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Introduction
There has been a wide discussion about the overly fragile nature of global supply chains/
networks. While this highly optimized global system brings efficiency to production 
activities, it also builds up systemic risk which can result in harsh disruptions in and 
fallback of economic activity. The economic consequences of the COVID-19 pandemic 
provide a recent and powerful example of this fragility, putting this discussion into the 
focus of attention. In order to avoid overwhelming their healthcare systems, many coun-
tries put constraints on economic activity by implementing sectoral and transportation 
lockdowns. Restaurants and theatres have been closed, mass events banned, traveling 
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between countries restricted, and companies closed where workers were found infected. 
As a result of these arrangements, tourism collapsed rapidly, international shipping 
stalled, and access to the inputs became more difficult in the global market.

Due to the wide interconnectedness of countries, global value chains conveyed the 
economic effects of domestic lockdowns over borders (Barrot et  al. 2020; Fang et  al. 
2020; Guan et  al. 2020). The World Trade Organisation (WTO 2021) reported a 14% 
decline in the volume of bilateral trade in the first two quarters of 2020 (8,000,671 mil-
lion US dollars) compared to the previous year (9,307,784 million US dollars), con-
firming disturbances in global value chains. Indeed, Vidya and Prabheesh (2020) find 
a significant drop in trade interconnectedness and a structural change in global value 
chains due to the pandemic, which may also lead to a decrease in demand (Baldwin and 
Freeman 2020). On the other hand, Barrot et al. (2020) and Guan et al. (2020) show that 
the intensity to which these shocks affect a given economy depends on the structure of 
the domestic production networks and the exposure to foreign markets (Barrot et  al. 
2020; Guan et al. 2020).

French minister of finance, Bruno le Maire also shed light on the problems arising 
from disruptions in global value chains and economic lockdowns emphasizing that “sup-
ply problems create strategic problems in certain industries” and pointing to the over-
dependence of the French economy on Chinese imports: according to his report, 80% of 
the inputs of the French pharmaceutical industry comes from China (Reuters 2020). Due 
to such over-dependence, domestic economies face serious risks from disruptions in the 
global value chains.

These economic effects of the COVID-19 pandemic provide an example of how the 
globally optimized production networks are vulnerable to shocks of this kind and it 
brought into the focus the concerns about the ultimate efficiency of globally organized 
value chains and production networks, while putting in context the recently strength-
ening discussion about renationalizing, i.e. revitalizing local or domestic supply chains 
(Bonadio et al. 2020). As the French minister of finance himself argued, strengthening 
these local networks can be an adequate approach to overcome the severe economic 
implications of future lockdowns. However, such initiatives as backshoring, nearshoring 
(Piatanesi and Arauzo-Carod 2019) or renationalization (Bonadio et  al. 2020) can not 
unconditionally lead to a less vulnerable economy because of the higher risk arising from 
domestic lockdowns in this case (Bonadio et al. 2020).

At least two important questions arise from this agenda. First, where is the optimal 
trade-off between efficiency gains from globally optimized but fragile production net-
works and lower risk resulting from more localized but redundant supply chains? 
Second, what methodological tools can be fruitfully applied in answering the former 
question, in particular how one can measure the strength of local supply networks? This 
paper contributes to the second question by proposing a way to measure the strength of 
domestic supply or production networks.

In this attempt, our contribution is linked to previous literature in several interrelated 
areas. First, a series of recent studies have analyzed the macroeconomic impact of the 
pandemic by introducing an epidemiological approach into economic models (Acemo-
glu et al. 2020; Atkeson 2020; Alvarez et al. 2020; Eichenbaum et al. 2020; Glover et al. 
2020; Krueger et  al. 2020) while more standard input–output models have also been 
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applied to reveal the extent to which economic activity can decline due to economic 
lockdowns. These papers show that the extent of the economic downturn depends on 
the sectoral composition of the economies (Bonadio et al. 2020), on the duration of lock-
downs and the number of countries that implement them (Guan et al. 2020). Indirect 
linkages seem to play a crucial role in spreading the shocks Giammetti et al. (2020).

Even before the pandemic, several studies have examined the structure and the shock 
propagation capability of global supply chains in many ways. With the help of network 
analytic tools, the central actors can be identified in supply chain networks, and it is pos-
sible to track down how shocks propagate between them (Cerina et al. 2015; Fan et al. 
2014). The available multi-sector and multi-country datasets have allowed the examina-
tion of the structure of trade in value-added (Amador and Cabral 2017), detecting the 
community structure (Cerina et al. 2015), and revealing the countries’ positions in pro-
duction stages by sectors (Cingolani et al. 2017). In addition, a series of recent studies 
have investigated global supply chains as a multilayer network where countries/regions 
are the nodes and the sectors are the network layers while links represent trade flows 
(Alves et al. 2019; Gomez et al. 2020; Coquidé et al. 2020). These studies point to the 
potential in network analysis as a useful tool in measuring different aspects of the struc-
ture of global production networks or supply chains. This approach can be extremely 
useful for analyzing the possible benefits from more locally organized production net-
works which can be a structural manifestation of recent developments already pointing 
towards a slowdown in international trade and strengthening protectionism (Coe and 
Yeung 2019).

In the economic literature, economic structure as described by intersectoral transac-
tions is analyzed with a range of different input–output models (Miller and Blair 2009). 
These studies include, among other things, the measurement of value-added in trade 
(Timmer et  al. 2014; Johnson and Noguera 2012; Koopman et  al. 2014) the length of 
domestic and global production/supply chains (Wang et al. 2017), identifying the central 
sectors of an economy (Giammetti et al. 2020), and examination of the sectoral effects of 
disasters (Dietzenbacher and Miller 2015). The application of network theory methods 
complements these standard models and more complex analysis can be performed by 
mixing these techniques (Amador and Cabral 2017).

