WST based analysis allows for an intui-
tive visualization of the criticality of each edge, matching the typical requirement 
for a “priority ranking” of critical elements, driving the preparation of a budget-con-
strained rehabilitation plan.

For the WST distance it has been computed also the heat map of edge wise critical-
ity for Neptun and Abbiategrasso. In Fig. 6, the colour associated to each edge 

(

i, j
)

 is 
an index of criticality given by the Wasserstein distance between G and G\

(

i, j
)

.

Conclusions and perspectives
The main result of this paper is that probabilistic measures based on the probability 
distribution of node–node distances, yield a distance, between the original network 
and that resulting from the removal of some nodes/edges, which can provide a set 
of indicators of the increase in vulnerability. The computational results confirm that 
the value of the distances Jensen–Shannon and Wasserstein confirm the results of 
clustering.

Albeit the measures of vulnerability analyzed in this paper are based on topological 
arguments they are anyway important to narrow the set of critical components before 
moving to the hydraulic verification.

Table 2  Vulnerability measures

Neptun E VMEAN VMAX Algebraic 
connectivity

G 0.068608 0.018927 0.072646 0.0018

G′(removing e2) 0.065390 0.024181 0.211362 0.0007

G′′(removing e1) 0.064486 0.024796 0.194813 0.0006

G′′′(disconnected) 0.051924 0.016642 0.068246 0.0000

Abbiategrasso E VMEAN VMAX Algebraic 
connectivity

G 0.047557 0.003436 0.150390 0.0004

G′(removing e2) 0.045019 0.003935 0.181174 0.0003

G′′(removing e3) 0.046385 0.003642 0.205294 0.0004

G′′′(removing e1) 0.040405 0.002628 0.060728 0.0000

G
′′′′
(disconnected) 0.031077 0.002251 0.057007 0.0000

Table 3  Probabilistic distances versus loss of efficiency

Neptun Jensen–Shannon Wasserstein Loss of efficiency

G , G′ 0.1677 3.3183 0.0469

G , G′′ 0.2456 5.4704 0.0601

G , G′′′ 0.3286 6.5542 0.2432

Abbiategrasso Jensen–Shannon Wasserstein Loss of efficiency

G , G′ 0.0935 3.1040 0.0534

G , G′′ 0.0528 1.5170 0.0246

G , G′′′ 0.1843 5.4871 0.1504

G , G′′′′ 0.3633 8.8845 0.3465
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Significantly the differentiability of WST allows to include in the differential robust-
ness analysis edges weighted by parameters derived from the flow dynamics in the net-
work correlating connectivity analysis to hydraulic performance indicators.

This analysis framework supports decision making at design stage, to simulate alter-
native network layouts of different robustness, and also at operational stage where the 
decision to be taken can be, which nodes/edges are to temporarily be removed for main-
tenance and rehabilitation. Indeed, critical tasks of WDN management can be supported 
by just using topological and geometric information. The analysis framework also helps 
for the efficient and automatic definition of district metered areas and to facilitate the 
localization of water losses through the definition of an optimal network partitioning.

The modelling and algorithmic framework platform developed can be straightfor-
wardly translated to many networked infrastructures among which power grids, transit 
networks but also global supply chains network whose vulnerability has been exposed in 
the recent COVID crisis.

Appendix A
Graph theory is the mathematical basis to provide a unifying language for the study of 
networks: with this in mind it is useful to give some basic definitions which will be used 
in the sequel. For a wide-ranging analysis of the role of graph theory in the analysis of 
networks the reader is advised to look at (Newman 2010).

A.1 Basic definitions

Let denote a graph with G = (V ,E) , where V is the set of nodes and E is the set of edges. 
Each edge of G is represented by a pair of nodes 

(

i, j
)

 with i  = j , and i, j ∈ V  and with 
n = |V | and m = |E| . If 

(

i, j
)

∈ E, i and j are called adjacent nodes. A graph G is undi-
rected if 

(

i, j
)

 and 
(

j, i
)

 represent the same edge. A graph G is simple if no self-loops are 
admitted (edges starting from a node and ending on the same node) and only one edge 
can exist between each pair of nodes 

(

i, j
)

 , with i  = j . The adjacency relationship between 
the nodes of G can be represented through a non-negative n× n matrix A (i.e., the adja-
cency matrix of G ). The entry ai,j of the adjacency matrix A is 1 if i and j are adjacent 

Fig. 6  Heatmap of edge wise criticality for Neptun (left) and Abbiategrasso (right). The colour associated to 
each edge (i, j) is an index of criticality given by the WST distance between G and G\(i, j)
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nodes (i.e., 
(

i, j
)

∈ E ), and 0 otherwise. Furthermore, aij = aji if G is undirected and aii 
(entries on the diagonal) are 0 if G is simple.

•	 The degree of the node i , ki is the number of edges having i as one of the two nodes 
on the edge: ki =

∑n
j=1 ai,j . Anyone of the edges having i as one of its nodes is called 

incident on i.
•	 When G is directed, meaning that the order of the two nodes of an edge is relevant 

for its definition, the ki can be split into out-degree (number of edges having i as first 
node) and in-degree (number of edges having i as second node).

