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Introduction
Graphs are ubiquitous forms of data, which are encountered in many domains such as 
social networks, the web, citation networks, molecule interaction networks, and knowl-
edge bases. For many years, machine learning on graphs has been an essential area in 
research. The developments in this area have resulted in solving or elevating the state of 
the art of many graph-related tasks, such as node classification (Kipf and Welling 2017), 
link prediction (Zhang and Chen 2018), and graph classification (Hamilton et al. 2017). 
One central task in this context is semi-supervised node classification, which consists 
of predicting unknown node labels from node features and a few known node labels. 
The state-of-the-art models for solving this task have predominantly been graph neural 
networks (GNNs) (Wu et al. 2019). However, recent works have shown that GNNs are 
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typically limited to work only on homophilic graphs (Zhu et al. 2020), i.e., where adja-
cent nodes are more likely to share the same label and have similar features. Homophily, 
which is a common phenomenon in many real-world graphs (Peixoto 2021), yields the 
rise of community structure in these graphs (Dev 2016). Communities have an impact 
on information propagation in graphs. For example, community structure can form bar-
riers for information propagation in graphs, which forms the basis of processing with 
GNNs (Hasani-Mavriqi et al. 2018). However, neither community structure nor its rela-
tionship with homophily is well-studied in the context of GNNs.

Objective

We aim to extend our previous investigations (Hussain et al. 2020), in which we studied 
the impact of communities on GNNs. In the present paper, we go beyond community 
structure to study the impact of homophily, which plays a major role in forming com-
munities in real-world graphs. Hence, we study the relationship between homophily and 
community structure, and their impact on the performance of GNNs in semi-supervised 
node classification.

Approach

We design an evaluation methodology to study the impact of communities and homoph-
ily.1 Our methodology is based on manipulating a diverse set of real-world graph data-
sets. We start by defining contributing factors to GNN performance: homophily and 
community mixing. We quantify these factors (“Contributing factors” section) using 
measures on structure and node properties. We apply data manipulation (in “Structure 
manipulation” section) to modify homophily and/or community structure in the graph 
datasets. To understand the impact of communities and homophily on GNNs, we study 
the change in classification accuracy of trained GNNs on the original and manipulated 
graphs.

Based on our observations, we derive a measure to quantify the correlation between 
communities and node labels, using the uncertainty coefficient (Press et al. 2007). We 
use this measure to predict whether GNNs are suitable for semi-supervised node clas-
sification on a given graph dataset.

Findings

Our results show that homophily is the main contributing factor to the high accuracy of 
GNNs. Moreover, when community structure exists, it contributes to the performance 
of GNNs as it accelerates propagation between nodes of the same label when homophily 
exists. Furthermore, our results also suggest that small community structures (or sub-
communities) act as barriers for propagation among nodes of the same class, and limit 
the GNN performance when homophily exists.

1  Our code is on https://​github.​com/​sqrhu​ssain/​struc​ture-​in-​gnn.

https://github.com/sqrhussain/structure-in-gnn
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Contributions

Our contributions are two-fold: (1) we provide an extensive study on the interplay 
between community structure and homophily and their impact on classification with 
GNNs, and (2) we propose to quantify the correlation between communities and labels 
using the uncertainty coefficient (Press et al. 2007), and show that this measure predicts 
the suitability of GNNs for graph data.

Our paper explains why GNNs do not work for heterophilic datasets and offers a 
guideline on the applicability of GNNs based on graph structure and node properties 
in the target graph. With our work highlighting the limitations of GNNs from the point 
of view of data (that is, homophily and communities), we hope to set the grounds for 
improved GNN models that account for the properties of the given data.

Communities and Homophily in GNNs
Preliminaries

Notations

Let G = (V ,E) be a graph with a set of nodes V and a set of edges E. Let each node 
u ∈ V  have a feature vector xu ∈ R

d , where d is the feature vector dimension; and a label 
yu ∈ L , where L is the set of labels.

Graph neural networks

GNNs are multi-layer machine learning models, that operate on graphs. They follow a 
message passing and aggregation scheme where nodes aggregate the messages that are 
received from their neighbors and update their representation on this basis. In a GNN 
with K hidden layers (with the input layer denoted as layer 0), each node u has a vector 
representation h(k)u  at a certain layer k ≤ K  of dimension dk . The transformation from a 
layer k to the next layer k + 1 (as defined in Xu et al. 2019) is performed by updating the 
representation of each node u as follows:

where N (u) is the set of neighbors of u. The AGGREGATE function takes an unor-
dered set of vectors, each of dimension dk , as an input and returns a single vec-
tor of the same dimension dk , e.g., element-wise mean or max. The COMBINE 
function combines the representation of u in layer k with the aggregated representa-
tion of its neighbors, e.g., a concatenation followed by ReLU of a linear transformation 
COMBINE(h, a) = ReLU(W .[h, a]) . We set the representation of u in the input layer to 
the input features: h(0)u := xu . In classification problems, the dimension of the last layer 
dK  equals the number of labels in the graph |L|.

Semi‑supervised learning on graphs

Semi-supervised learning aims to exploit unlabeled data in order to generate predictions 
given few labeled examples. In node classification, where the ground-truth classes of few 
nodes are given, semi-supervised learning exploits the unlabeled nodes as well as the 

(1)
a(k)u := AGGREGATEv∈N (u)(h

(k)
v ),

h(k+1)
u := COMBINE(h(k)u , a(k)u ),
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network structure to obtain accurate predictions. Many semi-supervised classification 
methods on graphs assume that connected nodes are more likely to share their label and 
features (Li et al. 2018; Zhu et al. 2020), which is referred to as homophily. Based on this 
assumption, approaches to solving this task usually aim to propagate node information 
along the edges. Earlier related approaches (Sen et al. 2008; Zhu et al. 2003) focused on 
propagating label information from labeled nodes to their neighbors. In many applica-
tions, however, graph nodes are associated with feature vectors, which GNNs utilize. 
GNNs achieved a significant improvement over the state of the art since they can effec-
tively harness the unlabeled data, i.e., graph structure and node features.

