
Theory of preference modelling 
for communities in scale‑free networks
József Dombi1,2† and Sakshi Dhama1*   

Abstract 

Detecting a community structure on networks is a problem of interest in science and 
many other domains. Communities are special structures which may consist nodes 
with some common features. The identification of overlapping communities can clarify 
not so apparent features about relationships among the nodes of a network. A node 
in a community can have a membership in a community with a different degree. Here, 
we introduce a fuzzy based approach for overlapping community detection. A special 
type of fuzzy operator is used to define the membership strength for the nodes of 
community. Fuzzy systems and logic is a branch of mathematics which introduces 
many-valued logic to compute the truth value. The computed truth can have a value 
between 0 and 1. The preference modelling approach introduces some parameters 
for designing communities of particular strength. The strength of a community tells us 
to what degree each member of community is part of a community. As for relevance 
and applicability of the community detection method on different types of data and 
in various situations, this approach generates a possibility for the user to be able to 
control the overlap regions created while detecting the communities. We extend the 
existing methods which use local function optimization for community detection. The 
LFM method uses a local fitness function for a community to identify the community 
structures. We present a community fitness function in pliant logic form and provide 
mathematical proofs of its properties, then we apply the preference implication of con-
tinuous-valued logic. The preference implication is based on two important parameters 
ν and α . The parameter ν of the preference-implication allows us to control the design 
of the communities according to our requirement of the strength of the community. 
The parameter α defines the sharpness of preference implication. A smaller value of the 
threshold for community membership creates bigger communities and more overlap-
ping regions. A higher value of community membership threshold creates stronger 
communities with nodes having more participation in the community. The threshold 
is controlled by δ which defines the degree of relationship of a node to a community. 
To balance the creation of overlap regions, stronger communities and reducing outliers 
we choose a third parameter δ in such a way that it controls the community strength 
by varying the membership threshold as community evolves over time. We test the 
theoretical model by conducting experiments on artificial and real scale-free networks. 
We test the behaviour of all the parameters on different data-sets and report the outli-
ers found. In our experiments, we found a good relationship between ν and overlap-
ping nodes in communities.
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Introduction
In network modelling graphs are used to model abstract relationships of inter-related 
data. Graphs with nontrivial features are also known as complex networks. The non-triv-
ial features may consist of a clustering coefficient, heavy-tailed degree distribution, reci-
procity, community structure and others (Kim and Wilhelm 2008). Real-world examples 
of such graphs implemented to solve complex problems include social networks, social 
graphs API such as Facebook’s graph, a recommendation engine such as yelp GraphQL 
API, and path optimization algorithms such as Google maps platforms(maps, routes, car 
navigation). For many years researchers have been interested in finding the communi-
ties in networks. The definition of a community states that a group of nodes has a higher 
likelihood of connecting than other nodes in the network (Barabási et al. 2016; Gulbahce 
and Lehmann 2008). There are two hypotheses that can be used to define the communi-
ties (Barabási et al. 2016). In the first fundamental hypothesis, the community structure 
can be discovered by looking at the connections in the network. There is a ground truth 
about the community structure and wiring of the network. The second hypothesis, con-
nected to the density hypothesis, states that a community is a connected subgraph. In 
other words, two isolated subgraphs in a network cannot belong to the same commu-
nity. An example of a community structure is shown in Fig.  1. Nodes in the commu-
nity have more connections with the members of the same community than with the 
members outside the community. Maximal cliques automatically form the basis for the 
second hypothesis. A clique is a fully connected subgraph and it has a maximal link den-
sity. However, the clique method for community identification is limited as larger cliques 
are rare (Carter and Park 1993). The communities are therefore defined as stronger 
or weaker communities and this relaxes the rigid definition of communities based on 
cliques (Barabási et al. 2016). We have used these definitions to define a community in 
detail in “Strength of communities based on links” section. A real network may consist 

Fig. 1  Strong and Weak Community. An example of a strong and weak community network. The community 
in green is a weak community as it strictly violates the definition of strong community for each node. 
However the community in red can be viewed as a strong community if node 6 is ignored. In the case of the 
purple community, all the nodes strictly follow the definition of a strong community from 1
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of nodes that can belong to more than one community depending on the real world it 
models (Palla et al. 2005). The overlapping regions are common in networks where some 
nodes can exhibit properties of more than one community (Barabási et al. 2016). Com-
munity detection in networks with more than one membership is of great interest as it 
resembles more closely the real-world networks (Palla et al. 2005). The identification of 
these community structures can provide a solution for many risky situations. Control-
ling community infection earlier and in the time of pandemic like the current one is of 
great interest (Vanhems et al. 2013). The theory of multi-criterion decision making and 
fuzzy sets involves capturing the indecisive human thinking. Fuzzy sets involve repre-
senting objects with unclear boundaries. Continuous-valued logic is a natural generali-
zation of discrete logic. However, the general structure of continuous-valued is different 
from discrete logic as operations like negation cannot be defined in terms of addition 
in a similar way (Levin 2007). Preference modelling is an approach used in multi-crite-
rion decision making where multiple criteria are taken in consideration at the same time 
(Csiszár et al. 2020; Dombi and Jónás 2020). Community has a vague definition as there 
is no control on inner and outer links even while preserving the definition of a commu-
nity. In other words, there is no strict threshold for the number of inner and outer links 
except for the inequality operator which looks for a higher density of links between the 
community members. The existing approaches which deal with the strength of a com-
munity define it after the communities have been detected. In Fig. 1 the communities 
detected by a community detection algorithm are unable to control the creation of these 
communities with respect to certain controls on number of inner and outer links. To 
provide a solution to such scenarios we provide a mathematically proven approach on 
community detection which is based on continuous-valued logic and it can describe the 
vagueness of a community definition.

Related work
Lots of methods have been developed over the past three decades for community detec-
tion and we here we present summary of some of them. The use of social networks and 
online communities provides a good incentive for industry and science to gain a better 
insight into community detection.

