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Introduction
Our research objective is to develop useful methods for analyzing huge earthquake cata-
logs as large-scale complex networks, where nodes (vertices) correspond to earthquakes, 
and links (edges) correspond to the interaction between them. Technically, we are not 
only interested in knowing what is happening now and how it develops in the future, 
but also we are interested in knowing what happened in the past and how it caused by 
some changes in the distribution of the information as studied in Kleinberg (2002) and 
Swan and Allan (2000). Thus, it seems worth putting some effort into attempting to find 
empirical regularities and develop explanatory accounts of basic properties in these 
complex networks. Such attempts would be valuable for understanding some structures 
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and trends and inspiring us to lead to the discovery of new knowledge and insights 
underlying these interactions.

The clustering of earthquakes is important for many applications in seismology, 
including seismic activity modeling, and earthquake forecasting. Here, for the sake of 
explaining our research purpose more specifically, we explain two important notions 
in seismology, i.e., the Gutenberg–Richter law and its parameter b referred to as the 
b-value. The Gutenberg–Richter law expresses the empirical relationship between the 
earthquake magnitude m and the number N(m) of earthquakes with magnitudes equal to 
or larger than m in any given region and time period as N (m) = 10a−bm (Gutenberg and 
Richter 1954). Here a and b are the constant parameters where the value of a denotes 
the seismicity level in a region and the b-value is the slope parameter of the magnitude 
frequency curve which commonly close to 1.0 in seismically active regions. This means 
that when the b-value is smaller, the slope of the magnitude log-frequency curve is grad-
ual, i.e., earthquakes with large magnitudes occur relatively frequently, while when the 
b-value is larger, the slope is steep, i.e., earthquakes with large magnitudes are relatively 
quite rare. Especially, it is expected that the pronounced decrease in the b-value of the 
Gutenberg–Richter law for some region during some time interval can be a promising 
precursor in forecasting earthquakes with large magnitudes (Nanjo et al. 2012). Thus we 
address the problem of automatically identifying such spatio-temporal change points as 
several clusters consisting of earthquakes whose b-values are substantially smaller than 
the total one.

In our previous work (Yamagishi et  al. 2020), for this problem, we have proposed a 
basic idea of the method which uniquely combines some techniques developed in two 
different fields, i.e., declustering algorithms (Frohlich and Davis 1990; Davis and Frohlich 
1991; Baiesi and Paczuski 2004) in the field of seismology and a change-point detection 
algorithm (Yamagishi et al. 2014; Yamagishi and Saito 2017) in the field of data mining. 
In this paper, we further propose to extend this method which enables to employ one of 
two different types of objective functions for our clustering, i.e., the average magnitude 
which is inversely proportional to the b-value, and the likelihood function based on the 
Gutenberg–Richter law. Here note that since the magnitudes of most earthquakes are 
relatively small, we formulate our problem so as to produce one relatively large cluster 
and the other small clusters having substantially larger average magnitudes or smaller 
b-values. Moreover, in order to characterize some properties of our proposed method, 
we newly present a method of analyzing magnitude correlation over an earthquake 
network. In our empirical evaluation using an earthquake catalog covering the whole 
of Japan, it was confirmed that we could generally obtain the clustering results each of 
which consists of one relatively large cluster and the other small clusters having substan-
tially different average magnitude from the total one.

The paper is organized as follows. We describe related work in “Related work” section, 
give our problem setting and the proposed methods for clustering an earthquake catalog 
in “Proposed method” section, and present a method of analyzing magnitude correla-
tion to characterize some properties of our proposed methods in “Magnitude correla-
tion analysis” section. We report and discuss experimental results using a real catalog in 
“Experimental evaluation” section and conclude this paper and address the future work 
in “Conclusion” section.
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Related work
In this paper, we propose a new method by combining declustering algorithms and a 
change-point detection algorithm developed in the two different fields of seismology 
and data mining, respectively. Thus, we describe some existing studies relating to these 
algorithms below.