•	 A path in a graph is a sequence of nodes connected by edges the length of the path is 
the number of edges. A connected component is a maximal subgraph when all nodes 
can be reached from every other.

•	 The shortest path between i and j is the path with the smallest length. This length is 
called the distance between i and j di,j . The largest distance among each possible pair 
of nodes in G is named diameter D(G).

•	 The characteristic path length is the average distance for every possible pair of nodes 
(

i, j
)

.

A useful representation is to arrange the distances in the distance matrix 
D =

[

di,j
]

i, j = 1, . . . , n . The maximum entry of row imaxj=1,...,n di,j is also known as the 
eccentricity of node i . The maximum eccentricity among the nodes is equal to D(G).

A subgraph G′ = (V ′,E′) of G is a graph such that V ′ ⊆ V  and E′ ⊆ E ; a connected 
component of G is maximal if is the largest possible subgraph for which you could not 
find another node in the graph that could be added to the graph with all the nodes be 
still connected.

The core concept is centrality which addresses the question “which are the most 
important nodes in a network?”. There are many centrality measures from the simplest 
like node degree, which can anyway be illuminating, to eigenvector-based measures like 
Page Rank.

A.2 Basic measures

The density of the network is the fraction of edges which are present in the network:

The number of edges m = 1
2

n
∑

i=1

ki.

If c is the mean node degree, c = 1
n

n
∑

i=1

ki we get c = 2m
n  and q = c

n−1.

The density is in the range (0, 1).
A cut-set, specifically a node cut-set, is a set of nodes whose removal disconnects i and 

j . A minimum cut-set is the smallest cut-set. Analogously for edge cut-set.

Lg =
1

n ∗ (n− 1)

n
∑

j=1

∑

k �=j

d
(

j, k
)

q =
m

(

n
2

) =
2m

n(n− 1)
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The centrality measures address the issue of the relative importance of nodes/edges. 
The most widely used measures are:

•	 Closeness centrality C = n
∑

dij
 is based on the mean distance from i to j averaged 

on all nodes.
•	 Betweenness centrality: let be ηist = 1 if node i lies on the shortest path from s to 

t and 0 otherwise. Then, betweenness centrality is given by bi = 1
n2

∑n
s,t=1 η

i
st . It 

measures the extent to which a node lies on the paths between other nodes. We 
can similarly define an edge betweenness that counts the number of shorter paths 
that run along the edge.

•	 Link-per-node ratio (e), as the number of edges of a graph with respect to the 
number of its nodes. e = m

n .
•	 Central point dominance c′b, based on betweenness centrality is a measure for 

characterizing the organization of a network according to its path-related con-
nectivity; c′b = 1

n−1

∑n
i=1 (bmax − bi) where bi is the betweenness centrality of the 

node i and bmax is the maximum value of betweenness centrality over all the n 
nodes of the network.

•	 The clustering coefficient (CC) is the number of triangles with respect to the over-
all number of possible connected triples, where a triple consists of three nodes 
connected at least by two edges while a triangle consists of three nodes connected 
exactly by three edges:

There are other definitions of CC for which the reader is addressed to Newman 
(2010).

To compute the centrality indices in this paper, the open-source software Cytoscape 
(http://​www.​cytos​cape.​org/) has been adopted (Morris et al. 2011). This point will be 
further discussed in "Wasserstein distance" section.

A.3 Spectral measures

Spectral graph theory studies the eigenvalues of matrices that embody the graph 
structure. One of the main objectives in spectral graph theory is to deduce structural 
characteristics of a graph from such eigenvalue spectra.

In case of undirected graphs, the adjacency matrix A(G) is symmetric and all its eigen-
values are real. The eigenvalues µ1(G) ≤ µ2(G) ≤…µn(G) of A(G) are called the spec-
trum of G. The largest eigenvalue of the adjacency matrix µn(G) is called spectral radius 
of G and is denoted by ρ(G) . An important property is given by the following inequality.

where �(G) = max ki : i = 1, . . . , n that relates the spectral radius with �(G), the maxi-
mum degree of the nodes.

CC =
3Ntriangles

Ntriples

√

�(G) ≤ ρ(G) ≤ �(G),

http://www.cytoscape.org/
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The spectrum of A(G) allows to define the Eigenvector centrality of the node i , is 
xi = ρ(G)−1∑n

j=1,j �=i aijxj . Katz centrality and Page Rank algorithm are just para-
metrized version of eigenvector centrality (Newman 2010).

The difference s(G) = ρ(G)− µn−1(G) between the spectral radius of G and the sec-
ond largest eigenvalue of the adjacency matrix A(G) is called the spectral gap of G. A 
small value of s(G) is usually observed through low connectivity, and the presence of 
bottlenecks and bridges whose removal cuts the graph into disconnected parts.