Homophily

Homophily in graphs with labeled nodes is the tendency of adjacent nodes to have the 
same label. The opposite case, heterophily, is the tendency of adjacent nodes to have dif-
ferent labels. We use the terms homophilic graphs and heterophilic graphs to describe 
graphs, respectively, where the homophily holds and where heterophily holds.

Mutual interplay

Homophily and GNNs

The GNN update rule in Eq. 1 is seen as a form of (Laplacian) feature smoothing (Li et al. 
2018) as it combines the feature vector of a node with the feature vectors of its neigh-
bors. Feature smoothing results in neighboring nodes having similar vector representa-
tions. Therefore, for a homophilic graph, feature smoothing potentially results in node 
vector representation that matches the node labels. However, for a heterophilic graph, 
the propagation in Eq.  1 can cause nodes to have similar vector representations even 
if their labels are different. It is widely accepted that classifiers achieve better accuracy 
when similar vector representations tend to have the same labels.

Cluster assumption

Communities are densely connected subgraphs, and they are common in empirical 
graphs including social, citation, or web graphs. The existence of communities directly 
affects information propagation in graphs (Cherifi et  al. 2019; Hasani-Mavriqi et  al. 
2018). As communities are densely connected, the feature smoothing performed by the 
update rule in Eq. 1 tends to make nodes within the same community have similar vec-
tor representations. The dense intra-community connectivity also causes the homophily 
to generalize to the community level, which means that nodes within the same com-
munity tend to share the same label. This is usually referred to as the cluster assumption 
(Chapelle et al. 2009) in semi-supervised learning. As a result, for a homophilic graph, 
GNNs cause nodes with the same label to have similar vector representations simplify-
ing the classification task on the resulting vector representations. Li et al. (2018) hypoth-
esize that this alignment of communities and node labels is the main reason why GNNs 
elevate state-of-the-art performance on the classification task. In this paper, we aim to 
experimentally test this hypothesis on eight datasets from different domains and with 
varying characteristics.

In the heterophilic case, which is often overlooked in the literature, a community has a 
variety of labels. The feature propagation between nodes of the same community would 
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therefore result in feature smoothing for nodes with different labels. This eventually 
makes the classification task harder since representation similarity does not imply label 
similarity in this case.

In summary, theory and literature show that homophily, as well as community struc-
ture, have a direct impact on learning with GNNs. In this paper, we set out to study the 
impact of these factors2 and the relationships between them.

Methods
With the discussion above, we showed two main factors in the graph data that contribute 
to the performance of GNNs. In our study, we aim to investigate these factors and their 
impact on classification with GNNs. Our methodology is based on manipulating these 
factors in the graph structure and observing the GNN response to this manipulation.

We first show how we quantify these factors, and we subsequently describe how we 
manipulate graph data.

Contributing factors

Homophily.

We measure the homophily in a labeled graph as the fraction of edges that link nodes of 
the same label together. It is computed as follows

Community structure

To quantify this factor, we first perform community detection using the widely-used 
Louvain method (Blondel et al. 2008)3 for community detection. Then we compute the 
community mixing parameter on the resulting partition. Community detection parti-
tions the graph into a set of disjoint communities C . The mixing parameter of a com-
munity partition is defined as the fraction of edges that connect nodes from different 
communities

where C(u) ∈ C is the community of node u ∈ V  . For a typical community partition, the 
lower this measure is, the more pronounced the community structure is. For example, 
µ = 0 indicates that each community corresponds to one or more connected compo-
nents. If the value of µ is greater than 0.5, the majority of links are inter-community 
links, which is unrealistic for a modular community partition of a real-world network.

(2)h =
|{(u, v) ∈ E : yu = yv}|

|E|
.

(3)µ =
|{(u, v) ∈ E : C(u) �= C(v)}|

|E|
,

2  Other factors in the graph have an impact on learning with GNNs. In our work, we build the motivation for homoph-
ily and community structure, and leave the investigation of other factors for future work.
3  In our experiments, we stick to Louvain method for community detection as it is a widely used method. There is no 
algorithmic reason why we choose this method over another method except for the brevity of the work. Investigating 
other community detection methods is an interesting direction for future work.
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By looking at Eqs.  2 and 3, we can notice that mixing resembles the heterophily of 
community memberships. In other words, if community memberships were completely 
analogous to node labels, then h+ µ = 1.

Structure manipulation

After establishing the intuitions behind the role of communities and homophily, we aim 
to show their impact experimentally. To achieve this, we evaluate five popular state-of-
the-art GNN models on eight empirical datasets. Subsequently, we re-evaluate these 
GNN models on the same datasets after manipulating their structures. In particular, we 
perform the following types of manipulation where we intend to increase/decrease the 
homophily/mixing of the original graphs.

Increasing homophily ( Hom+)

To increase the homophily in a given graph, we build a new graph given nodes labels in 
the original graph. In this newly built graph, nodes of the same label are likely to link 
together regardless of their features or position in the original graph. To achieve this, we 
build a graph using a stochastic block model (SBM) (Holland et al. 1983), where blocks 
correspond to labels. In the stochastic block matrix, we set the values in the diagonal 
to be (relatively) higher than other values in the matrix (we provide details on building 
this matrix in “Appendix 7”). This implies a high edge density among nodes with the 
same label and low edge density among nodes of different labels, i.e., high homophily. 
The resulting graphs also have a defined community structure (stemming from the high 
density within labels), but it does not necessarily match the original community struc-
ture. Since homophily is intentionally high in the resulting graph, we expect GNNs to 
have very high accuracy on Hom+ graphs.

Decreasing homophily ( Hom−)

To decrease the homophily in a given graph, we perform random edge rewiring. We 
achieve this with the configuration model (CM) (Newman 2003), where we rewire the 
graph using all nodes together. Since the rewiring is completely random, we expect the 
resulting graph to be completely useless for GNN classification. In addition to decreas-
ing homophily, this manipulation also affects the community structure, causing a major 
increase in the mixing parameter. This graph preserves the degree sequence of the origi-
nal graph.