One of the best known methods is the clique percolation method (CPM), which 
assumes that there is an overlapping set of fully connected graphs in the community 
(Derényi et al. 2005). It searches for the adjacent cliques for example to identify cliques 
of size k in a network. Afterwards, a new graph is constructed such that each node in 
the graph denotes one of these k cliques. Connected components identify the cliques 
which form communities. The presence of a node in many k cliques introduces an over-
lap between any two communities. However, it is beneficial for the network that has a 
dense connection type of structure. One disadvantage of this algorithm is that it looks 
for a pattern or localized structure in the network, and it runs with polynomial time 
complexity. The overlapping regions in the network can be studied by establishing the 
relationship between the structure of the network and the function that identifies the 
communities (Newman 2003). Many papers have presented the studies and evaluation 
of community structures (Schaub et al. 2017; da Fonseca Vieira et al. 2020; Cherifi et al. 
2019). Some algorithms use a local function to characterize the densely connected group 
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of nodes. One method was provided by Baumes, (Baumes et al. 2005) who introduced 
a two-step procedure. In the first step, the network nodes are ranked based on the Pag-
eRank algorithm (Page et al. 1999). Then the higher value nodes are removed step-by-
step until small disjoint clusters are formed. Then, an Iterative scan (IS) adds or removes 
the nodes until the local density function improves. The disadvantage of IS is that it 
also produced disconnected components in many cases. This drawback was corrected 
by Kelly in a new method called connected iterative scan (CIS) (Kelley 2009). His new 
method checked for connectedness in each iteration. The local function optimization 
approach is also used by Lancichinetti in the (LFM) to detect overlapping community 
(Lancichinetti et al. 2009). LFM introduces a fitness function for the definition of a com-
munity, as shown in Eq.  3. The random seed nodes from the network form the com-
munity until the fitness function in Eq. 3 is locally maximal. In the OSLOM method, the 
local optimization of the fitness function is also used, which determines the statistical 
significance of clusters with respect to random fluctuations (Lancichinetti et al. 20011). 
First, it identifies the relevant cluster until the local fitness function converges. Then, 
an internal analysis of these clusters is performed on their union. Lastly, it identifies the 
hierarchical structure of these clusters. This method offers a comparable performance 
with those of other existing algorithms on synthetic networks. The main advantage of 
this method is that it can also be used to improve the clusters generated by other algo-
rithms (Dombi and Dhama 2020).

Among other popular methods available, one of the best approaches is given by fuzzy 
community detection. In this approach, the membership for each node is calculated and 
the dimension of this membership vector can be calculated from the data or it can be 
chosen by the user (Gregory 2011; Xie et al. 2013; Nepusz et al. 2008).

There have been more overlapping algorithms presented in literature surveys which we 
will describe in detail (Xie et al. 2013). CESNA is a scalable community detection algorithm 
which develops communities from node attributes and the edge structure in the network 
(Yang and Leskovec 2013). It also models the interaction of nodes attributes and the net-
work structure for detecting the community. It also handles robustness even when there is 
noise in the network. In the BIGCLAM method, the authors introduce a new approach to 
model k communities in different ways categorized as non-overlapping, overlapping, and 
nested using non-negative matrix factorization which as we call non-convex. This method 
calculates the community with a reliable accuracy and it has an F1 score of community 
membership greater than 0.85. For a large network, this approach reduces the memory 
requirements by introducing the sparsity to matrix by ℓ1 regularization. The main find-
ings of their experiment revealed that overlap regions of a community are more densely 
connected than non-overlapping regions of a community (Yang and Leskovec 2013). An 
improved faster version has also been implemented recently which parallelizes the com-
putations and hence improves the time complexity, making it suitable for use on larger 
networks (Liu and Chamberlain 2017). In another approach presented recently the author 
deals with the problem of the identification of central nodes, which had not been handled 
properly by any previous algorithm (Li et al. 2016). A kernel function is used to calculate the 
leadership of every node in the network. A higher value of leadership is the deciding factor 
in the selection of central nodes. After the central nodes have been identified, the discrete-
time dynamical system framework is used to assign the dynamic community membership 
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to nodes. This method also has several conditions for the convergence of the discrete-time 
dynamical system. These conditions guarantee the convergence of the node dynamic tra-
jectory and it should reveal any hidden hierarchical community structure. The advantage 
of this approach is that it can be applied to any community detection algorithm that uses 
a local community membership optimization function. In some recent work considering 
the structural point of view, the authors suggest that a deeper comprehension is needed 
for designing more efficient community detection methods (da Fonseca Vieira et al. 2020). 
The author also points out importance of strength of weak ties theory (Friedkin 1980). In 
another work on community structures, the authors have used modularity maximization 
as basis for designing communities (Cherifi et al. 2019). They propose some efficient deter-
ministic strategies to control the epidemic outbreaks, if the structural information about the 
network is available. Random intersection graph with communities is a different method to 
model networks with community structure (Vadon et al. 2019). In this work the authors 
derive an asymptotic description of local structure of graph which yields the important 
structural properties on overlapping structures of communities. Some work has also been 
done on dynamic communities in temporal networks. In one of the paper the authors have 
used Markov-chain model with community structure (Peixoto and Rosvall 2017). Using the 
Bayesian inference framework they are also able to explain the temporal interaction data.

Benchmarks are useful for generating artificial networks to test the community detec-
tion algorithms. Many generative models for real-world networks exist. These models 
are also used to test community detection algorithms. The first benchmark for networks 
introduced by Girvan and Newman in 2001 is known as the GN benchmark (Girvan and 
Newman 2002). In the GN benchmark, the networks consist of 128 nodes with a similar 
degree of 16. The network is divided into four groups each of size 32 nodes. The proba-
bility of the existence of links between the node and member nodes from its community 
is given by Zm . The probability of links between nodes and nodes outside its community 
is given by 1− Zm (where Zm ∈ (0, 1) ). The drawbacks of this method are that it has the 
same degree distribution and that it has a similar community size in the network. Lan-
cichinetti and Fortunato introduced a widely used LFR benchmark.

Strength of communities based on links
An important and well-known hypothesis about the definition of the community asserts 
that the community is a locally dense connected subgraph in a network (Barabási et al. 
2016). Extending this definition, various methods for community detection have been 
proposed. Communities can be categorized as a strong or weak community.

Strong community

For each node (i) in the community, the number of internal links is more than the exter-
nal links (Table 1). That is,

Weak community

The total number of internal links of the community is greater than the total number of 
external links. That is,

(1)kinti (c) > kexti (c)
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The LFM method employs the definition of community as defined by the connectivity 
and density hypotheses (Barabási et al. 2016; Lancichinetti et al. 2008, 2009). The LFM 
method also introduced new features of heterogeneity in-degree distribution and com-
munity size distribution.

In the following section, we explain how we were inspired by the LFM method in 
our approach of community detection. In the case of the LFM method, the weak com-
munity definition is used to define the fitness function of the community and the fit-
ness function for a community is :

where G is the subgraph or community, KG

in is the total number of internal links, KG
out is 

the total number of links of each member relative to the told graph and α1 is a positive 
real-valued parameter which controls the size of communities. In the method used by 
LFM, a new node ’a’ is added in the community if

where fG is the fitness function of community prior to addition of node a and fG′ is the 
fitness of community after the addition of node a and α1 is a real value arbitrary constant 
that controls the size of the community.

The LFM approach works well and it has been used by lot of network scientists, biol-
ogists and statisticians. However, the approach used in LFM method and many other 
community detection approach focus on local optima. There is very little scope to con-
trol the strength of the community. We enlist some more improvements which gives the 
user an edge over the existing methods to somehow control the creation of the partitions 
of existing networks, while adhering to the original detection method.