With respect to the intersectoral structure of the domestic economy, previous stud-
ies have shown that the asymmetric structure of transactions increases the volatility 
of aggregate output (Acemoglu et  al. 2012). Input–output linkages play a crucial role 
in transmitting shock between economic actors (Carvalho et al. 2020) and that central 
sectors in the transaction network are primarily responsible for the amplification of idi-
osynchratic shocks (Contreras and Fagiolo 2014). While these results are important in 
understanding the shock propagation mechanism within an economy, no study, to our 
knowledge, has examined so far the level or extent of the systemic operation of an econ-
omy or in other terms, the overall strength of its internal production network. Build-
ing on ecological network analysis, we borrow the Finn cycling index from its toolbox. 
This index measures the ratio of cycling or in other terms the extent to which feedback 
loops are present in a system. Representing system elements with nodes in a network, 
cycling reflects the direct and indirect connections (feedback loops) that link together 
these nodes. System elements are economic sectors in our exercise, thus cycling refers to 
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the extent to which these sectors are connected by relatively strong input–output link-
ages creating loops in the system, allowing for a less hierarchical organization of produc-
tion processes. Ecological network analysis has been used earlier for similar purpose: 
Kharrazi et al. (2013) analysed six economic resource trade flow networks with the help 
of this methodology and Alves et  al. (2019) examined the nestedness of countries in 
international trade flow networks by sectors. While the cycling index is a good candidate 
for our purposes, we also show that the asymmetry of production network structure, 
economic openness and other macroeconomic characteristics of the economies shape 
the value of this index. Using panel-econometric techniques, we point out that by con-
trolling for these characteristics, one can estimate the pure contribution of the network 
structure behind domestic economies to the cycling index.

The objective of this paper is to propose the Finn cycling index as a method of measur-
ing the level of systemic operation in economies and to provide a first-cut analysis on a 
sample of economies using the proposed tool. In addition to ranking a set of countries 
with respect to the strength of their domestic production networks, we also analyze the 
role of asymmetric network structure and the openness of the economy in shaping this 
strength.

The paper is structured as follows. In “Data and methods” section, we give a brief 
discussion of the data we use and the methodological background of the analysis with 
special attention to measuring the cycling index. In “Results” section, first, we show the 
main characteristics, such as openness and asymmetry of production networks, and 
then, we rank the countries by cycling index. At the end of the section, we estimate the 
role of structural and macroeconomic properties in shaping the cycling index. Finally, in 
“Discussion and conclusion” section, we conclude the results, describe the limitations, 
and pins down some avenues for future research.

Data and methods
In this section we first describe the logical framework of the study. We present the sche-
matic model of the production networks that we use, introduce the Finn cycling index 
as a candidate of measuring the strength of domestic networks or production feedback 
loops and show how it can be interpreted in some special cases. Then, we describe the 
data we use in the remainder of the paper to feed the model.

The production network

The production of final goods takes place in several steps, typically along vertically dif-
ferentiated supply or value chains, where these production stages may be geographically 
dislocated as a result of exploiting comparative advantages (Cingolani et al. 2017). On 
the other hand, these value chains behind different final goods has been merged into a 
complex global production network, the structure which heavily affects how countries 
and sectors participate in the international division of labor and specialization. A series 
of recent studies emphasized the rising importance of global value chains in analyzing 
international trade (Baldwin and Lopez-Gonzalez 2015; Johnson and Noguera 2012; 
Timmer et al. 2014). While early papers focused on mapping the structure and dynamics 
of these networks, more recent contributions try to explain network formation (Coe and 
Yeung 2019).
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In contrast to most of these efforts which take a global perspective, we use a dif-
ferent approach in this paper and investigate the structure of domestic production 
networks. The idea behind this focus is that strong specialization in global produc-
tion networks reduces the chance that domestic economies can properly function 
in case the global transactions stall in an abrupt manner. This means that instead 
of analyzing the whole global transaction network or input–output table, we slice it 
into separate domestic input–output tables. The schematic setup of these tables are 
represented in Table  1. The unit of the analysis is an economic sector, of which we 
can have an arbitrary but finite number N. The xi total output of sectors i in a given 
country is purchased by other sectors j (denoted by wij in general), by final users 
within the country (households, government and firms, denoted by zi ) or exported to 
other countries (labelled by yi ). To produce output xi , Sector i uses inputs from other 
domestic sectors j (denoted by wji ) and from imports (denoted by mj ). In addition to 
these expenses, sector i pays income to production factors, indirect taxes and trans-
port margins which are included in the row of value added for simplicity (labelled by 
vj ). As the latter is assumed to include all expenses in addition to intermediate inputs, 
the row- and column-sums must equal: 

∑

j wij + zi + yi =
∑

j wji + vi +mi = xi.
The most important element of the analysis in this paper is the matrix W which col-

lects transaction volumes wij , thus represent the weighted adjacency matrix between 
domestic sectors. Hence, nodes in the production network are economic sectors 
while edges are transactions measuring the value of goods and services supplied from 
sector i (in the rows) to sector j (in the columns). The second important ingredient 
is the vector m containing the import volumes mi of every sector, thus reflecting the 
input-side foreign exposure of the sectors.