Increasing mixing ( Mix
+)

In this manipulation, we intend to loosen the community structure—eventually increas-
ing the mixing parameter—without significantly changing homophily. To achieve this, 
we first partition the nodes based on their labels into disjoint sets. We take each induced 
subgraph from each of the resulting sets, and we rewire its edges randomly using the 
configuration model (CM) (Newman 2003). With this process, we perform rewiring 
within labels, preserving homophily and destroying sub-communities formed among 
nodes with the same label in the original graph. As a result, the propagation becomes 
faster between nodes of the same label, and hence we expect the impact of high homo-
phily to be stronger on GNNs. For example, if the original graph is homophilic, this 
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manipulation will help nodes of the same label to gain similar representations, and 
hence a better GNN performance. Since obtaining better performance by destroying 
some communities sounds counter-intuitive, we look more into that later in “Destroying 
sub-community structure” section.

Decreasing mixing ( Mix
−)

In this manipulation, we intend to tighten the existing community structure, eventually 
decreasing the mixing parameter. We perform graph reconstruction based on communi-
ties and regardless of each node’s label or feature vector. To achieve this (more details 
in “Appendix 7”), we use SBM (Holland et al. 1983) where blocks refer to communities 
in the original graph. As a first step, we perform community detection on the original 
graph using Louvain method (Blondel et al. 2008), which partitions the graph into sets 
of disjoint communities C = {c1, c2, . . . , c|C|} . Second, we build a stochastic block matrix 
where each element i, j represents the edge density between nodes from ci and cj in the 
original graph. We artificially increase the density of each community by increasing the 
values in elements i, i by 50% , and decreasing the elements i, j : i �= j by 50% . Finally, we 
build a graph from this matrix using the stochastic block model. The resulting graph 
should strengthen (or tighten) the existing community structure in the original graph 
but should result in a binomial degree distribution (Karrer and Newman 2011). These 
graphs should not significantly change the level of homophily in the original graph, i.e., 
we should obtain a “homophilic” graph if the original is “homophilic”, and vice versa. We 
expect the GNN performance on these graphs to be close to their performance on the 
original ones (regardless of whether the original are homophilic or not).

Lastly, we summarize the effect of each type of manipulation on data in Table  1. It 
is not possible to manipulate individual properties in the graph without affecting other 
properties. In our study, we try to monitor the change of these properties to guarantee 
the effect is minimal.

Evaluation
Datasets

To provide a better understanding of the roles of the studied factors, we aim for a diverse 
selection of datasets concerning homophily. Having this in mind, we use the datasets 
summarized in Table  2, divided into homophilic and non-homophilic datasets. The 
nodes in these datasets represent bodies of text, such as web pages, Wikipedia pages, 
and scientific papers. Since GNNs depend on feature propagation (as shown in Eq. 1), 
we restrict our experiments to graphs with node feature vectors. The feature vectors 

Table 1  Summary of the data manipulation and the desired effect on the graph data

(*)Mix
− should result in a “homophilic” graph if the original was “homophilic”, and vice versa

Manipulation Homophily Mixing Side-effects

Hom
+ Increased Preserved Binomial degree distribution

Hom
− Decreased Increased Destroys community structure

Mix
− Preserved(*) Decreased Binomial degree distribution

Mix
+ Preserved Increased Destroys sub-communities
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in all studied datasets are binary vectors indicating the presence/absence of a word in 
the respective node. We do not assume any change in the graph structure (e.g., adding/
removing edges/nodes) between the training phase and the testing phase.

Homophilic datasets

As graphs with high homophily, we use four well known citation datasets: CORA-ML, 
CiteSeer, PubMed and CORA-Full. The label of a node in a citation graph represents the 
topic of the paper. Citations are expected to be denser among papers with similar topics 
than they would be between papers of different topics. For example, a publication about 
natural language processing more likely cites other natural language processing papers 
than human-computer interaction papers. Therefore, one could intuitively expect that 
adjacent papers tend to share the same label.

Non‑homophilic datasets

For low homophily, we use a topic graph from Wikipedia (Squirrel), a Wikipedia co-
occurrence network (Actor), and web pages graphs (Texas and Wisconsin).

The Squirrel (Pei et al. 2019) graph is a Wikipedia topic subgraph, where nodes rep-
resent pages, and edges represent links between pages. The five classes in this graph are 
based on average monthly traffic, a property that does not particularly imply homophily.

The Actor (Pei et al. 2019) dataset (induced from Tang et al. 2009) is a co-occurrence 
graph. Nodes correspond to actors, while edges correspond to their co-occurrence in 
Wikipedia pages. The nodes are assigned to five categories in terms of words of the 
actor’s Wikipedia. The classes, therefore, do not imply homophily.

Texas and Wisconsin graphs are two components from the WebKB (Craven et al. 1998) 
graph dataset. In these graphs nodes are web pages, edges are links, and labels indicate 
the type of the web page, i.e., course, faculty, project, staff, or student. In this case, one 
cannot intuitively assume that nodes within a graph community are expected to share a 
label. For example, a web page of a staff member more likely links to projects on which 
this staff member is working than to other staff members’ web pages.

GNN models

In our experiments, we study six GNN architectures that are widely used for semi-
supervised classification on graphs (a) Graph Convolutional Networks (GCN) (Kipf 

Table 2  Dataset statistics after preprocessing (similar to Shchur et al. 2018)

Dataset Labels Features Nodes Edges Homophily Mixing

Homophilic CORA-ML 7 1433 2485 5209 0.81 0.09

CiteSeer 6 3703 2110 3705 0.74 0.06

PubMed 3 500 19,717 44,335 0.80 0.09

CORA-Full 67 8710 18,703 64,259 0.57 0.10

Non-homophilic Squirrel 5 2089 5201 216,933 0.22 0.22

Actor 5 932 7600 29,926 0.22 0.21

Texas 4 1703 182 307 0.06 0.16

Wisconsin 5 1703 251 499 0.17 0.16
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and Welling 2017), (b) Graph Sample and Aggregate (SAGE) (Hamilton et  al. 2017), 
(c) Graph Attention Networks (GAT) (Veličković et  al. 2018), (d) Simple Graph Con-
volutions (SGC) (Wu et  al. 2019), (e) Approximate Personalized Propagation of Neu-
ral Predictions (APPNP) (Klicpera et al. 2019), and (f ) Cluster Graph Neural Networks 
(CGCN) (Chiang et al. 2019).