(2)
∑

i∈c

kinti (c) >
∑

i∈c

kexti (c)

(3)fG =
KG

in

(KG

in + KG
out)

α1
,

(4)fG′ > fG ,

(5)fG′ =
KG′

in

(KG′

in + KG′

out)
α1

Table 1  The notations and their meaning used in the preference relation approach

Meaning Abbreviation

Input graph on which communities are to be detected G = (V , E)

Out-degree: number of links outside graph G KGout

In-degree: number of links inside graph G KGin

Internal-links: for node i, links shared with neighboring nodes belonging to community c kinti (c)

External-links: for node i, links shared with neighboring nodes not belonging to community c kexti (c)

Preference implication for comparing x and y P(α)
ν

(x , y)
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Some limitations of community detection approaches

•	 In a real-world type of network, every community has a threshold for membership cri-
teria. In the LFM method, the inequality operator is limited as there are no criteria to 
control the strength of community relative to the strength of a community(threshold).

•	 LFM has been used to detect communities in networks with overlapping structures. 
However this method, limits that the overlap regions that may belong to more than one 
community with a different degree, which is difficult to decide based on Eq. 4.

•	 There is no parameter that measures the membership contribution of an overlapping 
node or a non overlapping node towards its own community. For instance, a node may 
belong to two communities with same number of links but it can still make a different 
contribution to each community.

These limitations are crucial even to other community detection algorithms which use the 
principle of a number of links while detecting the communities based on any local function 
optimization. Some type of tuning on these detection algorithms can project different deci-
sion boundaries for community detection in different scenarios. We define this type of con-
trol on the community detection algorithm as ’controlling the strength of the community’. 
This approach overcomes some of these limitations of Eq. 4. We propose the so-called pref-
erence implication-based method, where the threshold that defines the strength of the com-
munity can be controlled. The user can control the strength of the community by changing 
the threshold value and hence controlling the decision boundary for each community to be 
detected and for each member that is part of the community to be detected. For example 
the social networks differ from other networks (Radicchi et al. 2004). In a social network, 
when a community starts with one member the joining criteria to become the a member of 
this community is very low as there are no members in the community, but after a certain 
period of time the joining criteria become more strict as the community has now matured.

Problem statement
To detect nc communities on an undirected graph G = (V ,E) . The preference implication-
based method finds nc communities of different strengths defined by the threshold param-
eter δ.

Preference relations
The relation R between A and B in set theory is defined as the subset of the Cartesian prod-
uct (i.e. R ⊂ A× B ), where A× B is the set of all ordered pairs (a, b) and a ∈ A,b ∈ B . To 
define the preference operator we will use the following example.

In the classical sense, preference is a binary relation related to implication. The prefer-
ence implication gives the degree of truth of a statement. Hence,

aRb ⇔ b is more likable than a.

P(a, b) = truth of (a < b)
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This new method based on preference-implication can be used to define overlap struc-
tures in networks. The preference relation has the monotone property and here we 
define it so that it can be used to make multi-criteria decisions (Dombi et al. 2006).

The preference relation P(α)
ν

(x, y) tells us how true is ( x < y ) sometimes, which in our 
case also indicates how strong the community is. Here, x = fG and y = fG′

In Table  2 the domain of all the parameters we have used in the preference-based 
method is explained.

The key parameters ν , α and δ

The parameter ν controls the intensity of the truth of the inequality operator. In sim-
pler words, 100 > 10 , 100 > 50 , 100 > 90 , 100 ≥ 100 . In all of the cases the degree of 
greater is not the same. For instance 100 > 10 represents a much higher difference 
than 100 > 50 , 100 > 90 , 100 ≥ 100 . Selection of nodes in a community which has a 
greater contribution towards the community can be controlled by the user by varying 
ν parameter. The sharpness of preference is controlled by the parameter α . The sharp-
ness tells us the slope of the curve, which is also a measure of how fast is the change 
in the curve shown in Fig. 2. The ν parameter is important for selecting the difference 
of threshold in the community fitness value when there is the addition of a new mem-
ber. The inequality operator in LFM is only capable of selecting the members that 
increase the fitness value of the community. However, the ν in preference can control 
this threshold by taking any user-defined membership strength. This threshold can be 
varied in different situations according to the application of the algorithm on differ-
ent types of data. These different values can be handled by the δ parameter, which is 
directly related to ν . Although the stopping criteria of the algorithm is when there is 
no increase in the fitness value of subgraph, the ν parameter also allows for tweaking 
this definition in some rare and exceptional situations. For instance, giving a node 
chance to become a member of community, by giving them some discount on the 
membership requirement. This is very similar to situations of trade-off in supply and 
demand. When there is great competition to become member of community then a 
higher membership threshold criteria can be introduced, and when the competition is 
less in those situations, a lower membership threshold is similar to offering a discount 

(6)P(α)

ν
(x, y) where x < y and x, y, ν ∈ (0, 1)

(7)P(α)

ν
(x, y) = degree(x < y)

Table 2  The range of the parameters values in the preference relation

Parameters Domain

Preference relation P(α)
ν

(x , y) ∈ (0, 1)

Threshold ν ∈ (0, 1)

Sharpness parameter α ∈ (0, 1)

x = fG fG ∈ (0, 1)

y = fG′ fG′ ∈ (0, 1)

δ ∈ deltaset (deltaset) ∈ (0, 1)
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and relaxing the strictness of membership criteria for nodes to become members of 
a community. The preference implication can not only be used to enhance the appli-
cability of existing LFM method for community detection, but it can also be used 
in LFR benchmark for generating networks with such type of communities. The 
alpha1 parameter in LFM is used in Eqs. 41 and 1 for community sizes. The prefer-
ence method is quite different from alpha1 as it measures the threshold of every node 
which not only controls the size of the community but the quality of nodes in terms of 
strength. The preference method is an approach which handles both the quantitative 
and qualitative aspects of a community.

Preference implication in Boolean algebra

In Boolean algebra, the preference implication has a special form in the range (0,  1) 
range. In terms of an equality relation, we can define the preference operator like so :

Case 1
P(x, y) ∈ (0, 1) and in Boolean algebra we have following possibility : P(0, 1) = 1 as we 

know 0 is less than 1, so the the truth of statement has the highest value of 1.
Case 2
P(1, 0) = 0 The statement 1 is less than 0 is false, so the preference value of statement 

is 0.
The current inequality operator of any community detection algorithm uses this 

boolean form of preference to determine the membership of nodes. However, to be able 
to add more parameters to control the strength, we will define the continuous-valued 
logic form of preference implication.