Finn cycling index

The Finn cycling index (Finn 1976) is capable of describing the strength of internal 
feedback loops within the domestic economy. It measures those processes, which go 
back to their original places (sectors) either directly or indirectly (Fath 2015). The 
cycling index “denotes how many times further than the straight throughflow path 
length an average unit of inflow travels because of cycling …” (Finn 1976,  p. 369). 
There are more variations of this index (Allesina and Ulanowicz 2004; Kazanci et al. 
2009), but the original index is still generally used.

Table 1  A schematic domestic production (input–output) network

Sector 1 Sector 2 … Sector N Final use Export Total output

Sector 1 w11 w12 … w1N z1 y1 x1

Sector 2 w21 w22 … w2N z2 y2 x2

… .. … … … … … …

Sector N wN1 wN2 … wNN zN yN xN

Value added v1 v2 … vN

Import m1 m2 … mN

Total output x1 x2 … xN
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The starting point for this index is matrix W , containing raw transaction volumes 
between the domestic sectors. These transaction volumes are normalized column-wise 
with the sum of the given column to obtain input–output coefficients which represent 
the share of sector i in contributing to sector j’s total input. This share accounts for other 
domestic sources as well as imports and value added (in the broad sense as used above):

This information is structured in matrix A . The normalization have two consequences. 
First, we lose information on the mere size of the economy, i.e. results from now on 
become insensitive to the absolute values of sectoral outputs. Second, we keep infor-
mation on the external exposure (openness) of the economy: the more important is the 
import for a given sector, elements in m will be higher compared to x , thus matrix A will 
have lower values on average.

From the input–output coefficients in A , we calculate the following Leontief-inverse:

where I is the identity matrix. The general element lij of the Leontief-inverse matrix 
shows the overall connectedness between sectors i and j either directly, as in A , or indi-
rectly through other sectors. This can be formally shown by the matrix-power expansion 
of the given inverse. As a result, lij measures the relative strength of feedback loops of 
different lengths between sectors i and j.

Next, we pick the diagonal elements of the Leontief-inverse in Eq.  2 and normalize 
them according to:

Using the previous definition of the elements of the Leontief-inverse, the diagonal ele-
ments reflect the strength of feedback loops around a given sector (summing over loops 
of different lengths). As the structure of the Leontief inverse ensures that we have diago-
nal elements larger than one, it follows that the normalized values in Eq. 3 reflects the 
relative strength of the feedback loops around a given sector—thus we may call them 
sector-level cycling indices (Finn 1976). In other terms, these values show the extent 
to which sector i contributes to the overall production of the economy, reflecting how 
strongly the given sector is embedded in its systemic operation. Finally, we calculate the 
weighted average of these sector-level cycling indices in order to obtain an economy-
level indicator:

Some notes about the economic application of the Finn-index. Originally, in ecology, the 
on-diagonals are all zeros, because the own consumption of compartments are handled 
as waste (e.g. respiration, energy loss) and as such, they place it to the right hand side 
[see e.g. the original Finn’s tables (Finn 1976), Allesina and Ulanowicz (2004) or Szyrmer 

(1)aij =
wij

xj

(2)L = (I− A)−1

(3)l̂i =
lii − 1

lii

(4)FCI =
1

∑

i xi

∑

i

l̂ixi
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and Ulanowicz (1987)] . However, in economies these tables contain the intrasectoral 
transactions (self-loops). As a consequence, while in ecology lii values contain a “clean” 
intersectional relationship, in economy lii values also contain the intrasectoral transac-
tions. One solution is to use the net input–output tables, where diagonal elements are 
set to zeros. The construction of the net-tables can be performed by the method, pro-
posed by (Miller and Blair 2009): remove the diagonal elements and reduce the out-
puts ( zi ) accordingly. However, intrasectoral transactions describe links between firms 
belonging to the same sectors. In other words, these transactions are inter transaction at 
a lower level of economic aggregation. Therefore, similar to other studies (see e.g. Alves 
et al. 2019; Giammetti et al. 2020), it is reasonable to work with the gross input–output 
tables. In this study, we will use the gross tables everywhere.

For further reference, we introduce the variable import-openness, which characterizes 
every sector specifically and denotes the share of imports within its overall input (not 
counting value added):

We used Eq. 5 to calculate sector-level input (import-) openness for every country, sec-
tor and year. Then, country-level openness is obtained by the weighted average of sector-
level openness indicators, where the weights are sectoral outputs ( xi ). For asymmetry, 
we took the relative input shares in matrices A for all countries and years, and calculated 
the skewness (third moment) on the observed distribution of these input shares. By out-
degree centrality, we mean the sum of rows in A ( 

∑

j aij ), and it shows the importance of 
a given sector as supplier of other domestic sectors. As we have a weighted network with 
non-zero values at almost all entries, we measure the density by the average (weighted) 
out-degree centrality (average strength) of the nodes.

Some special cases

In this subsection we illustrate the cycling index through a few special cases. First, we 
provide analytical results for two very extreme cases (empty and completely connected 
economies), then three numerical examples show how loops shape the value of the 
index. Finally, we demonstrate the difference between the cycling indices calculated for 
symmetric and asymmetric (scalefree) random networks.

The schematic structure of the model and the two extreme cases are represented in 
Fig.  1. Here, the dots represent domestic sectors, while the arrows show the transac-
tions between them. The figure shows only four sectors, but the analytical result derived 
in the “Appendix 1” hold for an arbitrary number N of sectors. Panel (a) in Fig. 1 shows 
an atomistic economy, with no inter-sector transactions between the domestic sectors, 
but we allow for international exposure. For simplicity, intra-sector transactions are 
normalized to one. As shown in the “Appendix”, the cycling index in this case becomes 
l̂i = 1− m̃ for all sectors i. This means, that given an isolated internal structure, increas-
ing openness have a negative effect on the cycling index, reflecting the idea that increas-
ing foreign exposure decreases the independent operation of an economy.