Declustering algorithms

Seismicity declustering is the process of separating an earthquake catalog into fore-
shocks, mainshocks, and aftershocks, and several algorithms have been developed from 
various perspectives (van Stiphout et al. 2012). The window method is known as a sim-
ple way of identifying mainshocks and aftershocks. As a beginning of this method, the 
lengths and durations of windows were proposed by Knopoff and Gardner (1972) and 
Gardner and Knopoff (1974). After that, the alternative window parameter settings are 
proposed by Uhrhammer (1986), and comparative experiments were conducted by Mol-
chan and Dmitrieva (1992). Meanwhile, the algorithm of Reasenberg (1985) called the 
cluster method assumed an interaction zone centered on each earthquake. This method 
based on the previous work of Savage (1972), and Molchan and Dmitrieva (1992) pro-
vide a condensed summary of the original paper of Reasenberg. As an alternative to 
deterministic declustering methods above, ideas of probabilistic separation appeared in 
the investigation of Kagan and Jackson (1991). Zhuang et al. (2002, 2004) and Zhuang 
(2006) suggested the stochastic declustering method also called stochastic reconstruc-
tion to bring such a probabilistic treatment into practice based on the epidemic-type 
aftershock sequence (ETAS) model (Ogata 1988a, 1998b). The generalization of stochas-
tic declustering by Marsan and Lengliné (2008, 2010) has no specific underlying model 
and can accept any (additive) seismicity model. In other studies, Frohlich and Davis 
(1990) and Davis and Frohlich (1991) proposed the single-link cluster analysis based on 
a spatio-temporal metric between two earthquakes, and Hainzl et  al. (2006) proposed 
the estimating background rate based on inter-event time distribution. Based on the 
inter-event times, the method by Bottiglieri et  al. (2009) uses the coefficient of varia-
tion of the times, and Frohlich and Davis (1985) proposed the ration method which also 
exploits the inter-event times but without examining their distribution. As another clus-
ter analysis with links, Baiesi and Paczuski (2004) proposed a simple spatio-temporal 
metric called correlation-metric to correlate earthquakes with each other and Zaliapin 
et al. (2008) further defined the rescaled distance and time.

Among these declustering algorithms, we focused on the single-link cluster analy-
sis proposed by Frohlich and Davis (1990) and Davis and Frohlich (1991) and the cor-
relation-metric proposed by Baiesi and Paczuski (2004). In our proposed method, we 
employ one of these two algorithms alternatively in the tree construction phase.

Change‑point detection algorithms

Our research aim is in some sense the same, in the spirit, as the work by Kleinberg (2002) 
and Swan and Allan (2000). They noted a huge volume of the time-series data, tried to 
organize it, and extract structures behind it. This is done in a retrospective framework, 
i.e., assuming that there is a flood of abundant data already and there is a strong need to 
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understand it. Kleinberg’s work is motivated by the fact that the appearance of a topic in 
a document stream is signaled by a “burst of activity” and identifying its nested struc-
ture manifests itself as a summarization of the activities over a period of time, making it 
possible to analyze the underlying content much easier. Kleinberg’s method used a hid-
den Markov model in which bursts appear naturally as state transitions, and success-
fully identified the hierarchical structure of e-mail messages. Swan and Allan’s work is 
motivated by the need to organize a huge amount of information in an efficient way. 
They used a statistical model of feature occurrence over time based on hypothesis test-
ing and successfully generated clusters of named entities and noun phrases that cap-
ture the information corresponding to major topics in the corpus and designed a way 
to nicely display the summary on the screen (Overview Timelines). We also follow the 
same retrospective approach, i.e., we are not predicting the future, but we are trying to 
understand the phenomena that happened in the past.

We are interested in detecting spatio-temporal changes in the magnitude of earth-
quakes. For this purpose, by defining a set of links with some declustering algorithm 
described earlier, we construct a spatio-temporal network (spanning tree), where the 
nodes correspond to the observed earthquakes. After that, in order to analyze the burst 
of activity in an earthquake catalog and attempt to present an overview map, we employ 
a variant of our proposed change-point detection algorithm (Yamagishi et  al. 2014; 
Yamagishi and Saito 2017).