Preference implication in continuous‑valued logic

As we are dealing with the strength of communities, so the preference implication has 
continuous values in the (0, 1) interval. For example, the preference value based relation 
of truth of (x < y) have these three calculated possible values, 

1.	 P(x < y) = 0.9

2.	 P(x < x) = 0.5

3.	 P(y > x) = 0.1

Fig. 2  The preference relation sigmoid function
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P(α)
ν

(x, y) > ν  if and only if  x < y . Now, let us assume that the threshold ν is 0.5 and 
that the sharpness parameter α is 1. Consider the following un-normalized values of 
x = 3 and y = 9 to explain in detail the above-mentioned three scenarios.

Case 1P(α)
ν

(3, 8)

The truth value of statement (3 < 8) is 0.9, which greater than ν as 0.9 > 0.5 . Hence, 
we establish the truth statement 3 < 9 (using preference relation) with a strength 
greater than ν(threshold).

Case 2 P(α)
ν

(3, 3)

For the truth value of statement (3 < 3) is 0.5 which is just the threshold value. So in 
this case 3 < 3 is a weak statement as it is at the threshold, but still it establishes the 
truth of the statement.

Case 3 P(α)
ν

(3, 8)

The truth value of statement (3 > 8) is 0.1, which is less than ν as 0.5 > 0.1 . So, it is a 
very weak statement or in other words it is a false statement. And hence, 3 > 8 is not 
a true statement.

Here the sharpness threshold defined by α and ν is the threshold used for comparing 
the truth values. The intensity of the preference is controlled by the parameter of this 
function. The parameter is ν ∈ (0, 1) and f is a generator of a strict t norm. The prefer-
ence implication in pliant logic form is (Dombi et al. 2006) :

We can also define our own function in Eq. 8. We define a special function for our pur-
pose which has the monotonic property (Dombi 1982; Dombi and Jónás 2018). Using 
the Dombi operator for the preference relation in fG , we get

This method allows us to control the size and number of these overlapping regions. 
The threshold parameter ν of preference allows us to design the communities accord-
ing to our requirement of the strength of a community. The value of ν is desirable when 
ν > 0.5 , as the Dombi operator system is a sigmoid function. The graphical form of the 
sigmoid function is shown in Fig. 2.

An example of the use of the preference relation in community detection is shown 
in the example in Fig. 3. As we see in the Fig. 3, the following possible members to be 

(8)P(α)

ν
(x, y) =







1, if (x, y) ∈ (0, 0), (1, 1)

f −1

�

f (ν)

�

f (y)
f (x)

�α�

, otherwise

(9)
P(α)

ν
(x, y) =

1

1+ 1−ν

ν

(

1−y
y

x
1−x

)α

(10)P(α)

ν
(x, y) >ν if and only if x< y,

(11)P(α)

ν
(x, y) =







>
1
2 , if y > x

= 1
2 , if x = y

<
1
2 , if x > y
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added to the community. Here, the classical method selects the one best node with a 
higher threshold to be added to the community. The preference relation allows one 
to select more than one node and also to control the threshold in different situations. 
For a higher value of δ , we can create a community with a strong membership if node 
B is chosen as shown in 2 of Fig. 3. As node A has three in-going edges and node B 
has two in-going edges they count as strong members of a community, where the in-
going edges are greater than the out-going. Hence a high value of δ can be used in 
these circumstances to establish the membership for the community. Node C has only 

one in-going edge so it can viewed as a weak member as shown in 3 of Fig. 3. In the 
case of node D, the membership will be very weak with a very low value of δ (Fig. 3 
and Table 3).

Different types of networks for community detection

We previously introduced the preference implication for undirected and unweighted 
graphs networks and collected some results on them (Dombi and Dhama 2020). How-
ever, we did not introduce the other different cases of graph networks. In this section, 
we will provide an extension to handle the weighted undirected graph networks. For the 
case of unweighted directed and weighted directed graph networks, there are some state-
of-the-art methods that provide different approaches of how to detect communities on 
the directed graph networks (Malliaros and Vazirgiannis 2013; Kim et al. 2010; Leicht 
and Newman 2008). One of the approaches available in the literature is to transform the 
directed graph network to an undirected graph network by preserving the direction of 
edges by introducing the weights. Then, we apply the community detection algorithm of 
the undirected graph network on the transformed graph network. The louvian method 
based on modularity optimization has an improved version for directed networks where 
the modularity definition is based on the community connection matrix (De Meo et al. 
2011). Then, the community detection method is applied on a directed graph. In another 
approach, the edge direction is preserved in form of weights and directed network is 
transformed into an undirected bipartite network (Dugué and Perez 2015). Then, a new 
modularity measure is defined by modifying the modularity of undirected networks. 
A partition with the highest modularity value is treated as a community of networks. 
However, this method is limited due to it not being too efficient on large scale networks 
(Good et al. 2010). Some improved and faster community detection methods based on 

Table 3  Preference rule table: rule for the new node addition in the subgraph based on the 
threshold ν value and preference value

Preference value P(α)
ν

(x, y) Fitness 
function 
rule

Decision of a new node addition

0 < P(α)
ν

(x , y) < 0.5 P(α)
ν

(x , y) > δ fG > fG′ Not desirable for a community membership but it can have a 
very weak overlapping membership

P(α)
ν

(x , y) = 0.5 P(α)
ν

(x , y) > δ fG = fG′ Desirable for Community membership and it can have a weak 
overlapping membership

1 > P(α)
ν

(x , y) > 0.5 P(α)
ν

(x , y) > δ fG < fG′ Strong community membership and it can have a strong 
overlapping membership



Page 12 of 32Dombi and Dhama ﻿Appl Netw Sci            (2021) 6:85 

modularity maximization have been proposed recently (Li et  al. 2018; Gach and Hao 
2013; Zhuang et al. 2019; Bhowmick and Srinivasan 2013; Que et al. 2015).

Undirected and unweighted graphs

For unweighted graphs, we will use the fitness function defined in Eq. 3.

Undirected and weighted graphs

In weighted and undirected graphs we normalize the weights for each node links. For 
a vertex vi ∈ V  and all the links e1, e2...em ∈ E of graph G, we introduce the normalized 
weighted fitness function for subgraph G as follows:

In our method, we have only normalized weights of edges of community. However, the 
weights of all the edges of a graph can also be normalized before applying the normaliza-
tion on community.