Panel (b) in Fig. 1 reflects an economy with a completely balanced internal structure 
where intra-sectoral and inter-sectoral transactions have the same intensity. As shown in 

(5)m̃i =
mi

∑

i wji +mi
, vi = 0
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the “Appendix”, the sector-level cycling indices turn out to be (1− m̃)/[1+ m̃(N − 1)] in 
this case. An interesting point here is that the size of the economy in terms of the num-
ber of sectors becomes important, as reflected by N in this formula. Second, given that 
N > 1 , openness still has a negative effect on the cycling index.

Beyond these two extreme cases, Fig. 2 represents a few illustrative calculations when 
there are only three sectors. In these examples we assume unit import plus value added 
volumes for all sectors, and concentrate on the effect of feedback-loops appearing in the 

Fig. 1  The schematic framework for a domestic production network, with two extreme cases. a is an 
economy with isolated activities but foreign exposure, b is a balanced economy with identical internal 
transaction volumes

Fig. 2  Three numerical illustrations with three sectors. a represents a no-feedback structure with a single 
production line. b represents a feedback loop in addition. c represents a completely balanced structure. The 
calculations assume unit value added or import volumes in all sectors
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system. In panel (a) we show a simple supply chain where sector A supplies sector B 
which then supplies sector C, but there is no feedback loop in the economy. The sector-
level cycling indices are shown in vector l̂ . These are asymmetric, reflecting the directed 
links in the system. Sector A has a higher score as it is the origin of the supply chain, 
thus it is less exposed. The simple average of these values is 0.556, while the weighted 
average (where weights are sectoral total outputs) is smaller as sector A has a lower out-
put (remember that value added and import are assumed to sum up to 1, so total output 
of sector A is 3, while that of the other two sectors is 4).

Panel (b) represents a slight addition, by inserting a feedback loop between sector C 
and A, making the economy more circular. Sector A looses from its individual cycling 
score, while sectors B and C formerly gain at the end of the chain. The overall result is 
positive though, the FCI values become identically 0.563, which means an approximately 
5% increase. This illustration shows that inserting feedback loops into the economic sys-
tem typically increases the Finn cycling index as defined in Eq. 4, or in other terms con-
tribute to the systemic operation of the economy.

Finally, panel (c) in Fig.  2 shows a situation where these feedbacks are maximized 
within the economy, i.e. it is established in both directions. Calculations show that the 
sector level cycling indices increase identically to 0.6, reflecting a 7% increase compared 
to the one-directional feedback loop in panel (b).

These illustrations nicely show that the proposed cycling index in the spirit of Finn 
(1976) reflects the capability of domestic economies to function systemically and shows 
the extent to which domestic sectors are able to contribute to each other’s produc-
tive activities. It turned out from the extreme cases that the level of foreign exposure 
clearly decreases the value of the index, while the number of sectors included is also 
important—a result which needs to be taken into account when comparing production 
networks of different size. In this study we do not face this problem as we compare pro-
duction networks with a fixed size.

One may also investigate if the Finn cycling index depends on edge weights or the 
structure of the network. In order to have an insight in this respect, we constructed 
two sets of random networks. First, we simulated 100 independent random networks of 
the Erdős–Rényi type (Erdös and Rényi 1959) which shows a symmetric structure with 
relatively similar nodes. Then, we simulated 100 independent random networks with 
the Barabási–Albert algorithm (Albert and Barabási 2002) which shows an asymmet-
ric, scalefree structure with power law degree distribution. Then, we calculated the Finn 
cycling index for all these networks according to Eq. 4 and averaged over the 100 inde-
pendent networks for the two models separately.

The difference between the asymmetric and symmetric structures in the Finn cycling 
index is shown in Fig. 3, where the previous exercise was done for different combina-
tions of openness (as in Eq. 5) and network density. Network size in all calculations was 
N = 100.

As the edge weights in these networks are all 1, it is only the difference in network 
structures (asymmetric vs. symmetric) that shapes the value of the Finn cycling indices 
for given openness and density. It is clear that an asymmetric network structure always 
gives a higher cycling index then a symmetric one. While this difference is very pro-
nounced for low openness and moderate densities, it vanishes as we move towards the 
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empty or the complete network as well as towards full openness. The latter conclusions 
are plausible: there is no difference between empty networks with respect to their struc-
ture (symmetry) and the same is true for complete networks. Also, there is relatively 
minor role for the structure in very sparse and very dense networks. The true difference 
between symmetric and asymmetric structures (degree distributions) can unfold under 
moderate densities. On the other hand, as the domestic transaction links lose their 
importance when moving towards extreme openness, the relevance of domestic asym-
metry also vanishes as these links play a marginal role in the whole economy.

Data

We have introduced the methodological framework for this study so far. This requires 
information on domestic input–output relationships as reflected by the transaction 
matrix W and data on imports, value added (possibly taxes and transport margins), 
final use and exports. In this study, we reach out to the World Input–Output Database 
(WIOD 2016) (Dietzenbacher et al. 2013; Timmer et al. 2015), which supplies this infor-
mation on a relatively wide set of countries (43) and sectors (56) and for a consider-
able long time period on an annual basis (15 years between 2000 and 2014). The list of 
countries and sectors included in the analysis can be found in the “Appendix 2”. We use 
the US dollar transaction volumes in these data tables as the primary source to feed 
the model framework established in the previous subsection. Also, these tables contain 
information on total output, import and export as well as value added which is used to 
calculate the FCI values as given above.