Proposed method
Let D = {(xi, ti,mi) | 1 ≤ i ≤ N } be a set of observed earthquakes, where xi , ti and mi 
stand for a location vector, time and magnitude of the observed earthquake i, respec-
tively. Here, we treat every earthquake (event) as a single point in a spatio-temporal 
space, as done by representative declustering methods in van Stiphout et al. (2012). Here, 
we assume that these earthquakes are in order from oldest to most recent, i.e., ti < tj if 
i < j . In this paper, from the observed dataset D , we address the problem of automati-
cally extracting several clusters consisting of spatio-temporally similar earthquakes 
whose average magnitudes are substantially different from the total one. In what follows, 
we describe some details of our proposed algorithm consisting of two phases: tree con-
struction and tree separation. Below, for a given number G of clusters, we describe our 
main algorithm, which produces a clustering result RG . 

	Phase1.	 Construct a spanning tree T  of the observed earthquakes in D by using the sin-
gle-link and correlation-metric strategies described below,

	Phase2.	 Produce a clustering result RG by separating the spanning tree T  based on one 
of variance and likelihood criteria.

Figure  1 shows an illustrative example of a small tree, where we assign the time direc-
tion and the spatial distance between two earthquakes to the horizontal and vertical axes, 
respectively, and depicts each sample earthquake assumed to be in D as a circle so that a 
larger magnitude is indicated by a larger radius. From these earthquakes, Phase1 con-
structs a spanning tree T  by producing a set of links between two earthquakes, and then 
Phase2 produces a set of clusters, just like a subtree N  surrounded by the red dotted line, 
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by removing a subset of links, just like a link denoted by red dotted one, as shown in Fig. 1. 
Namely, as shown by N  in Fig. 1, our purpose is to extract clusters having substantially 
larger average magnitudes or smaller b-values. In fact, although our problem setting can 
be categorized as event clustering according to the classification by Ansari et al. (2020), the 
purpose of clustering is substantially different from existing representative methods to our 
best knowledge.

Tree construction strategies

Among several seismicity declustering algorithms, we focus on two studies, i.e., the single-
link cluster analysis proposed by Frohlich and Davis (1990) and Davis and Frohlich (1991), 
and the correlation-metric proposed by Baiesi and Paczuski (2004). In our experiments 
described later, it is shown that we obtain quite different extraction results by employing 
either one of these two strategies.

In the single-link strategy, with respect to two earthquakes i and j, the spatio-temporal 
metric di,j is defined as

It was found that a spatio-temporal scaling constant C = 1 km/day gives satisfactory 
results. Then, an earthquake j is regarded as the aftershock (child node) of iSL if the met-
ric di,j is minimized, i.e., iSL(j) = arg min

1≤i<j

di,j . Then, based on the single-link strategy, we 

can define a spanning tree, where the nodes correspond to the observed earthquakes, 
and the links are defined by T SL = {(iSL(j), j) | 2 ≤ j ≤ N }.

In the correlation-metric strategy, with respect to two earthquakes i and j such that i < j , 
the spatio-temporal metric ni,j is defined as

(1)di,j =

√

�xi − xj�2 + C2(tj − ti)2.

(2)ni,j = (tj − ti)�xi − xj�
df 10−b mi .

Fig. 1  An illustrative example on a small tree
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Here df  is the fractal dimension set to df = 1.6 , and b the parameter of the Gutenberg–
Richter law set to b = 0.95 . Again, an earthquake j is regarded as the aftershock (child 
node) of iCM(j) if the metric ni,j is minimized, i.e., iCM(j) = arg min

1≤i<j

ni,j . Then, based on 

the correlation-metric strategy, we can define a spanning tree, where the nodes corre-
spond to the observed earthquakes, and the links are defined by 
T CM = {(iCM(j), j) | 2 ≤ j ≤ N }.