Preference relation properties

Theorem 1  The necessary and sufficient conditions for satisfying all the four distributiv-
ity equations are (Dombi and Jónás 2018):

1.	 The conjunction and disjunction are weighted operators.

fG =
KG

in

(KG

in + KG
out)

α1
,

WG =

d
∑

j=1

wj ,where wj is weight of edge j

Kin =

m1
∑

j=1

kj

(

wj

Wi

)

where m1 is number of inner links,

Kout =

m2
∑

j=1

kj

(

wj

Wi

)

where m2 is number of outer links,

d =m1 +m2,

fG =
KG

in

(KG

in + KG
out)

α1
,

Fig. 3  This figure shows three different scenarios of node addition in the community. The node selection 
based on the rules in Table 3 in a community
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2.	 Negation is a strong negation.
3.	 The De Morgan laws are valid for the above triple.
4.	 The implication is a fuzzy implication which is continuous except for the points (0, 0) 

and (1, 1).
5.	 The law of contrapositive is valid. And these conditions can only be satisfied if the 

operators are elements of a pliant system and the implication is a preference implica-
tion. That is,

	 c(x, y) = f −1
(uf (x)+ vf (y)),

	 d(x, y) = f −1

(

f (x)f (y
vf (x)+uf (y)

)

,

	 η(x) = f −1

(

f 2(v)
f (x)

)

,

	







1, if (x, y) ∈ (0, 0), (1, 1),

f −1

�

f (ν)
f (y)
f (x)

�

, otherwise,

	 for all x, y ∈ [0, 1] where u, v ∈ (0,∞) and v ∈ (0, 1)

Definition 1  For x, y ∈ [0, 1] , P(x, y) has the reciprocity property when

Definition 2  A preference relation p is multiplicative transitive if

for all x, y, z in [0, 1] and the above formula is well defined.

Note 1 - We define this special function for our purposes and it has the monotonic prop-
erty, using the Dombi operator for the preference relation in Eq. 8.

Definition 3  A preference implication p is reciprocal if

Here, we will prove that for preference implication,

Proof

We know the form of preference implication. It is :

Using the Dombi operator for the preference relation from Eq. 9, and recalling note 1, 
we have

(12)P(x, y)+ P(y, x) = 1

(13)
p(x, y)p(y, z)

p(y, z)p(z, y)
=

p(x, z)

p(z, x)

(14)p(x, y)+ p(y, z) = 1 x, y ∈ [0, 1]

(15)P(α)

ν
(x, y) > ν if and only if x < y

(16)P(α)

ν
(x, y) where x < y and x, y, ν ∈ (0, 1).
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Now, from Eq. 9 we get the expression given below,

Taking the reciprocal of the LHS and RHS, we get

Subtracting 19 from 1, we get

After cross-multiplication of the above term we get the following reduced form :

Cancelling the common term −xy on each side of the equation we get,

 and hence it is proved. Therefore,

�

Commutative property

Here x is the fitness value of the sub-graph before the addition of a new node and y is the 
fitness value of the sub-graph after the addition of a new node. Here, n and o for simplic-
ity denote kin and kout , respectively.

As defined above, we know that

For simplicity we choose α1 = 1 , and we get

(17)
P(α)

ν
(x, y) =

1

1+ 1−ν

ν

(

1−y
y

x
1−x

)α .

(18)
1

1+ 1−ν

ν

(

1−y
y

x
1−x

)α > ν.

(19)
1− ν

ν

(

1− y

y

x

1− x

)α

<
1− ν

ν
.

(20)
(

1− y

y

x

1− x

)α

< 1.

(21)(1− y)x <y(1− x),

(22)

x − xy <y− xy.

(23)

x < y,

(24)P(α)

ν
(x, y) > ν if and only if x < y.

(25)x =
kin

(kin + kout)α1
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Now, taking the reciprocal of x and subtracting 1 from it, we get

Taking reciprocal of both the sides we get,

Using the commutative property, we have

Similarly, for y when α1 = 1 , we get

Now we repeat the same steps for y as we did for x
Taking the reciprocal and subtracting and taking reciprocal again, we get

Also, in other notation we have

From Eq. 9 we get

We will introduce the threshold δ and from Eq. 10, we get

Therefore,

(26)x =
kin

kin + kout
.

(27)
1− x

x
=

kout

kin
.

(28)
x

1− x
=

kin

kout
.

(29)
kin

kout
=

n

o

(30)y =
k ′in

k ′in + k ′out

(31)
1− y

y
=

k ′in
k ′out

.

(32)
k ′in
k ′out

=
o′

n′
.

(33)
P(α)

ν
(x, y) =

1

1+ 1−ν

ν

(

1−y
y

x
1−x

)α .

(34)P(α)

ν
(x, y) > δ.

1

1+

(

o′

n′
n
o

)α > δ.
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Taking the reciprocal we get

Let us assume that the RHS of above inequality is k. Then

And we get,

Taking the log on both the sides of above expression, we get

On a logarithmic scale the difference between the two situations is where a new member 
is added to the community and there is an increase in the number of inner links of the 
community, and also a comparatively small increase in the number of outer links. This 

increase is directly related to k, where k is 
(

1
δ
− 1

)
1
α

 . This term denotes the strict thresh-

old for the addition of a new member to the community.

Algorithm and implementation of the preference‑based method
A brief version of the algorithm is given in our paper (Dombi and Dhama 2019).

(35)1+

(

o′

n′
n

o

)α

<
1

δ
,

(36)
(

o′

n′

)(

n

o

)

<

(

1

δ
− 1

)
1
α

.

(37)
(

1

δ
− 1

)
1
α

= k .

(38)
(

o′

n′

)(

n

o

)

< k .

(39)ln (o′)− ln (o)+ ln (n)− ln (n′) < ln (k)

(40)�o−�n < k ′, where k ′ =
1

α
(ln(1− δ)− ln (δ))

Table 5  Statistics of unweighted real networks are given below (Csardi 2015; Csardi and Nepusz 
2006)

These networks were taken from a network repository (Csardi and Nepusz 2006; Traud et al. 2011, 2012; http://​netwo​rkrep​
osito​ry.​com)

I Network name Nodes/size Edges Average 
degree

Maximum 
degree

Density Diameter Transitivity

1 Zachary’s Karate Club 34 78 4 17 0.1390 5 0.2556

2 Facebook Caltech 769 16656 43 248 0.0564 6 0.2912

3 Tortoise Social 787 1506 3 30 0.0048 21 0.4199

4 EU Road 1174 1417 2 10 0.0020 62 0.0338

5 Facebook Nips 2888 2981 2 769 0.0007 9 0.2912

6 Indo-china Webgraph 11,358 47606 8 199 0.0007 27 0.5669

7 Facebook Simmons 1518 32988 43 300 0.0286 7 0.2123

http://networkrepository.com
http://networkrepository.com
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We presented the unweighted graph community detection in our previous papers 
(Dombi and Dhama 2020, 2019). In this paper we also implement the weighted graph 
network community detection by incorporating the weights in the fitness function.
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This strategy is similar to the unweighted graph network community detection. The 
preference-based method for the weighted graph network works in the following way. 

1.	 We start the process of community creating by randomly selecting seed nodes for 
each community c. Centrality measures such as PageRank, betweenness, and other 
centralities can also be used to determine the seed nodes. Each community c is rep-
resented by G , which is a subgraph with one node and one virtual edge.