While the original WIOD dataset explicitly takes into account international transac-
tion on a country-sector basis, as our focus is on the structure of domestic production 
networks, we simply add these transactions in vector m as the overall external exposure 
of the domestic sectors.

In addition to the data background of the FCI calculations, which is based on the 
WIOD 2016, further empirical analysis builds on some macroeconomic time series 
of the countries involved in our sample, including GDP per capita, population, capital 

Fig. 3  Cycling in symmetric and asymmetric (scale-free) random networks. The vertical axis shows the 
average difference between the Finn cycling index measured in Barabási-Albert type scalefree networks and 
the Erdő-Rényi type random networks for a given density and openness
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stock and labor intensity. These are retrieved from the Penn World Tables (version 9.1) 
released by the University of Groningen (Feenstra et al. 2015). The table contains several 
macroeconomic data in a wide range of countries and time, but we use only a few of 
these, which are reported with their descriptive statistics in Table 2.

In order to account for the effect of being part of the European Union and the Euro-
zone in further empirical investigations, we construct specific dummy variables. The 
value of the EU dummy is 1 if the country is a member of the European Union for more 
than six months in a given year. Similarly, the EURO dummy is 1, if the country is a 
member of the Eurozone for more than six months in a given year. In other cases, both 
dummies are 0.

Results
In this section, we present the results of the analysis that we carried out on the basis 
of the previously introduced methodological framework. According to this framework, 
we pay attention to the structure of domestic production networks from three interre-
lated angles: openness (i.e. foreign exposure), systemic operation (the FCI measure) and 
asymmetry. First, we present some descriptive results with respect to the asymmetry and 
openness of the economies. Then, we turn to the analysis of systemic operation. In this 
respect, we provide a description of the raw FCI scores, and then estimate the effects of 
asymmetry, openness and other macroeconomic variables in shaping these scores. Here, 
we argue that using adequate econometric techniques, one can clear the FCI from those 
economic characteristics which naturally influence these characteristics.

Asymmetry and openness

In this subsection, we provide an analysis of domestic production networks with respect 
to their asymmetry and openness. In Fig. 4, we highlight six countries and their produc-
tion networks. The nodes are the 56 sectors that are included in the WIOD database, 
while the edges represent the relative input shares (the entries from matrix A ). The size 
of the nodes reflect the importance of sectors, as measured by their out-degree central-
ity ( 

∑

j aij ), and coloring shows the broad category of the sectors. For a better visualiza-
tion, only those edges are shown in the figure which are larger than 1.5% in terms of the 
input-share of a given sector ( aij > 0.015 ). For similar reasons, vertices that thus have 
no connections were not displayed. Although edges are directed, we do not show arrows 
and present them overlapping for easier representation. The links in the graph are visu-
alized as unweighted.

These graphs demonstrate that the sectors play different, asymmetric roles in these 
production networks. Although some sectors have a central position in the production 
process, most of them have significantly less importance. This is consistent with what 
has been found in previous studies in the literature (Acemoglu et  al. 2012; Contreras 
and Fagiolo 2014). Edge weights follow a similar pattern: sectors typically has a few out-
standing suppliers, while their connection to others are relatively weaker. Strong self-
loops represent that sectors use their own output to a relatively large extent—which is 
explained by the level of aggregation given in the WIOD data structure.

Another important finding is that the countries’ production networks are very het-
erogeneous in terms of the relatively important/central sectors. For example, in the 
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case of Germany, the most important sectors contributing to production are the ser-
vice industries, such as the administrative and support activities, warehousing and 
support activities for transportation, and real estate activities. In China, though, the 
manufacturing industries, such as the manufacture of coke and refined petroleum 
products, chemicals and chemical products as well as basic metals have a larger out-
degree centrality, similar to two agriculture and mining sectors (crop and animal pro-
duction, mining and quarrying).

a) Germany b) USA c) China

d) Japan e) UK f) Hungary

Agriculture and mining Manufacturing industries Other industries Services

Fig. 4  Six different domestic production networks. The size of the nodes reflect the importance of sectors, 
measured by their out-degree centrality. The coloring refer to broad sector categories (dark magenta: 
agriculture and mining, blue: manufacturing industries, green: other industries, yellow: services). The figure 
only shows those edges where the input share between two sectors is larger than 1.5%. a Germany, b USA, c 
China, d Japan, e UK, f Hungary

Table 2  The descriptives statistics of variables

Variable Data source Min Max Mean Stand.dev.

GDPPC PWT 9.1 0.0025 0.0675 0.0320 0.0180

(in million 2011 US$, PPPs)

Population PWT 9.1 0.3967 1390.11 100.72 264.66

(in million)

AvgWorkedHours PWT 9.1 1362.6976 2509.2881 1816.8754 223.6219

(average annual hours worked by persons engaged)

Capital PWT 9.1 0.0202 77.7446 5.5357 10.0540

(in thousands billion 2011 US$, PPPs)

Finn cycling index (FCI) WIOD 2016 0.0250 0.1909 0.0865 0.0289

(percentage, own calculation)

Openness ( m̃) WIOD 2016 0.0556 0.6006 0.2300 0.1108

(percentage, own calculation)

Linkskew WIOD 2016 5.5516 15.2338 8.5071 1.5560

(own calculation)
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A further finding is that the average weight of links of these networks is very different. 
The Chinese sectors are more closely related than those in the other countries, especially 
in Hungary, where there are significantly fewer dominant supplier relationships. For the 
former, the average weight of links is 0.0089, while for the latter, it is only 0.0050. The 
reason is that the Hungarian economy is a very open economy and the inputs come from 
foreign sources to a relatively large extent, weighting down domestic input transactions 
in a high ratio. The upper part of Fig.  5 shows that Hungary is the fourth most open 
country in our sample and approx. 40% of inputs originate from outside the country. The 
most open countries are the small economies, such as Luxembourg, Malta, and Ireland. 
By comparison, the Chinese, the Japanese, and the US sectors source less than 20% of 
their inputs from abroad, resulting in a lower foreign exposure.