We additionally compare these approaches to a simple feature-only baseline, namely, 
logistic regression, which ignores the graph structure and only uses the node features. 
GNNs benefit of both the graph structure and node features, while the feature-only 
baseline can only benefit of node features. For example, in datasets with a high num-
ber of features (comparing to nodes), it is expected that the feature-only baseline should 
have a high accuracy since it has access to a rich set of features. However, GNNs also 
have access to graph structure in addition to that rich set of features. Therefore, the com-
parison to this baseline can indicate whether a GNN model is useful for the classification 
task on the respective datasets, that is, whether GNNs can exploit the graph structure to 
increase the basleine perfromance. We show hyperparameter settings in “Appendix 7”.

Evaluation setup

While some original graphs in our dataset selection are directed, we treat all graphs as 
undirected by ignoring the edge direction (which is in the line with previous research 
Kipf and Welling 2017; Hamilton et al. 2017; Shchur et al. 2018). All of these graphs are 
preprocessed similarly as Shchur et al. (2018), i.e., removing nodes with rare labels and 
selecting the largest weakly connected component. Following the train/validation/test 
split strategy as in Shchur et al. (2018), each random split consists of 50 labeled exam-
ples per class (20 for training and 30 for validation), and the rest are considered test 
examples. This applies to all of our datasets except Texas and Wisconsin, where we use 
10 training examples and 15 validation examples per class due to the fewer number of 
nodes. To evaluate the GNN models on the original graphs, we follow the evaluation 
setup close to Shchur et al. (2018) by having 10 random splits and randomly initializing 
model weights 10 times for each split. The same process is carried out to evaluate the 
feature-only baseline (logistic regression) model.

The evaluation is slightly different for the manipulated graphs since they include an 
additional level of randomization, and it goes as follows. For a manipulation type on one 
dataset, we generate 10 manipulated graphs with different random seeds. We evaluate 
each of these generated graphs through 5 different random splits and 5 times initializing 
model weights. As a result, the reported accuracy for a GNN architecture on the original 
graph is presented after training the GNN 100 times. Meanwhile, the reported accuracy 
of a GNN architecture on one of the manipulation types is presented for training the 
GNN 250 times per dataset, i.e., 10 randomly generated graphs × 5 random splits × 5 
times of weight initialization.

Results
Manipulation impact on graphs

We introduced intuitions about the datasets and their properties previously in “Data-
sets” section. Next, we show the measurements of the two contributing factors we 
introduced in “Contributing factors” section on the original datasets, and on their 
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manipulated versions. We present these measurements in Fig. 1. Comparing the orig-
inal graphs to the manipulated ones in this figure, we notice the following.
Hom+ increases homophily for all datasets (as expected). For most datasets, it does 

not significantly change the mixing parameter. There are some cases where Hom+ 
decreases mixing, e.g., Actor.
Hom− decreases homophily for homophilic datasets to a relatively very low level. 

However, these graphs increase the mixing of the datasets thereby effectively destroy-
ing community structure. The rewiring does not decrease homophily for datasets, 
where the homophily is already low. This can be explained by some of these graphs 
being heterophilic (or anti-homophilic). In this case, our manipulation decreases het-
erophily, e.g., Texas and Wisconsin. Other graphs where homophily does not change, 
that are Actor and Squirrel, can be neutral with respect to homophily. In other words, 
they are neither homophilic nor heterophilic, and random rewiring just results in a 
similar level of homophily.
Mix+ increases the mixing parameter, loosening the community structure and 

potentially causing faster feature propagation. It also keeps a very close level of homo-
phily in general.
Mix− decreases the mixing parameter, tightening the community structure. It does 

change the homophily but not as significantly as Hom+ or Hom− . Mix− decreases the 
homophily for the first four homophilic datasets, and slightly increases it for the other 
four non-homophilic datasets.

All in all, the manipulations generally achieve the changes which we intended for 
each of them with few exceptions. Since the effects of our manipulations depends 
on the nature of the original graphs, we will present the results of GNN accuracy on 
the basis of homophily and mixing of the input graph in “Impact of homophily and 

Fig. 1  Homophily and mixing measurements of the manipulated graphs. Here we show the change in 
homophily and mixing of the manipulated graphs comparing to the original graphs of each dataset. We can 
see that the intuitions we mention in our discussion in “Datasets” section are confirmed
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mixing on GNN performance” section. Next, we evaluate and compare different GNN 
models on original and manipulated graphs.

GNN performance

We summarize the evaluation results of the GNN models with respect to accuracy for 
the original graph and its corresponding manipulations of homophilic datasets in Fig. 2 
and non-homophilic datasets in Fig. 3.

Original graphs

We first compare the performance of GNNs on the original graphs to the performance 
of the feature-only baseline. We easily notice that GNNs outperform the feature-only 
baseline on all homophilic datasets in Fig. 2, and do not outperform the baseline on non-
homophilic datasets in Fig. 3. This makes the impact of homophily very clear: the higher 
the homophily is the more likely GNNs are to outperform feature-only baselines. For 
non-homophilic datasets, the graph structure seems irrelevant to the learning process or 
is even hindering it.