2.	 We find all the neighbours of the community. To make the selection of best neigh-
bour to add in the community, we create a new subgraph G ′

i = G + i corresponding 
to each neighbour i. Now, we have to choose the best subgraph out of this list; i.e. the 
best next node or nodes to be added in G to improve the local fitness function of the 
community. We also consider the strength of community denoted by δ when making 
this selection.

3.	 We create a preference list corresponding to each subgraph of neighbouring node 
i of G . If the preference value of any subgraph is greater than the δ parameter value, 
then these nodes are included in the community.

	 G′ =
∑

Gi : a new subgraph which includes nodes with a preference value greater 
than δ.

4.	 The process is repeated from step 4 using a while loop until it satisfies the stopping 
criteria.

Experiments and results
We selected artificial and real networks to test our algorithm. For the artificial network, 
we generated different sizes of networks from the LFR benchmark (Lancichinetti et al. 
2008). The real networks were selected standard repositories (Csardi and Nepusz 2006; 
Traud et al. 2011, 2012; http://​netwo​rkrep​osito​ry.​com).

Table 4  Unweighted artificial networks generated from the LFR benchmark. The mixing parameter 
µ = 0.1 , t = 1 , t2 = 1

The degree distribution of those networks which obey a power law is also shown in Fig. 4

Size Nodes Edges Average 
degree

Maximum 
degree

Density Diameter Transitivity

1 30 126 6 10 0.2896 4 0.4263

2 60 491 12 20 0.2774 3 0.4819

3 100 444 5 10 0.0896 4 0.1779

4 200 2901 20 40 0.1457 3 0.4070

5 500 7619 20 50 0.0610 4 0.4444

6 1000 15,340 20 100 0.0307 4 0.3471

7 2000 272,024 272 398 0.1360 3 0.6058

8 5000 234,632 93 517 0.0187 4 0.2777

9 10000 1,268,003 150 300 0.0253 3 0.2690

http://networkrepository.com
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Study on unweighted networks

We generated communities on the unweighted artificial networks of different sizes with 
different network statistics shown in the Table 4. The structure of the degree distribution 
of each unweighted real and artificial network is shown in Fig. 4. For comparison pur-
poses, we did not normalize the degree values. The initial seed node of communities to 
be created can be chosen by the user or it can be randomly selected. Since the selection 
of a seed is random, the performance of the algorithm is highly dependent on the seed 
values. There are many centrality measures that are available for choosing the initial seed 
nodes. In our experiments we have randomly selected the seed nodes.

The effect of network properties degree, eigen centrality, closeness centrality and many 
more on the detection of community can be further explored in the future. As can be 
seen from the Table 4, the network density decreases as the size increases, but the diam-
eter does not vary much.

These networks were generated using the LFR benchmark (Lancichinetti et al. 2008). 
The real and artificial networks we selected for tests have quite similar characteristics in 
terms of the diameter, density, transitivity, maximum and average degree depending on 
the size.

Study of the parameter values

For bench-marking purposes, the parameters values were tested on the graphs of the 
LFR benchmark. To test the parameters, we chose a small-sized networks. The plots for 
this network and determination of the parameter ν and α are shown in Fig. 5. The key 
parameters of our algorithm are ν and α . To show the behaviour of these parameters, 
we choose an artificial network of size 15 and set the initial community number; i.e. the 
number of communities to be created.

The behaviour of α

We excluded the testing of α > 0.80 as the preference implication has an oscillating 
behavior for values closer to 1. Also, the value of α has a similar oscillatory behavior for 

Fig. 4  The degree distribution of unweighted real networks is shown on the left and the degree distribution 
of unweighted artificial networks used in the simulation is shown on the right
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values close to 0. However, when α is greater than 0.5 and less than 0.8, the effect of ν is 
more visible, as each value of ν generates different sizes of communities. This behavior 
can be seen in the plots in Fig. 5 with α between 0.55 and 0.8. This behavior can be seen 
in the plots in Fig. 5 with α between 0.55 and 0.8. A range of α between [0.2, 0.8] is desir-
able as it ensures a non-oscillating behavior of the preference implication (Dombi and 
Baczyński 2019).

Behaviour of ν

When ν is close to 1, it behaves in a similar way for all the values of α . All the community 
sizes are close to the network size. This is not a suitable value as all the network nodes 

Fig. 5  From the LFR benchmark the statistics of network that we used are N = 15 , k = 3 , maxk = 5 , ν = 0.2 , 
t1 = 2 , t2 = 1 , minc = 3 , maxc = 5 , on = 5 , om = 2 . The value of α is tested for α ∈ [0.05, 0.8] . For each α 
the ν is tested for ν ∈ [0.35, 0.8] . The initial seed nodes were the same for all the runs. The value of number of 
communities to be created is the same in all the cases; i.e. nc = 6 . The delta set is same in each cases with ν 
and α with the values [0.24, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95]
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belong to one community, which is not the goal of the community detection algorithm. 
For ν values less than 0.55, the algorithm has the same behavior for α < 0.55 . The com-
munity of size between 4 and 7 was generated for all seed nodes. This behavior is similar 
to a fixed-size membership of overlapping nodes in the LFR benchmark. However, for 
α > 0.55 and ν < 0.5 , the communities of different size are generated for different ν val-
ues. The algorithm does not produce too many overlapping structures for ν close to 0.

Results on unweighted artificial and real networks

In Tables 6 and 7 the results for the artificial and real networks of community detection 
are listed with different percentages of initial seed nodes. When the number of seeds for 
community is increased it increases the number of overlapping nodes but there was little 
change in the community size behavior as we used the same threshold for all the seeds.

Analysis of ν and α

Based on our analysis of the ν and α we generated communities for ν ∈ [0.3, 0.95] and 
α ∈ (0.05, 0.80) . For a larger network, the community size distribution is shown in Fig. 6. 
The community size distribution is different for different values of ν but it has a simi-
lar value for community sizes with the same threshold. For a smaller value of ν < 0.5 
smaller size communities are created and they all have similar sizes. However, for values 
greater than 0.5, larger community sizes are observed.

Different seed node percent on artificial data

We plotted the behavior of community sizes using the violin plot in Fig. 8. For smaller 
networks, the shape of the violin and mean both suggest a uniform distribution of com-
munity sizes for all the communities. In the case of larger networks, the power-law 
behavior is much more obvious, as can be seen in Fig. 6 from the shape of violins and 
in Fig. 9. We also observed a similar behavior for different seed sizes in three different 
networks of size 200, 500, 1000 in Fig. 7. Community detection was performed using dif-
ferent seed sizes of 5%, 10%, 20% and 30% of the network. We observed a similar behav-
ior for violins in all the cases that have the characteristics of a power law. The size of the 
communities formed in this way follows a power-law, as can be seen in Fig. 9.