These illustrative results about the six highlighted countries point to the importance 
of heterogeneity and asymmetry in network structure, as well as the role of openness. 
In what follows, we build strongly on these aspects of network structure. Figure 5 shows 
how openness and structural asymmetry varies in the countries in our sample. The box-
plots in this figures represent the distribution of annual openness and asymmetry (skew-
ness) values at the country level.

Figure  5 provides a few important insights into the country-level heterogeneity in 
openness and asymmetry. First, there is strong heterogeneity in both respects. Although 
openness and its connection to size is well documented in the literature, the picture in 
Fig. 5 shows that cross-country variation is significantly larger than within-country vari-
ation over time. The level of asymmetry, as measured by the skewness of the input-share 
distributions, proves to be significant and we observe strong heterogeneity across coun-
tries. The values of observed skewness show a significant positive or right-skew in the 
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Fig. 5  The asymmetry and openness of countries’ domestic production networks. The box plots present the 
values between 2000 and 2014 by countries, ordering by the mean values. a Openness, b Asymmetry
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case of all countries. This reflects an asymmetry biased towards relatively low-weight 
connections, from which a few important high-weight connections stand out. Here, var-
iance over time tends to be relatively large for some countries (Norway, Romania, Indo-
nesia, Australia), while heterogeneity across countries is large, the difference between 
average values in the lowest and highest scoring countries (Bulgaria and Luxembourg 
respectively) being almost two-fold. Although at the top of the two lists we find the 
same countries (Luxembourg, Ireland, Malta, Cyprus and Hungary), the correspondence 
between the two rankings gets loose beyond these few top countries. This shows that 
extreme openness goes together with extreme structural asymmetry, but for more mod-
erate values we do not find correlation. This is reinforced by the observation of correla-
tion coefficients between the two variables. The standard Pearson correlation coefficient 
is moderate (0.46), while the Spearman rank correlation is low (0.29). This reveals that 
the large values in asymmetry and openness for the few countries mentioned above out-
weight the uncorrelated majority: correlation is only present at the first few ranks of the 
variables. Finally, both indicators seem to be quite stable over time.

Systemic operation of the domestic production networks

In this subsection, we go further in exploring the structure of the domestic produc-
tion networks and employ the cycling index as defined in Eq. 4 to describe the extent to 
which countries are able to systemically operate in terms of their production network 
structure. We use the WIOD 2016 to feed the model set out previously. First, we give 
a brief description of the resulting cycling index scores and then analyze how different 
sectors contribute to these scores by country.

As it was argued earlier, the systemic operation of an economy can be described by the 
Finn cycling index, which measures the strength of cycling (feedback loops) through the 
direct and indirect linkages among sectors. Countries with a higher score in this respect 
build more heavily on intermediate inputs from other sectors not only directly, but also 
indirectly through feedback loops and mutual connections. In the first step, based on 
Eq. 3, we can determine the contribution of a sector to the systemic operation. In the 
second step, we can calculate the country-level cycling index through a weighted average 
as in Eq. 4.

Figure 6 presents the country level cycling indexes by sectoral decomposition based 
on data available for 2014 (the latest year in the sample). The decomposition reflects 
broad sector categories as defined in Table 5 presented in the “Appendix 2”. The results 
show that the overall, country-level cycling index (i.e. the strength of systemic opera-
tion) is highest in China (0.1884), and it is six times larger than the lowest value found 
for Greece (0.0300). Latvia (0.1449), Taiwan (0.1407), and the Republic of Korea (0.1200) 
follow China according to this ranking, while Hungary (0.0475), Denmark (0.0468) and 
Cyprus (0.0384) are found at the end of the ranking in addition to Greece. The sectoral 
decomposition again shows marked heterogeneity across countries. The different broad 
sectors have different relative weights in contributing to the country-level cycling index. 
For instance, Chinese manufacturing industries determine the country’s cycling index by 
76%. These sectors also play an important role in Taiwan (87%), the Republic of Korea 
(81%) and Japan (77%). Other manufacturing industries, such as construction, deter-
mine systemic operation to a large extent in Australia (49%), Latvia (40%) and Portugal 
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(37%). Service sectors contribute significantly to country-level cycling, among others, in 
Luxembourg (96%), the Netherlands (49%) and Malta (38%). Although agriculture and 
mining are not among the largest contributors in any of the countries, it has a relatively 
dominant role in Hungary (22%), Romania (20%) and Croatia (17%).

The impression from Fig. 6 further shades our previous findings about the structural 
heterogeneity of domestic production networks. The cycling index varies in a broad 
range pointing to very different capacities within national economies for systemic opera-
tion. Also, countries are quite diverse with respect to the sectors which contribute to the 
cycling index, i.e. the sectors which are better embedded into, contribute more to the 
productive activities within the whole domestic economy. These findings also coincide 
with the observations from Fig.  4. There, we have seen that Hungary has a less dense 
domestic production network than e.g. China. With respect to the structural properties, 
we then see that the Hungarian production network is relatively open and asymmetric, 
compared to the five other countries displayed in Fig. 4. These observations point to the 
role of these structural properties as well as other (macro-)economic variables to play a 
role in the value of the country-level cycling index. In the next subsection we elaborate 
on this issue.