Next we test the statistical significance for each approach on each dataset against the 
corresponding baseline. We compute the non-parametric Mann-Whitney U test for 
unpaired data with the significance level α = 0.01 (Bonferroni corrected). We compare 
the performance of all GNN models on the original graphs to the performance of the 
feature-only baseline. The significance test shows that the performance of GNNs on the 
original homophilic graphs is significantly higher than the performance of the feature-
only baseline. For datasets with low homophily, the baseline significantly outperforms 

Fig. 2  GNN accuracy for homophilic datasets. This figure presents the accuracy of GNN models on the 
homophilic datasets (original and manipulated). The red dashed line represents the median accuracy of the 
feature-only baseline. The performance on the original graphs is consistently higher than that of the baseline. 
Increasing homophily results in a higher accuracy for all datasets. Decreasing community mixing causes 
a performance drop, which still outperforms the baseline in most cases. Increasing mixing (by destroying 
sub-communities) while preserving homophily generally causes an increase in performance. Destroying 
homophily and community structure (with Hom− ) causes a major performance drop
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GNN models on WebKB graphs (i.e., Texas and Wisconsin). On the other hand, there is 
an overlap of the performance on Actor and Squirrel datasets, where the homophily is 
not as low. The significance test on these two datasets shows a non-significant difference 
for some GNN models (namely, SAGE and GAT for Actor dataset, and GCN and SGC 
for Squirrel dataset).

Manipulated graphs

On all datasets, GNNs performance on Hom+ (both for homophilic and non-homophilic 
data) outperforms their performance on the original graphs and the performance of the 
feature-only baseline. By artificially adding high homophily, GNNs improve their per-
formance regardless of other aspects. Even when the mixing decreases for CORA-Full, 
Actor and Texas (as pointed out in “Manipulation impact on graphs” section), the GNN 
still outperforms the baseline and the performance on the original graphs. This indicates 
that the change of mixing does not affect the general conclusion here, that is, higher 
homophily causes better GNN accuracy.

For Hom− graphs, the GNN performance is generally lower than the feature-only 
baseline. These graphs cause a major drop in performance for homophilic data com-
pared to the original graphs. For non-homophilic data, the performance mainly does 
not drop with Hom− graphs. These observations lead to the conclusion that low homo-
phily decreases the performance of GNNs. We should, however, bear in mind that this 
manipulation also increases mixing significantly. We dedicate “Impact of homophily and 

Fig. 3  GNN accuracy for non-homophilic datasets. This figure presents the accuracy of GNN models on the 
non-homophilic datasets (original and manipulated). GNNs cannot outperform the feature-only baseline on 
the original graphs, and achieve a similar accuracy to the Hom− graphs, where the structure is destroyed. 
This suggests that the graph structure is irrelevant to GNN accuracy. When we enforce homophily with 
Hom

+ graphs, GNNs outperform the baseline on all datasets. In other words, homophily makes the graph 
structure useful for classification with GNNs. Destroying any aspect of the network does not improve the 
GNN performance over the baseline. Comparing these results to those in Fig. 2, we see that these aspects 
(degree distribution, community structures and sub-communities within labels) do not concern GNNs when 
homophily does not exist
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mixing on GNN performance” section to look at homophily and mixing separately to 
test against confounding factors.

Let’s look at Mix+ graphs now. We can see an increase of GNN accuracy on all homo-
philic datasets. Mix+ graphs destroy the sub-community structure within labels. One 
explanation for the increased accuracy is that the new structure causes a faster feature 
propagation between nodes of the same label. This fast propagation helps making the 
GNN vector representation of same-label nodes more similar than it is in the original 
graphs. We further discuss this interpretation in “Destroying sub-community structure” 
section.

With Mix− graphs for homophilic data, the GNNs show a drop in accuracy, but they 
still outperform the feature-only baseline. This observation shows a noticeable impact 
of communities on node classification in homophilic data since Mix− rebuilds the graph 
only based on community memberships, and still maintains a higher performance than 
the baseline. On the contrary, for non-homophilic data, the performance on Mix− 
graphs is not very different from destroying communities and homophily with Hom− . 
In other words, community structure becomes irrelevant when homophily is low. Since 
Mix− manipulation (as well as Hom− and Hom+ ) has an effect on both homophily and 
mixing, we need to take a deeper look into the results, which we address in “Impact of 
homophily and mixing on GNN performance” section.

GNN models comparison

Figures 2 and 3 show that GNN models generally behave in a similar manner. Most mod-
els achieve a high performance when the homophily is high and vice versa. We notice 
that CGCN does not perform as well as the other GNN models when the homophily is 
high. CGCN outperforms other GNN models when the homophily is low showing resil-
ience to low homophily.

Impact of homophily and mixing on GNN performance

In this section, we report the accuracy of the GCN model4 on original and manipulated 
graphs. Figure 4 presents accuracy as a function of homophily and mixing.

We notice that the main factor that affects the accuracy is the homophily of the 
given graph, with higher homophily correlating with higher GCN accuracy in all data-
sets. The changes in mixing do not show a strong impact on GCN accuracy. However, 
we do notice a slight increase in accuracy when the mixing (slightly) increases where 
the homophily is originally high (top row). We do not notice a similar behaviour when 
increasing mixing, and the homophily is originally low (bottom row)—observation dis-
cussed in “Destroying sub-community structure” section. In fact, changing the mixing 
when the homophily is low does not cause a noticeable change in GCN accuracy, stress-
ing the finding from “GNN performance” section that community structure becomes 
irrelevant when homophily is low.

The conclusion of this section is that regardless of the manipulation applied to the 
graph, we find the homophily as the main contributor to the accuracy. We notice that 

4  We restrict the results in the main body of the paper to GCN and report the results of the rest of the models in 
“Appendix 7”
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the role of communities is less trivial to interpret but is relevant only when the homoph-
ily is high.

Destroying sub‑community structure

For Mix+ graphs, we rewire each subgraph of nodes with the same label. This preserves 
the homophily level of the graph, but destroys the inner sub-community structure for 
nodes of the same label. In “Structure manipulation” section we hypothesized that this 
causes faster propagation, and in Fig. 2 we observed an increase of GNN performance on 
these graphs. Now we intend to empirically show that the feature propagation becomes 
faster.

We take a closer look into the feature propagation in Mix+ and original graphs by 
extracting node representations in the first layer of a trained GCN model. The represen-
tation in the first layer gives an intuition on how fast feature propagation occurs.