Fig. 6  The community size distribution is shown for a fixed value of ( α = 0.70 ) and varying value of 
ν ∈ [0.375, 0.70] . The size of network = 1000 , Average degree k = 150 , Maximum degree Kmax = 200 . The 
mixing parameter µ = 0.1 , t = 1 , t2 = 1 . The initial seed node and threshold δ are the same for each value of ν



Page 22 of 32Dombi and Dhama ﻿Appl Netw Sci            (2021) 6:85 

Study on weighted networks

We collected synthetic weighted networks from LFR benchmark. The statistics of these 
networks are shown in Table 8.

We created community on the weighted artificial networks with ten percent of seed 
nodes (Fig. 10).

Evaluation

Many methods are available for evaluating the partitions detected (McDaid et  al. 
2011; Lancichinetti et  al. 2009; Liu et  al. 2019; Dao et  al. 2018). In the recent work 
on the evaluation of ground-truth data, the authors have discussed the importance 

Table 6  Some statistics of Preference Implication-based method results of communities created on 
the artificial networks from Table 4 and different sizes of seed nodes

Here, α = 0.75 and ν = 0.6 for all the entries in the table

I Network size Seed node 
percent (%)

Number of 
community

Maximum 
membership

Maximum 
community size

Minimum 
community 
size

1 15 30 6 5 8 4

2 30 20 6 4 10 7

3 60 10 6 7 16 12

4 100 20 20 15 25 13

5 200 5 10 8 44 22.

6 200 10 20 8 44 22 .

7 200 20 40 8 46 21.

8 200 30 60 13 44 19

9 500 5 25 14 55 19

10 500 10 50 16 55 18

11 500 20 100 14 55 19

12 500 30 150 17 49 17

13 1000 10 100 13 98 22

14 1000 20 200 21 98 22

15 1000 30 300 27 53 20

16 2000 30 600 51 391 212

17 5000 10 500 42 508 56

18 10000 10 1000 0.6 1515 86

Fig. 7  A violin plot of community size distribution for different sizes of seed nodes 
on networks with sizes ranging from 200 to 1000. The value of parameters for 
deltaset = 0.3, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95 , α = 1 and ν = 0.6 are the same in all cases. The 
green color corresponds to the tests with seed size = 10% of the network size, the pink color corresponds to 
tests with seed size = 5% of the network size, the blue color corresponds to tests with seed size = 20% of the 
network size, the purple color corresponds to tests with a seed size = 10% of the network the size in all the 
cases
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of the topological features of the community structure (Jebabli et al. 2018). In their 
work, they have investigated the relationship between the topological properties of 
the community structure and the alternative evaluation measures such as quality 
metrics and clustering metrics. The authors concluded that the different evaluation 
measures present different views and therefore must be combined for the evaluation 
of the community detection algorithms. In another work on the evaluation of com-
munity detection methods, the authors have used a topological approach (Orman 
et  al. 2012). They studied and tested, the importance of community-oriented topo-
logical measures. Topological measures are used to qualify the communities and eval-
uate their deviation from the reference structure (Orman et  al. 2012). The authors 
also researched about use of artificially generated realistic networks for evaluation 

Table 7  Some statistics of the Preference Implication-based method results of communities created 
on the unweighted real networks from Table 5 of real networks with different sizes of seed nodes

Also, here α = 0.75 and ν = 0.6 for all the entries in the table

I Networ size Seed node 
percent (%)

Number of 
community

Maximum 
membership

Maximum 
community 
size

Minimum 
community 
size

1 Zachary’s Karate Club 5 2 2 19 17

2 Facebook Caltech 10 76 11 176 17

3 Facebook Caltech 20 152 14 208 12

4 Facebook Caltech 30 228 16 246 11

5 Tortoise Social Network 10 8 4 21 8

6 EU Road Network 10 6 5 82 6

7 Facebook Nips 10 200 2 288 2

8 Indo-china Webgraph 5 500 17 120 8

9 Facebook Simmons 10 150 21 182 7

Fig. 8  This figure shows the violin plot of a community size distribution for 10% of the seed nodes on 
networks from Table 4. The value of the parameters are δ = 0.3, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95 , 
α = 1 and ν = 0.6
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Fig. 9  A power law distribution for the community size of artificial networks with sizes ranging from 200 to 
10000. The parameter values are the same as those in the violin plot in Fig. 8

Table 8  Weighted undirected artificial networks generated from the LFR benchmark

The mixing parameter µ = 0.3 , t = 1 , t2 = 1 , µw = 0.3

Size Nodes Edges Average 
degree

Maximum 
degree

Density Diameter Transitivity

1 1000 3366 6.7 67 0.00673 6 0.08524

2 2000 6574 6.5 79 0.00328 7 0.08549

3 3000 7907 5.2 177 0.00175 8 0.05006

4 6000 15,397 5.1 495 0.00085 9 0.03210

Fig. 10  This figure shows the distribution of weights on edges on artificial weighted networks of size from 
1000 to 6000. The value of µw = 0.3
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purposes. And, they found no equivalence between these approaches. This concluded 
that high performance does not necessarily guarantee correct topological properties, 
and vice-versa. They have emphasized using both approaches to perform a complete 
and accurate assessment. We have used different evaluation measures to compare 
preference-based methods from the existing literature (Liu et al. 2019).

Normalized information

Normalized mutual information (NMI) is based on information theory is based on 
entropy. For evaluation of overlapping communities, NMI has a special form.

Normalized information for overlapping communities

Lancichinetti et  al. (2009) introduced a version of normalized mutual information for 
overlapping communities. Let’s consider there are two overlapping community detec-
tion algorithms that generate partitions X and Y. Each node in the network can belong 
to more than one cluster. So, for each node, a binary array is stored. The length of the 
binary array is denoted by the number of the communities detected by the algorithm. 
The partitions X and Y define community assignments xi and yi for each node i in the 
graph. The entropy for X is

where P(x) is the probability of a node chosen randomly and assigned to the commu-
nity x. Let’s assume that partition X generates k communities. A node i of partition X 
denoted by xki will have value 1 if it belongs to kth community i.e. xki = 1 and xki = 0 
otherwise. This relates to the kth entry of xi to a random variable Xk of probability dis-
tribution P(Xk = 1) =

nk
N  , P(Xk = 0 = 1−

nk
N ) , where n k is the number of nodes of 

community k and N is total number of the nodes in the network. Similarly, lets assume 
that yi in the lth cluster of Y (Emmons et al. 2016). Further, the joint probability distribu-
tions of P(Xk = 1,Yl = 1) , P(Xk = 0,Yl = 1) , P(Xk = 1,Yl = 0) , and P(Xk = 0,Yl = 0) . 
The additional information of a given Xk is to a given Yl

To determine Xk from Y, they considered the minimum additional information to deter-
mine Xk from all choices of Yl form L total communities, giving the follows

Then, normalizing the expression by dividing by H(Xk) and averaging the value of each 
assignment k, from total K communities, results in the normalized entropy of X condi-
tional to Y. It is denoted as follows

(41)H(X) =
∑

x

P(x) log P(x),

(42)H(Xk |Yl) = H(Xk ,Yl)−H(Yl)

(43)H(Xk |Y ) = min
l∈1,2...L

H(Xk |Yl).