The role of structural and macroeconomic properties in shaping the cycling index

In order to further explore and understand the determinants of the cycling index, we 
carried out an econometric exercise where the country-level Finn cycling indices are 
introduced as dependent variable while structural and other macroeconomic variables 
are used as independent variables. We utilize the panel setup of our data, i.e. that we 
have information on countries annually over a relatively long period of time. We use the 
FCI as introduced in Eq. 1 on the left hand side, while openness as in Eq. 5 and skewness 
of the input shares in matrix A for all countries and years are the focus variables on the 
right hand side. Other macroeconomic control variables include GDP per capita, pop-
ulation, average hours worked and capital stock. The source of these control variables 
is the Penn World Database and the structural measures (cycling, openness and asym-
metry) are based on the WIOD 2016 version. Finally, two dummy variables are used 
to control for the membership of countries in the Euro Area and the European Union. 
Descriptive statistics of the data series employed are given in Table 2. Building on the 
panel nature of the data, we set up the following general empirical model between the 
cycling index and the independent variables:

In this equation the vector zc,t denotes the set of (macroeconomic) control variables for 
country c in period t and α is the corresponding vector of coefficients. OPc,t then labels 
openness while SKc,t is the skewness of domestic input shares for country c in period t. 
µc is a country-specific fixed effect, τt is a time-period fixed effect while εc,t is an obser-
vation-specific error term. The two fixed effects can be estimated in a panel setup and 
they allow to control for unobserved heterogeneity in the specific countries and time 
periods respectively.

We apply the following strategy to estimate the model in Eq. 6. First, we include only 
the control variables in zc,t on the right hand side as a baseline model. These include the 

(6)FCIc,t = αT
zc,t + β1OPc,t + β2SKc,t + µc + τt + εc,t
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Table 3  The results of panel regression models

White-standard errors is parantheses, ∗ ∗ ∗ < 0.001, ∗∗ < 0.05, ∗ < 0.1.

Model 0 Model 1 Model 2 Model 3 Model 4
Pooled OLS FE Panel FE Panel FE Panel FE Panel

Intercept 0.05133***

(0.01044)

GDPPC 0.16931** − 19.62148 − 10.38289 − 22.75483 − 13.72812

(0.07148) (18.16963) (18.42629) (16.79573) (17.02245)

Population 0.00003*** − 0.00017*** − 0.00016*** − 0.00016*** − 0.00014***

(0.00001) (0.00002) (0.00002) (0.00002) (0.00002)

AvgWorkedHours 0.00001*** 0.00004** 0.00003** 0.00004* 0.00002*

(0.00001) (0.00002) (0.00001) (0.00002) (0.00002)

Capital − 0.00005 0.00099*** 0.00083*** 0.00100*** 0.00083***

(0.00015) (0.00016) (0.00020) (0.00015) (0.00019)

EU − 0.00631** − 0.00766*** − 0.00483 − 0.00694*** − 0.00356

(0.00293) (0.00278) (0.00325) (0.00255) (0.00252)

EURO 0.01019*** 0.00195 0.00150 0.00161 0.00099

(0.00304) (0.00238) (0.00195) (0.00241) (0.00187)

Openness − 0.13531*** − 0.14901***

(0.04687) (0.04672)

LinkSkew 0.00148** 0.00202***

(0.00066) (0.00078)

Country.FE No Yes Yes Yes Yes

Year.FE No Yes Yes Yes Yes

Observations 645 645 645 645 645

Adj.R2 0.1385 0.1839 0.2928 0.2071 0.3364
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Fig. 6  The countries’ Finn cycling index in 2014. The colors represent the contribution of different types of 
sectors (dark magenta: agriculture and mining, blue: manufacturing industries, green: other industries, yellow: 
services)
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macroeconomic variables and the dummies for EU and EA membership. The intuition 
behind the variables included is that the level of development (measured by GDP per 
capita), size (measured by population) and the factors of production used (capital and 
hours) are all characteristics of a country’s economy which may influence the level of 
systemic operation. More developed countries can be involved in the international divi-
sion of labor in more sophisticated ways which affects their internal structure of produc-
tion networks as well. Larger countries on the other hand tend to be more self-sufficient, 
thus one expects a higher level of systemic operation in their case. On the other hand, 
common market and currency as measured by the EU and EA dummies are expected to 
affect the way how global production networks are organized, thus domestic production 
networks as well—specifically we expect that motivating more intensive trade between 
member countries, these areas lead to a lower level of systemic operation within borders.

Model 0 and Model 1, as shown in Table 3, provide estimates of this baseline setup. 
In Model 0 we use a pooled OLS estimation, which do not take into account the panel 
structure of the data and as a result, it does not estimate fixed effects µc and τt . This 
can serve as a reference point for further, more accurate estimations with fixed effects. 
Model 1 still includes only the control variables on the right hand side, but it is a fixed 
effects panel estimation. In the next step, we expand the model by the structural proper-
ties of the domestic production networks separately (Model 2 and Model 3). Then, we 
include openness and asymmetry among the independent variables together (Model 4).