Tree separation algorithm

Let R ⊂ T  be a subset of tree links constructed by either one of the single-link and corre-
lation-metric strategies. Here note that when |R| = G − 1 , by removing all the links in R 
from T  , we can separate the tree into G connected components. Then, the original set of 
observed earthquakes which correspond to nodes of the tree is also divided into G clusters 
as {Ng | 1 ≤ g ≤ G} , where N1 ∪ · · · ∪NG = {1, . . . ,N } . Now, by denoting the average 
magnitude of cluster Ng as

we can derive our first objective function f1(R) to be minimized as follows:

Namely, we employ the definition of weighted variance in this objective function.
On the other hand, with respect to observed magnitudes for each of the G clusters 

{Ng | 1 ≤ g ≤ G} , by assuming an exponential distribution with a parameter �g , we can 
consider the following logarithmic likelihood function:

where mc denotes a cut-off magnitude defined as mc = min1≤i≤N {mi} −m�/2 , and m� 
stands for the bin-width of observed magnitudes, i.e., m� = 0.1 in our catalog. Here we 
should clarify the relationship between the Gutenberg–Richter law and the above for-
mulation, i.e., the number N(m) of earthquakes with magnitudes equal to or greater than 
m can be formulated by using the above exponential distribution as follows:

where N = N (mc) , a = log10N + �mc log10 e and b = � log10 e . Then, by substituting 
the maximum likelihood estimator into Eq. (5),

we can derive our second objective function f2(R) to be minimized as follows:

(3)µg =
1

|Ng |

∑

i∈Ng

mi,

(4)f1(R) =

G
∑

g=1

|Ng |

N

1

|Ng |

∑

i∈Ng

(mi − µg )
2 =

1

N

G
∑

g=1

∑

i∈Ng

(mi − µg )
2.

(5)L(�1, . . . , �G;R) =

G
∑

g=1

∑

i∈Ng

log(�g exp(−�g (mi −mc))

(6)N (m) = N

∫ ∞

m
� exp(−�(x −mc))dx = N exp(−�(m−mc)) = 10a−bm,

(7)�̂g =
b̂g

log10 e
=

1

µg −mc
,
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Namely, we employ the definition of average logarithmic likelihood in this objective 
function.

Intuitively, we intend to produce one relatively large cluster and the other small clus-
ters having substantially large average magnitudes from the total one. In fact, since the 
distribution of magnitudes in a catalog reasonably obeys the Gutenberg–Richter law 
(exponential distribution), i.e., the magnitudes of most earthquakes are relatively small, 
it is naturally expected that we can improve the objective function by separating clusters 
of spatio-temporally similar earthquakes with relatively large magnitudes. Here note that 
this objective function can be interpreted as a weighted sum of variances.

In order to compute the resultant set of separation links R , we employ a variant of 
our proposed change-point detection algorithm (Yamagishi et al. 2014; Yamagishi and 
Saito 2017). Namely, from the observed dataset D , the tree T  constructed by either the 
single-link and correlation-metric strategies, and a given the number of clusters G, our 
algorithm computes R as follows: 

	Step1.	 Initialize g ← 1 and R0 ← ∅.
	Step2.	 Compute eg ← arg min

e∈T
{f (Rg−1 ∪ {e})} , and update Rg ← Rg−1 ∪ {eg }.

	Step3.	 Set g ← g + 1 and then return to Step2 if g < G − 1 ; otherwise set g ← 1 and 
h ← 0,

	Step4.	 Compute e′g = arg min
e∈T

{f (RG \ {eg } ∪ {e})} , and update RG ← RG \ {eg } ∪ {e′g } 

and then h ← 0 if e′g �= eg ; otherwise set h ← h+ 1,
	Step5.	 Output RG−1 and then terminate if h = G − 1 ; otherwise set 

g ← (g mod (G − 1))+ 1 and then return to Step4.

 More specifically, after initializing the variables in Step1, we compute the optimal g-th 
link in eg by fixing the already selected set of (g − 1) links in Rg−1 and add it to Rg−1 as 
shown in Step2. We repeat this procedure from g = 1 to G − 1 as shown in Step3. After 
that, we start with the solution obtained as RG−1 , pick up a link eg from the already 
selected links, fix the rest RG−1 \ {eg } and compute the better link e′g of eg as shown in 
Step4, where · \ · represents set difference. We repeat this from g = 1 to G − 1 . If no 
replacement is possible for all g, i.e. e′g = eg for all g ∈ {1, . . . ,G − 1} , then no better 
solution is expected and the iteration stops, as shown in Step5. Here, it is not guaranteed 
that the above algorithm theoretically produces the optimal result, but it is confirmed 
that the algorithm always computes the optimal or near-optimal solutions in our empiri-
cal evaluation (Yamagishi et al. 2014; Yamagishi and Saito 2017).