As an example, we first visualize the vector representations of original and Mix+ for 
CORA-ML. We reduce the dimensionality of these vectors to two dimensions using 
T-SNE, and plot the 2D points with their labels in Fig. 5. The two plots of original and 
Mix+ graphs show that nodes of the same label agglomerate already in the first layer for 
Mix+ graph, while they still show more overlap for the original graphs. This suggests the 
faster propagation among nodes of the same label for Mix+ graphs in this example.

To study the overlap of nodes from different classes, we measure the average silhouette 
coefficient for the representations of the original graphs and the Mix+ graphs (Table 3). 
We notice an increase of the average silhouette coefficient on the Mix+ graphs especially 
for homophilic datasets, indicating the reduced overlap between labels. This reduced 

Fig. 4  Homophily and mixing impact on GCN accuracy. In this figure, we present the accuracy gain of GCN 
over the feature-only baseline (with hue) as a function of mixing (x-axis) and homophily (y-axis). The red 
dashed lines represent the mixing and the accuracy of the original graph (the point at their intersection in 
each sub-figure is the original graph). We notice a change in hue along the y-axis, and not the x-axis. This 
shows a strong impact of homophily on the accuracy gain, while mixing does not have such a strong impact. 
Note, high mixing and high homophily cannot be achieved with our manipulations at the same time, e.g., 
cases of pair-wise homophilic relations without any community structure.
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overlap indicates a faster intra-label feature propagation in Mix+ graphs compared to 
original graphs.

Community‑label correlation
The results we obtained so far show deeper insights on the impact of homophily and 
communities in node classification with GNNs. Based on these results, we intend to 
devise a method that helps to determine whether to use a GNN model for semi-super-
vised node classification on a given graph.

We start by looking at what homophily indicates. In Fig. 1, we can see that homophily 
estimates whether GNNs work on a given graph very well, i.e., homophily is high when 
GNNs have high accuracy (in Fig. 2) and vice versa (in Fig. 3). In other words, homophily 
correlates really well with GNN performance, and is a good predictor of whether GNNs 
can be applied to a graph dataset for node classification.

So why not estimate homophily directly?

Although homophily is a good predictor, estimating homophily requires having enough 
adjacent labeled nodes. This is not easily achievable in semi-supervised learning set-
tings, where only very few nodes are labeled. Therefore, we need an alternative measure 
that can function with very few labeled nodes.

Table 3  Average silhouette coefficient for original and Mix
+ graphs. After training a GCN model on 

each graph (initializing the weights 10 times), we calculate the average silhouette coefficient of the 
intermediate representation in the first GCN layer. We report the mean of these values over each 
dataset, together with the difference

CORA-ML CiteSeer PubMed CORA-Full Squirrel Actor Texas Wisconsin

Original 0.188 0.147 0.141 − 0.048 − 0.119 − 0.039 0.102 − 0.027

Mix
+ 0.266 0.227 0.226 − 0.014 − 0.092 − 0.037 0.102 − 0.016

Silhouette � 0.078 0.080 0.085 0.034 0.027 0.002 0 0.011

Fig. 5  Feature propagation in original and Mix
+ graphs. We visualize the embeddings of nodes in the 

first hidden layer of a trained GCN model for Cora-ML dataset projected to two dimensions with T-SNE. 
The embeddings in the original graph (on the left) show an overlap of the areas of different labels. The 
embeddings in the Mix

+ graph (on the right) show less overlap and are more linearly separable already in the 
first layer. As a result, we see an increase of the performance with Mix

+ networks
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Intuitions from the results

The results in Fig. 2 show that GNNs could still outperform the baseline on Mix− graphs, 
where the graph structure is built merely from community memberships. This observa-
tion highlights that communities encode label information in homophilic graphs, i.e., 
where GNNs should work. In other words, when the community membership correlates 
with node labels, GNNs can outperform a feature-only baseline. Thus we can require to 
approximate homophily not on pair-wise level, but on aggregated (or community) level. 
Next we describe a measure for correlation between communities and labels to use as a 
predictor for GNNs applicability.

Community‑label correlation measure

To quantify the correlation between communities and labels, we introduce a measure 
for community-label correlation. This measure should quantify how much information 
a node’s community reveals about its label. Let L be a random variable taking values in 
the set of labels L , i.e., L(u) is the label of node u ∈ V  . Assuming the graph is partitioned 
into a set of disjoint communities C , we define another random variable C taking values 
in C , i.e., C(u) is the community of node u ∈ V .

To measure how much the (fraction of ) uncertainty about L is reduced knowing C, 
we use the uncertainty coefficient (Press et al. 2007) of L given C. This coefficient can be 
written as

where H(L) is the entropy of L, and I(L; C) is the mutual information between L and C.
When ρ = 1 , all nodes within each community share the same label, and thus know-

ing the node’s community means also that we know the node’s label. On the other hand, 
when ρ = 0 , the label distribution is identical in all communities, so knowing the com-
munity of a node does not contribute to knowing its label. In general, the higher the 
eliminated uncertainty about the labels when knowing communities is (i.e., the closer ρ 
is to 1), the more likely it is that GNNs can exploit the graph structure, and vice versa.

Unlike homophily, this correlation measure does not require adjacent labeled nodes. 
This measure requires enough labeled nodes belonging to the same community, which 
is easier to have in semi-supervised settings. To calculate ρ for a set of nodes, the labels 
of these nodes must be available. Therefore, for each dataset in the next experiments, we 
compute ρ using the labeled nodes from the training and validation sets.5

Can community‑label correlation predict GNN applicability?

Figure  6 shows the value of the community-label correlation ρ on the manipulated 
graphs. The increase/decrease in the community-label correlation follows a similar pat-
tern to the increase/decrease of homophily value in Fig. 1, such as, increased homophily 
with Hom+ and decreased with Hom− . Since this measure helps to indicate homophily, 

(4)ρ = U(L|C) =
I(L;C)

H(L)
∈ [0, 1],

5  We are aware that this correlation measure is just one choice of estimating homophily. Therefore, we plan on doing a 
broader search for better metrics and guidelines to estimate homophily, and assess whether GNNs are suitable for node 
classification in semi-supervised settings.