The Laplacian matrix of G is an n× n matrix L(G) = D(G)− A(G) , where 
D(G) = diag(ki) . The matrix L(G) is positive semi-definite in case of simple graph. The 
eigenvalues of L(G) are called the Laplacian eigenvalues of G. The Laplacian eigenvalues 
�1(G) = 0 ≤ �2(G), ... ≤ �n(G) are all real and nonnegative. The smallest eigenvalue is 
always equal to 0 with multiplicity equals to the number of connected components of 
G . The second smallest eigenvalue is called the algebraic connectivity of G which is one 
of the most widely used measures of connectivity. Larger values �2(G ) represent higher 
robustness against efforts to disconnect the graph, so the larger it is, the more difficult 
it is to cut a graph into independent components. An important inequality for the alge-
braic connectivity is given by

that relates it with the minimum degree of the nodes δ(G) = min
i=1,...,n

ki . In case of a con-

nected graph, also the following inequality can be proved

that relates the algebraic connectivity with the diameter of the graph. Another spectral 
distance is based on the analysis of the eigenvectors of the Laplacian.

Appendix B
The performance of the network after the removal of nodes/edges is often evaluated as 
the change of the efficiency, as defined in as

where the dij represent the distance between i and j . Normalization by n(n− 1) ensures 
that E ≤ 1 , in case of unweighted graph. The maximum value E = 1 , is assumed if and 
only if the graph is complete.

B.1 Efficiency based vulnerability measures

A way to measure the vulnerability of the network is using the loss of efficiency observed 
when we remove some nodes/edges. The relative drop in the network efficiency caused 
by the removal of a node i from the graph is defined as

�2(G) ≤
n

n− 1
δ(G),

�2(G) ≥
4

n · D(G)

E =
1

n(n− 1)

∑

i,j∈V ,i �=j

1

dij
,
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where G\{v} denotes the network G without the node i . The loss of efficiency of G is 
defined as

The larger the value VE(G) , the larger is the vulnerability. Analogous formulas can be 
written removing the edges.

B.2 Spectral vulnerability measures

There is no specific formula, contrary to those reported in the previous subsections, 
linking spectral analysis to a measure of vulnerability related to the removal of a node. 
However, both algebraic connectivity �2, the second smallest eigenvalue of the Lapla-
cian L(G) and spectral gap s(G) , the difference between the spectral radius of G and the 
second eigenvalue of the adjacency matrix A(G) , are indicators of difficulty to split the 
graph. The larger the algebraic connectivity, the more difficult it is to disconnect the 
graph. It is also related to the min-cut problem in spectral clustering. A large value of 
the spectral gap, together with a uniform degree distribution, results in higher structural 
sturdiness and robustness against node and link failures. On the contrary, low values of 
spectral gap indicate a lack of good expansion properties usually represented by bridges, 
and network bottlenecks. The larger the spectral gap the more robust is the network.

Appendix C
C.1 Data resources

•	 Neptun is the WDN of the Romanian city of Timisoara, with an associated graph of 
333 nodes and 339 edges. This network has been a pilot in the European project Ice-
water.

•	 Abbiategrasso refers to a pressure management zone in Milan (namely, Abbiate-
grasso) with an associated graph consisting of 1213 nodes and 1391 edges. This net-
work has also been a pilot in the European project Icewater.

In analyzing WDNs one must consider that most of the end-users are supplied by sin-
gle connections. A preliminary preprocessing has been performed in order to identify 
the simple core of the network by removing all nodes with degrees smaller than two 
(also called leaves of the network) along with the parent edge connecting them to their 
associated root-node.)

C.2 Software resources

The tools for the analysis of connectivity and efficiency have been coded in Pythton.

CE
�(i) =

E(G)− E(G\{i})

E(G)
,

(1)VMAX (G) = max
i∈V

CE
�(i),

VMEAN (G) =
1

n

∑

i∈V

CE
�(i).
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For the network visualization it has been used the Python package WINTR, based 
on EPANET 2 in WDN’s. which enables network editing and hydraulic simulation.

The software used for the computation of JS is the function JensenShannonDiver-
gence from the Java library Mallet. The software used for the computation of the Was-
serstein distance is the function EarthMoversDistance from the Java library Apache 
Commons Math. For the clustering it has been used an effective computational 
scheme which uses a data representation in the lower dimensional space spanned by 
the most relevant eigenvectors of the normalized Laplacian matrix. The basic steps 
are:

1.	 Construct the affinity matrix S(G) = I + A(G) whose eigenvalues are the same as 
A(G)+ 1.

2.	 Construct the matrix LN (G) = D− 1
2 S(G)D− 1

2 where D = [dii] = ki , where ki is the 
degree of node i.

3.	 Compute the eigenvalues of LN (G) and the eigenvectors corresponding to the K  
largest eigenvalues of LN (G) and denote them by u1,u2, . . . ,uKu1,u2, . . . ,uK

4.	 We build the matrix U such that the kth column of U is uk and normalize the rows 
such that each row has unit length.

5.	 Treating the rows as points in the K-dimensional space RK  and perform K-means 
clustering of these points in K  clusters.

We used the implementation of this method given in scikit-learn.

Abbreviations
WDN: Water distribution network; KL: Kullback–Leibler; JS: Jensen–Shannon; WST: Wasserstein; EM: Earth mover’s.
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