Magnitude correlation analysis
In order to extract clusters consisting of earthquakes with relatively large magnitudes, 
by using either one of the single-link and correlation-metric strategies, we want to con-
struct a tree where such earthquakes are connected with each other. To examine the type 
of properties, we present a method of analyzing magnitude correlation over a network of 

(8)f2(R) = −
1

N

G
∑

g=1

∑

i∈Ng

log(µg −mc) = −
1

N

G
∑

g=1

|Ng | log(µg −mc).
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these observed earthquakes. Here note that we can regard this method as an assortative 
mixing analysis (Newman 2003) over networks in terms of magnitudes.

Let G = (V , E) be a network obtained from the observed earthquake dataset D , where 
V = {1, . . . ,N } , and we assign the direction of link (i, j) ∈ E according to the time direc-
tion, i.e., ti < tj . Then, for nodes j ∈ V and i ∈ V , we define the sets of in-neighbor and 
out-neighbor nodes as IN (j) = {i ∈ V | (i, j) ∈ E} and ON (i) = {j ∈ V | (i, j) ∈ E} , 
respectively. Let V(m) ∈ V be a set of nodes with magnitude m, and then, for each 
observed magnitude m, we can compute the following out-magnitude and in-magnitude 
correlation functions

where recall these observed magnitudes are quantized with the bin-width m� = 0.1 . 
Actually, when earthquakes with larger magnitudes have a tendency to be connected 
with larger ones, we can expect that both Cin(m) and Cout(m) become increasing func-
tions with respect to m.

Experimental evaluation
By using an earthquake catalog which contains source parameters determined by Japan 
Meteorological Agency1 in the whole of Japan, we generated two original datasets. 
Namely, by setting the minimum magnitude mmin = min1≤i≤N {mi} and the maximum 
depth as mmin = 3.0 and 100 km, respectively, we selected N = 104, 343 earthquakes 
during the period from Oct. 01, 1997 to Dec. 31, 2016 as dataset A, while by setting 
mmin = 4.0 and 100 km, we selected N = 27, 728 earthquakes during the period from 
Oct. 01, 1977 to Dec. 31, 2016 as dataset B.

Quantitative evaluation

First, we evaluate the performance of the proposed method employing our different tree 
construction strategies, i.e., single-link and correlation-metric. Figure 2 shows the experi-
mental results of the datasets A and B, using the two objective functions, weighted variance 
f1(R) and average logarithmic likelihood f2(R) , which are depicted in pairs of Fig. 2a, b and 
c, d, respectively, where the horizontal and vertical axes stand for the number of clusters 
varied from G = 1 to 8 and the objective function value defined in Eq. (4) or (8). Note that 
for each of Fig. 2a, b (or Fig. 2c, d) the value at G = 1 is nothing more than the total variance 
(or likelihood) of each dataset. From these experimental results, we can see that in the case 
of employing the single-link strategy, the objective function values defined by the weighted 
sums of variances become much smaller and those defined by the average logarithmic like-
lihood become much larger, in comparison to those of employing the correlation-metric 
strategy. This suggests that the proposed method employing the single-link strategy can 

(9)Cin(m) =
1

|V(m)|

∑

j∈V(m)

1

|IN (j)|

∑

i∈IN (j)

mi

(10)Cout(m) =
1

|V(m)|

∑

i∈V(m)

1

|ON (i)|

∑

j∈ON (i)

mi

1  https://​www.​data.​jma.​go.​jp/​svd/​eqev/​data/​bulle​tin/​hypo.​html.

https://www.data.jma.go.jp/svd/eqev/data/bulletin/hypo.html
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produce more desirable results for our purpose of producing one relatively large cluster and 
the other small clusters having substantially larger average magnitudes or smaller b-values.