Page 17 of 26Hussain et al. Appl Netw Sci            (2021) 6:80 	

we expect that it can determine whether GNNs are suitable for classification on a given 
graph dataset. In the following experiments, we empirically show viability of this meas-
ure, and we use it to build a guideline that helps determining GNNs applicability.

Community perturbations

To shed more light on the correlation between ρ and the classification performance of 
GNNs, we now study the change of both GNN accuracy and the measured community-
label correlation ρ on the given datasets after applying additional community perturba-
tions. Particularly, we start with the Mix− networks for each dataset and we perform 
the following perturbations. We randomly select a fraction of nodes and assign them to 
different communities by simply swapping the nodes position in the network. Then we 
gradually increase the fraction6 of the selected nodes to obtain a spectrum of commu-
nity-label correlation ρ . Finally, we compute ρ and the accuracy of the GCN model7 on 
each of the obtained graphs. We show ρ as a function of the swapping fraction in Fig. 7 
and visualize the correlation between ρ and the GCN accuracy in Fig. 8. We choose the 
Mix− networks for this experiment to guarantee that the node swapping only changes 
nodes’ communities and not their importance (i.e., degree). We expect that these per-
turbations gradually reduce ρ when the cluster assumption holds, i.e., for homophilic 
datasets.

We show that ρ decreases and then converges for the homophilic datasets (Fig.  7—
top), supporting that the community perturbations decrease the correlation between 
communities and labels. In these cases, the GNN accuracy has a positive correlation 
with ρ (Fig. 8—top). However, when community perturbations do not reduce the corre-
lation between communities and labels, ρ is already at a convergence level (Fig. 7—bot-
tom). For these datasets, there is no strong correlation between ρ and the GNN accuracy 
(see Fig. 8—bottom). That is the case of non-homophilic datasets where GNNs were not 

Fig. 6  Community-label correlation ( ρ ) on manipulated graphs. The bars represent the change in this 
correlation measure. We see that the change in correlation is high for homophilic graphs and low for 
non-homophilic graphs, following a pattern similar to homophily in Fig. 1. This measure was computed for 
the labeled nodes (train and validation sets) of each graph (original and manipulated) with ten different 
random splits

6  We iterate over fractions in steps of 0.1. For each fraction, we repeat the swapping ten times for different random 
seeds.
7  We train the GCN model five times on each obtained graph and report the mean accuracy.
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able to outperform the feature-only baseline. Our measure shows to reflect the suitabil-
ity of GNNs for different datasets.

Guideline for application of GNNs

To verify whether a GNN model is applicable on a certain dataset, we suggest use the 
community-label correlation8 based on the previous observations. The first step is to 

Fig. 7  Community-label correlation with gradual community swapping. The figure shows the calculated ρ 
for each dataset. The swap fraction represents the fraction of nodes which changed their community. We 
see a decline in the coefficient with increasing swapping fraction for homophilic datasets (top row). This line 
is already constant for non-homophilic datasets (bottom row) as the measure is already low in the original 
graphs

Fig. 8  Community-label correlation impact on GCN accuracy. The figure shows GCN test accuracy on all 
eight datasets with changing ρ . Each point represents a graph, where each graph is a Mix

− graph after 
applying swapping for a fraction of nodes with a certain random seed for swapping. We see a positive 
correlation between ρ and the GNN accuracy for homophilic datasets (top row), and no obvious correlation 
for non-homophilic datasets (bottom row)

8  Notice that this measure is only useful to estimate homophily when rare nodes are labeled, e.g., in semi-supervised 
node classification. When a considerable amount of nodes is labeled, e.g., 20% of nodes, then it is advised to use the 
homophily measure as explained in “Contributing factors” section
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perform community detection on the dataset. Then we suggest to perform gradual com-
munity perturbations (as explained above) and inspect the respective community-label 
correlation. If the value of the coefficient decreases with more perturbations, this sup-
ports that the original graph is homophilic, and GNNs are applicable. Otherwise, if it 
does not decrease, the original graph is most likely non-homophilic in the first place, 
and feature-only methods are more advisable than GNNs. Computing the correlation 
should not be an expensive procedure in semi-supervised settings since only a small 
fraction of nodes are labeled.

Conclusion
In this work, we analyzed the impact of community structures and homophily in graphs 
on the performance of GNNs in semi-supervised node classification. Homophily and 
community structure are significant factors that influence how graph data is generated. 
By studying their impact on GNNs, we gain a deeper understanding of the extents and 
limitations of state-of-the-art GNN models. By systematically manipulating eight graph 
datasets, we showed that GNNs outperform a feature-only baseline on this task in case 
the given graphs are homophilic. Otherwise, GNNs cannot effectively exploit the graph 
structure for classification. Additionally, we show an analysis on the relation between 
labels and graph communities. With our analysis, we suggest that when community 
information does not contribute to classification, it is not advisable to use GNNs for this 
task. In particular, we show that our measure for the community-label correlation (com-
puted through the uncertainty coefficient) can indicate whether a dataset is homophilic. 
We further formalize a guideline to select where to apply GNNs based on community-
label correlation. Our work serves as a contributing factor to intrinsic validation of the 
applicability of GNN models, and gives insights on how plausible are current GNNs 
models. Future work can also investigate how the generation of graphs (broader than 
homophily) influences GNN performance, and how to build GNN architectures which 
are intrinsically adaptive to different levels of homophily.

Appendix A: Stochastic block matrix computation for Hom+

To create L-SBM graph graphs, we use a stochastic block model which is a generative 
model that produces random graphs with communities identified by a stochastic block 
matrix and with a Poisson degree distribution. To build the stochastic block matrix, we 
first partition the nodes into disjoint sets based on their labels {V1,V2, . . . ,V|L|} , where 
L is the set of labels. We build a vector of block sizes reciprocals η = [ 1

|V1|
, 1
|V2|

, . . . , 1
|V|L||

]T 

to use for normalization. We build the stochastic block matrix M as follows

where d̄in is the average node in-degree in the graph. We use M with the block sizes to 
build a synthetic graph using the stochastic block model.