(44)H(X |Y )norm =
1

K

∑

k

H(Xk |Y )

H(Xk)
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Then, they also defined the symmetric conditional entropy as

These conditional entropy in Eqs.  (44, 45) are then used to construct the overlapping 
normalized mutual information between two clustering and is defined as

Different versions of NMI such as rNMI, cNMI are also available to deal with the prob-
lems of finite size effect and reverse finite size effect (McDaid et al. 2011; Lai and Nardini 
2016; Zhang 2015). We have used some popular algorithms to compare the preference-
based method and computed NMI similarity matrix.

Unweighted and undirected networks

In a network with with an overlapping community it is highly unlikely that all over-
lapping nodes have the same membership ie that each overlapping node belongs to 
the same number of communities. In the LFR benchmark approach, the overlap-
ping nodes have a similar membership value. So, we need some other alternatives 
for the evaluation. We have used different existing overlapping community detection 

(45)H(Y |X)norm =
1

K

∑

k

H(Yl |X)

H(Yl)

(46)Inorm(X ,Y ) = 1−
1

2
[H(X |Y )norm +H(Y |X)norm]

Fig. 11  This figure above is the NMI similarity matrix of the preference-value based method for six real 
networks. Here, a Zachary’s Karate Club, b Tortoise Social, c Facebook Caltech, d EU Road, e Facebook Nips 
and f Indo-china Webgraph. The three values of ν = [065, 0.75, 0.85] have been compared to other existing 
algorithms based on NMI and results are compared through this similarity matrix of clustering scoring
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methods to overcome the shortcomings of evaluation strategies. In Fig. 11, the simi-
larity matrix computed on six real networks is shown. We found that for different 
values of ν , the similarity matrix on some graphs has partitions similar to other detec-
tion methods but not always. The values in NMI similarity matrix do not follow a 
particular behaviour. The results could also be different in other simulations, as we 
have chosen the seed values randomly. The selection of number of clusters and type 
of seed nodes is another direction of research in itself, which can be further explored 
in future. In Fig. 12, we have compared the different ν values on the six real networks. 
We found the behaviour of ν quite promising to create different clustering. In Fig. 13 
the measures are plotted for Zachary karate club for different measures on evaluation. 
There are three values of ν shown in preference 1-3 with other algorithms. We found 
similar behaviour on other real networks. We have used F1 score, link modularity and 
average internal degree as other quality metric. The F1 score is as follows :

The preference-based method has a higher F1 score compared with Big-clam and 
K-clique even for a smaller value of ν , as shown in Fig. 13. However, we also observed a 
higher value of F1 score for other combinations of α and ν.

The average internal degree is similar in all the clustering algorithms.

Evaluation on weighted undirected networks

The communities generated by the preference-based networks are analysed by com-
paring with the ground truth data available from synthetic networks. Some of the 
existing overlapping community detection methods are used for comparison. The 
similarity matrix of NMI scores is plotted in Fig. 14.

Comparison using ground truth data

The ground truth data for communities from synthetic networks are used for com-
parison with our approach. The NMI scores of the preference-based method with the 
ground truth data were in the range of [0.2, 0.5]. These scores seem to show different 
behaviour by changing the number of communities. However, we could not establish 
any correlation between the NMI scores and the number of communities (Fig. 15).

(47)F1 Score = 2.

(

(precision.recall)

(precision+ recall)

)

Fig. 12  This figure shows the NMI similarity matrix for ν = [065, 0.75, 0.85] for preference-based method 
for different clustering scores. Also, here a Zachary’s Karate Club, b Tortoise Social, c Facebook Caltech, d EU 
Road, e Facebook Nips and f Indo-china Webgraph
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Conclusion and discussion
The theory of preference modeling of a community introduces continuous-valued logic 
into graph theory. The existing method of community detection and other potential 
problems on graphs can be handled by the continuous-valued logic of other methods and 
operators. In particular, for np− hard problems like partitions and community detec-
tion, the unsupervised learning is keeping up with the enormous data and resources 
available at the user’s end. Network clustering in general is different characterization 
from the other data clustering methods due to the presence of relationships among the 
nodes. Overlaps in partitions are the soft decision boundaries that show the fuzziness 
in the classification of nodes. The choice of community strength for the community is 
an important aspect of the algorithm. This aspect is incorporated into preference-based 
method, as the user-controlled parameter. The community strength is not a self-learned 
feature of the proposed method. This feature of preference-based approach is crucial for 

Fig. 13  Different measures such as internal degree, link modularity, F1 score, NMI are plotted for Zachary 
karate club using community detection algorithms. We have used Core-expansion, Big-clam, K-clique, DCS, 
label-propagation and LFM to show further comparison
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manually tuning the community strength in different situations for community identifi-
cation. A user has the flexibility of detecting communities of different strengths depend-
ing on the application area. In data-mining this feature can be useful for generating a 
threshold-based representation of any group. For a network, many partitions can exist 
for different strengths of communities. The behavior of the preference implication can 
be comprehended from the sigmoid function graph. We conducted our tests on artifi-
cial and real networks collected from standard repositories and benchmarks. The sta-
tistical characteristics of networks on which the tests were performed were analyzed to 
discover the property of these networks. The best results of the proposed approach are 
not seen on smaller networks. The approach has promising results on artificial and real 
graph networks with a power-law distribution of community sizes. However, the choice 
of initial seed nodes is a crucial criterion for the creation of communities. We chose the 
random-based approach to select the initial seed nodes. The randomly selected nodes 

Fig. 14  The figure above is the NMI similarity matrix of the preference-value based method for four artificial 
weighted networks. The preference-based method with a value of ν = 0.65 and α = 0.75 is compared with 
other existing algorithms using an NMI similarity matrix. We plot the results for networks of sizes a 1000, b 
2000, c 3000, d 6000 respectively
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were not in the neighborhood of each other. The proposed preference-based method is a 
novel approach for controlling the overlapping structures and strength of the communi-
ties. The parameters δ and α can be used to control the strength of the communities and 
overlapping regions. The outliers observed were less than 15% and they were handled 
with a feedback loop by replacing the faulty seed nodes with new seed nodes. In large 
networks, the search complexity of community detection increases with stopping cri-
teria that depend on the strength of the community. This situation can be dealt in two 
ways. In the first solution to the problem, the delta parameter can be a high value for 
new nodes at the later stage of community creation. This implies the initial motivation 
of creating more real-like communities. In the second solution keeping a membership 
for all the nodes (i.e. a fixed delta) and defining the maximum size of a community in the 
network can be used as one of the criteria to terminate the search.
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