Next, we evaluate the similarity of the results with different numbers of clusters obtained 
by the proposed method. In what follows, we only show our experimental results using the 
dataset A, but reasonably similar results have been obtained for the dataset B. For this pur-
pose, we employ the Adjusted Rand index (Rand 1971) for evaluating two different cluster-
ing results denoted by G = {Ng | 1 ≤ g ≤ G} and H = {N ′

h | 1 ≤ h ≤ H} , where G  = H in 
general and N1 ∪ · · · ∪NG = N ′

1 ∪ · · · ∪N ′
H = {1, . . . ,N } . Let cg ,h = |Ng ∩N ′

h| denotes 
the number of objects in common between Ng and N ′

h , and let cgg =
∑H

h=1 cg ,h and 
chh =

∑G
g=1 cg ,h denote the sums of cg ,h . Then, we can compute the original Adjusted Rand 

Index using the permutation model ARI(G,H) as

Figure  3 shows the similarity matrices consisting of the Adjusted Rand Indices by 
varying the number of clusters from G = 2 to 8, where Fig. 3a, b are those of the pro-
posed method employing the single-link and correlation-metric strategies based on the 
weighted variance function f1(R) , and Fig. 3c, d are those based on the average logarith-
mic likelihood function f2(R) . From these experimental results, we can see that in the 

(11)

ARI(G,H) =

∑G
g=1

∑H
h=1

(

cg ,h
2

)

−

[

∑G
g=1

(

cgg
2

)

∑H
h=1

(

chh
2

)]/(

N
2

)

1

2

[

∑G
g=1

(

cgg
2

)

+
∑H

h=1

(

chh
2

)]

−

[

∑G
g=1

(

cgg
2

)

∑H
h=1

(

chh
2

)]/(

N
2

) .

Fig. 2  Results of performance evaluation
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case of employing the single-link strategy, there exist three types of similar results, i.e., 
2 ≤ G ≤ 4 , 5 ≤ G ≤ 7 and G = 8 as for the weighted variance function, and 2 ≤ G ≤ 5 , 
6 ≤ G ≤ 7 and G = 8 as for the average logarithmic likelihood function, but almost a 
single type of similar results except for G = 2 in the case of employing the correlation-
metric strategy, regardless of the types of objective functions. Namely, we can expect to 
obtain several types of results by varying G in the case of the single-link strategy. On the 
other hand, we can see that in the case of employing the weighted variance function, the 
ranges of the Adjusted Rand Indices were much wider than those employing the average 
logarithmic likelihood function.

Visual evaluation

First, we visually evaluate the obtained results employing the different tree construction 
strategies by focusing on the dataset A. Here, we characterize each cluster by using the cor-
responding b-value

Recall that mc = mmin −m�/2 , where the minimum magnitude mmin and the bin-width 
of observed magnitude m� in the dataset A were set to mmin = 3.0 and m� = 0.1 . Here 
note that the average magnitude in dataset A is around 3.50, and the corresponding 
b-value is approximately amounts to 0.79. Figure 4 shows our visualization results based 
on the weighted variance function f1(R) , where the numbers of clusters are 4, 7, and 8 

(12)bg =
log10 e

µg −mc
.

Fig. 3  Results of similarity evaluation
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for the single-link strategy, and 8 for the correlation-metric strategy. Here these results 
are selected according to the similarity matrices shown in Fig. 3a, b. Also note that by 
selecting earthquakes whose magnitudes are greater than or equal to 5.0, we plotted 
each of them as a triangle with a color shown in Fig. 4 according to its cluster’s corre-
sponding b-value. Similarly, Fig. 5 shows our visualization results based on the average 
logarithmic likelihood function f2(R) , where the numbers of clusters are 5, 7, and 8 for 
the single-link strategy, and 8 for the correlation-metric strategy, Here these results are 
also selected according to the similarity matrices shown in Fig. 3c, d.