(5)M :=
1

2
d̄indiag(η)+

1

n
η · ηT ,



Page 20 of 26Hussain et al. Appl Netw Sci            (2021) 6:80 

Appendix B: Stochastic block matrix computation for Mix
−

The aim of this manipulation is to preserve community structure while eliminating the 
degree distribution. To create these graphs, we use a stochastic block model after per-
forming community detection as follows.

Community detection

In order to achieve this, we first assigned a community id to each node using the Lou-
vain method for community detection. With the resulting communities we were able to 
produce a stochastic matrix which served as an input to the SBM.

Building the stochastic block matrix

We first calculate edge density within each community and then between each pair of 
different communities. These edge densities serve as edge probabilities between each 
pair of nodes in the resulting stochastic matrix M. To increase the intra-community edge 
density, we multiply each value Mi,i in M by 1.5 (clipped from the top so no value exceeds 
1). To decrease the inter-community edge density, we multiply each value Mi,j : i �= j in 
M by 0.5. We finally use matrix M for the stochastic block model, which results in a 
graph with reduced community mixing.

Appendix C: Model settings
Common settings

For all the GNN architectures, we use a model of two hidden layer, with the second layer 
as the output layer. The first hidden layer for each GNN architecture uses the activation 
that was used in the corresponding paper. The second hidden layer has the size of the 
number of labels in the respective dataset, and uses softmax as an activation function. 
For the training process, we use the negative log likelihood as our loss function. We use 
Adam optimizer for 200 epochs, with early stopping after the validation accuracy has 
not improved for 10 consecutive epochs.9 Then we select the state of the model at the 
epoch where the highest validation accuracy was achieved.10

Hyperparameter search

We perform the following grid search to find the hyperparameter setting which maxi-
mizes the mean validation accuracy over 10 random splits with 10 random model 
initialization.

•	 First hidden layer size: [12, 24, 48, 96]
•	 Learning rate: [0.001, 0.005, 0.01]
•	 Dropout probability: [0.2, 0.4, 0.6, 0.8]
•	 Regularization weight: [0.0001, 0.001, 0.01, 0.1]
•	 Attention dropout probability for GAT: [0.2, 0.3, 0.4, 0.6, 0.8]
•	 Attention heads for GAT’s first hidden layer: [2, 4, 8]

9  The training typically stops before the 50-th epoch.
10  We implement our models and evaluations using PyTorch Geometric https://​pytor​ch-​geome​tric.​readt​hedocs.​io/.

https://pytorch-geometric.readthedocs.io/
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After grid search, the chosen hidden layer size for all models turned out to be 96. Table 5 
shows the hyperparameters used after grid search except for GAT which is shown in 
Table 4.

Table 4  Chosen hyperparameters for GAT model

Dataset Dropout Learning rate Regularization 
weight

Heads Attention 
dropout

CORA-ML 0.4 0.01 0.0100 4 0.2

Citeseer 0.4 0.01 0.0100 4 0.2

Pubmed 0.2 0.01 0.0001 8 0.3

CORA-Full 0.2 0.01 0.0001 8 0.3

Actor 0.4 0.01 0.0100 4 0.3

Squirrel 0.4 0.01 0.0001 2 0.2

Texas 0.4 0.01 0.0100 4 0.3

Wisconsin 0.4 0.01 0.0100 4 0.3

Table 5  Chosen hyperparameters for all GNN models except GAT​

Dataset Dropout Learning rate Regularization 
weight

GCN CORA-ML 0.8 0.010 0.0100

Citeseer 0.8 0.010 0.0100

Pubmed 0.8 0.010 0.0100

CORA-Full 0.2 0.005 0.0010

Actor 0.8 0.010 0.0100

Squirrel 0.4 0.010 0.0100

Texas 0.8 0.010 0.0100

Wisconsin 0.8 0.010 0.0100

SAGE CORA-ML 0.8 0.010 0.0100

Citeseer 0.8 0.010 0.0100

Pubmed 0.8 0.010 0.0100

CORA-Full 0.8 0.005 0.0010

Actor 0.8 0.010 0.0100

Squirrel 0.4 0.005 0.1000

Texas 0.8 0.010 0.0100

Wisconsin 0.8 0.010 0.0100

APPNP CORA-ML 0.8 0.010 0.0100

Citeseer 0.8 0.010 0.0100

Pubmed 0.8 0.010 0.0100

CORA-Full 0.2 0.005 0.0001

Actor 0.8 0.010 0.0100

Squirrel 0.2 0.010 0.0010

Texas 0.8 0.010 0.0100

Wisconsin 0.8 0.010 0.0100
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Appendix D: Homophily and mixing impact on GNN accuracy
We visualize the accuracy of different GNN models as a function of homophily and mix-
ing in Figs. 9, 10, 11, 12, and 13 in the same manner done for GCN in Fig. 4.

Fig. 9  Homophily and mixing impact on SAGE accuracy

Dataset Dropout Learning rate Regularization 
weight

SGC CORA-ML 0.8 0.010 0.0100

Citeseer 0.8 0.010 0.0100

Pubmed 0.8 0.010 0.0100

CORA-Full 0.2 0.005 0.0010

Actor 0.8 0.010 0.0100

Squirrel 0.4 0.010 0.0100

Texas 0.8 0.010 0.0100

Wisconsin 0.8 0.010 0.0100

CGCN CORA-ML 0.8 0.001 0.1000

Citeseer 0.8 0.001 0.1000

Pubmed 0.6 0.010 0.0001

CORA-Full 0.8 0.001 0.1000

Actor 0.6 0.010 0.1000

Squirrel 0.6 0.005 0.1000

Texas 0.8 0.010 0.1000

Wisconsin 0.6 0.005 0.1000

Table 5  (continued)
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Fig. 10  Homophily and mixing impact on GAT accuracy

Fig. 11  Homophily and mixing impact on SGC accuracy
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Fig. 12  Homophily and mixing impact on APPNP accuracy

Fig. 13  Homophily and mixing impact on CGCN accuracy
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