From these results, as expected, we could generally obtain the clustering results each 
of which consists of one or two relatively large clusters and the other small clusters hav-
ing substantially different b-values from the total one. More specifically, as for the com-
parison between the two different strategies, single-link and correlation-metric, shown 
in Fig.  4c, d (or Fig.  5c, d), respectively, by employing the former strategy, we could 
obtain clearly visible clusters having substantially large average magnitudes around the 
region where the 2011 Tohoku earthquake with mmax = max1≤i≤N {mi} = 9.0 (indicated 
by red cross in the figures), the largest magnitude in Japan, occurred. As for the com-
parison between the two different objective functions, weighted variance and average 
likelihood, shown in Figs. 4c and 5c (or Figs. 4d and 5d), respectively, by employing the 
average logarithmic likelihood function, the ranges of the b-values were somehow wider 
than those employing the weighted variance function. On the other hand, as for com-
parison among the different numbers of clusters in case of employing the single-link 

Fig. 4  Results of visual evaluation based on Variance f1(R) (the largest magnitude earthquake in Japan 
mmax = 9.0 is indicated by red cross)
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strategy, shown in Fig. 4a–c (or Fig. 5a–c), we could obtain somehow different types of 
clustering results, which might help to analyze the dataset from multiple viewpoints. In 
short, in our empirical evaluation, we can confirm that the proposed method employing 
the single-link strategy can produce more desirable results for our purpose of producing 
one relatively large cluster and the other small clusters having substantially larger aver-
age magnitudes or smaller b-values.

Next, under the setting that the number of clusters is 8 ( G = 8 ), by focusing on the 
clusters which contain the 2011 Tohoku earthquake with mmax = 9.0 , we compare the 
individual clusters obtained by our methods employing different strategies for tree con-
struction based on different objective functions for tree separation. Figure 6 shows our 
visualization results, where the results obtained by the single-link and correlation-met-
ric strategies based on the weighted variance function f1(R) are shown in Fig. 6a, b, and 
those based on the average logarithmic likelihood function f2(R) are shown in Fig. 6c, d. 
In our visualization, we refer to the earthquakes that occurred before the 2011 Tohoku 
earthquake and those after it as foreshocks and aftershocks respectively, and depict fore-
shocks and aftershocks by blue and orange circles respectively, and the 2011 Tohoku 
earthquake by a red cross.2 From these experimental results, we can clearly see that as 
for the results obtained by the single-link strategy, the clusters contain both foreshocks 

Fig. 5  Results of visual evaluation based on Likelihood f2(R) (the largest magnitude earthquake in Japan 
mmax = 9.0 is indicated by red cross)

2  Of course, these terminologies, foreshocks and aftershocks, are not rigorously identical to those used in seismology, 
where both earthquakes refer to ones occurring on the faults of the mainshocks or in their extended regions. In this 
paper, we refer to earthquakes including a cluster, which occur simply before and after the largest earthquake as fore-
shocks and aftershocks respectively.



Page 13 of 17Yamagishi et al. Appl Netw Sci            (2021) 6:71 	

and aftershocks that occurred within a relatively narrow region, as shown in Fig. 6a, c. 
Conversely, as for the results obtained by the correlation-metric strategy, the clusters 
contain only aftershocks that occurred in a quite wide region, as shown in Fig.  6b, d. 
Moreover, we can see that the pairs of results obtained by the same tree construction 
strategy are quite similar, regardless of the types of objective functions, f1(R) and f2(R).

Figure  7 shows the estimated b-values over time with respect to the clusters shown 
in Fig. 6, where the results obtained by the single-link and correlation-metric strategies 
based on the weighted variance function are also shown in Fig. 7a, b, and those based 
on the average logarithmic likelihood function are shown in Fig. 7c, d. More specifically, 
we depict the b-values estimated within each cluster over time by blue lines, which are 
calculated from moving time windows each containing 100 earthquakes centered on the 
target earthquake based on Eq. (12), and depict the 90 % confidence intervals (Shi and 
Bolt 1982) by gray areas. Here we indicated the occurrence time of the 2011 Tohoku 
earthquake by a vertical red dotted line. From these experimental results, in the case of 
the single-link strategy, we can observe the pronounced decrease in b-value before the 
occurrence time of the 2011 Tohoku earthquake as shown in Fig.  6a, c. On the other 
hand, in case of the correlation-metric strategy, we cannot observe such a decrease in 
b-value because only an extremely short foreshock period is contained which is com-
pared to the total period of the cluster, as shown in Fig. 6b, d. Again, we can see that the 
proposed method employing the single-link strategy can produce more desirable results 

Fig. 6  Results of visual evaluation of the clusters which has the largest magnitude mmax = 9.0 (when the 
number of clusters G = 8)
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for our purpose of producing one relatively large cluster and the other small clusters 
having substantially larger average magnitudes or smaller b-values.

Here recall that our research objective is also illustrated in Fig. 1, and we can confirm 
that the visualization results by the proposed method employing the single-link strategy 
are closer to that in Fig. 1 than those by the proposed method employing the correlation-
metric strategy. In other words, as shown in the visualization results by the proposed 
method employing the single-link strategy in Fig. 6, if an earthquake of extremely large 
magnitude, such as the 2011 Tohoku earthquake, occurred and also many earthquakes 
of relatively large magnitudes occurred spatio-temporally close, the set of these earth-
quakes is the typical cluster such as the N  in Fig. 1 which we aim to extract.

Magnitude correlation analysis

From our experimental results described above, we can see that the single-link strat-
egy produces more desirable results than those by the correlation-metric strategy, 
regardless of the types of objective functions for tree separation. In order to clearly 
reveal this reason, we revisit the original trees constructed by the two strategies, and 
compare their properties in terms of the magnitude correlation analysis proposed 
in  “Magnitude correlation analysis” section. Namely, we examine the properties that 
earthquakes with larger magnitudes have a tendency to connect each other.

Fig. 7  Results of b-value of the clusters which has the largest magnitude mmax = 9.0 (when the number of 
clusters G = 8)
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Figure 8 shows the experimental results of the datasets A and B, where the pairs of 
Fig. 8a, b and c, d are those of employing the single-link and correlation-metric strate-
gies, respectively. From these experimental results, we can observe that in the case of 
employing the correlation-metric strategy, the in-magnitude correlation values are much 
larger than the other values. This observation can be naturally explained by the fact that 
as for each link (iCM(j), j) obtained by the correlation-metric strategy, each earthquake 
iCM(j) with a quite large magnitude is likely to be selected according to the correlation-
metric measure defined in Eq. (2). As another characteristic, we can observe that in the 
case of employing the single-link strategy, the in- and out-magnitude correlation values 
slightly increase as m becomes large, i.e., earthquakes with larger magnitudes have a ten-
dency to connect each other. This also indicates that the single-link strategy has a desira-
ble property for our purpose of producing one relatively large cluster and the other small 
clusters having substantially larger average magnitudes or smaller b-values.

Conclusion
In this paper, for a given dataset of observed earthquakes, we addressed the problem 
of automatically extracting several clusters consisting of spatio-temporally similar 
earthquakes whose magnitudes are substantially larger average magnitudes or smaller 
b-values in comparison to the total ones. Especially, we intended to produce one rel-
atively large cluster and the other small clusters having substantially different average 

(a) Single-link (Dataset A) (b) Single-link (Dataset B)

(c) Correlation-metric (Dataset A) (d) Correlation-metric (Dataset B)
Fig. 8  Results of magnitude correlation analysis
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magnitudes from the total one. For this purpose, we proposed a new method consisting 
of two phases. In the former tree construction phase, we employ one of two different 
declustering algorithms called single-link and correlation-metric developed in the field 
of seismology, while in the later tree separation phase, we employ a variant of the change 
detection algorithm, developed in the field of data mining, based on one of two different 
types of objective functions, i.e., the average magnitude which is inversely proportional 
to the b-value, and the likelihood function based on the Gutenberg–Richter law. In our 
empirical evaluation using earthquake catalog data covering the whole of Japan, it was 
confirmed that we could generally obtain the clustering results each of which consists 
of one relatively large cluster and the other small clusters having substantially different 
average magnitude from the total one. Moreover, we showed that the proposed method 
employing the single-link strategy can produce more desirable results, in terms of the 
improvement of weighted sums of variances, average logarithmic likelihoods, visualiza-
tion results, and magnitude correlation analyses. As a future task, we plan to conduct 
more experiments to see that our clustering method can provide new findings on the 
earthquake statistics, the underlying earthquake dynamics, and so on, by producing one 
relatively large cluster and the other small clusters having substantially different average 
magnitudes from the total one. Further theoretical studies to find the optimal number of 
clusters are also future works.
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