Table 3 presents the results of the five different models. The null-model with pooled 
regression (Model 0) shows significant effects for almost all included control variables, 
however, these estimations are possibly biased due to the potentially omitted variables. 
This problem can be minimized by the fixed effect panel estimation in Model 1, where 
the estimated country and time fixed effects control for unobserved heterogeneity. Com-
paring the two models, we can see that inclusion of the fixed effects in the model has 
considerably changed the results. The coefficient of the population becomes negative 
and larger than in Model 1, while the effect of GDP per capita and membership in the 
Eurozone becomes insignificant. Intuition would suggest that a larger country is capable 
of a more systemic operation because the size of the market and availability of resources 
allows it to be more self-sufficient, with a stronger interconnection between domestic 
sectors. The results show that this is true for capital, while it isn’t true for population. 
Better availability of capital allows for the production of more complex products which 
requires a more sophisticated division of labor, thus production network. On the other 
hand, population reflects the mere size of the country without any reference to pro-
ductivity. Larger population comes with a larger population of economic units as well, 
thus one expects the individual (company-) level transaction network to be more sparse. 
Although we observe networks at a more aggregated level (56 sectors), still these aggre-
gated network connections are representations of the micro-level transaction networks. 
In addition, we find a positive significant effect for average annual hours worked. This 
measure reflects the average annual labor input, normalized by the size of workforce 
(which strongly correlates with population, hence the normalization). In other terms, we 
reflect the intensive margin of labor use: how intensively the given country uses its avail-
able workforce. Finally, the common market as proxied by the EU dummy has a negative 
significant effect on cycling as expected: trade agreements reduces the barriers to trade, 
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which shifts production network connections towards other members, and decrease the 
role of domestic transactions.

In the rest of the models we also include either openness or asymmetry or both among 
the independent variables. Thus, these models are useful in assessing the role of these 
two structural factors in shaping the cycling index, i.e. the capacity of economies for 
systemic operation. As expected after the short analytical exercise in the methodology 
section, openness indeed seems to decrease cycling in domestic production networks, 
which is an intuitive result.

On the other hand, asymmetry has a positive significant effect on cycling: the more 
skewed domestic input shares are, the more capable countries are to operate in a sys-
temic way. This result is puzzling, as previous studies suggest that the higher asymmetry 
in production networks leads to higher volatility in aggregate output (Acemoglu et al. 
2012), which doesn’t seem to be a sign of systemic operation. The solution to this puzzle 
may come from observing the microstructure of these networks. In the case of a bal-
anced, symmetric network/economy with no outstanding connectivity at a few nodes/
sectors, the share of closed triangles, i.e. clustering, is lower. In other words, the direct 
neighbours of sectors are only connected to each other to the extent as the whole net-
work is connected. In contrast, the share of closed triangles (clustering) is shown to be 
higher in a scale-free, i.e. asymmetric network. As the cycling index detects the strength 
of feedback loops (as shown in the methodology section), this overrepresentation of 
closed triangles or feedback loops will result in a higher cycling index.

The positive significant effect of asymmetry and negative significant effect of openness 
remains if the two variables are included together in the estimation (Model 4), and the 
estimated coefficients have similar magnitudes. The other control variables mostly keep 
their role compared to Model 1. Population remains negative and strongly significant, 
average hours worked looses part of its significance, while capital remains strongly sig-
nificant. The estimated coefficients also seem to be robust across these estimations. The 
EU dummy, though loses its significance when the variable openness is included in the 
model (Model 2 and Model 4). The reason for this is that being a member of the Euro-
pean Union naturally leads to more openness, so the effect of EU membership estimated 
in Model 1 and Model 3 is captured by the Openness variable in Model 2 and Model 
4. Finally, due to the moderate correlation between asymmetry and openness, we also 
checked the multicollinearity between these variables. The VIF parameter of asymmetry 
in Model 4 is 1.43, while in the case of openness, it is 2.10. This suggests that there is 
no significant multicollinearity in the model, hence the estimations of coefficients are 
robust.

Figure 7 shows the contribution of openness and asymmetry to the Finn cycling index 
in absolute and relative terms, based on 2014 data. These charts are obtained by using 
the estimated Eq. 6 according to Model 4. Observed openness ( OPc,t ) and asymmetry 
( SKc,t ) are multiplied by their respective estimated coefficients ( β1 and β2 ). These values 
are reported in panel (a) of Fig. 7. The relative importance in the overall cycling index is 
shown in panel (b), where the previously described absolute contributions are normal-
ized by the value of the cycling index. The resulting rankings show interesting results. 
An important conclusion is, that the contribution of asymmetry and openness vary 
across countries. An interesting example is China, which has the largest cycling index 
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(see Fig. 6), but most of its value is attributed to its capital stock, hours and population 
while the structure of domestic production networks play a very minor role. Also, we 
may recall from Fig. 6 that the strength of systemic operation in the Hungarian economy 
is relatively low. Although the Hungarian production network is very asymmetric, and 
this property increases the strength of systemic operation, openness has a much larger 
negative effect on its value. Similarly, in the case of Cyprus, Greece, Ireland and Den-
mark, the Finn cycling index is low because of the strong openness.

Towards a clarified measure of systemic operation

In the previous subsection, we have presented the results from a few model estimations 
where the Finn cycling index was explained by several (macro-)economic indicators as 
well as the structural properties of the domestic production networks, namely openness 
and asymmetry. Most of these variables characterizing a country’s economy proved to 
affect significantly the cycling index, i.e. the capability for systemic operation. On the 
other hand, this result also means that the raw scores of the cycling index as presented 
in Fig.  6 contain the effect of several factors which shape the capability of systemic 
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Fig. 7  The effects of structural properties on Finn cycling index. a the absolute effects of asymmetry and 
openness on Finn cycling index in 2014, b the relative effects of asymmetry and openness on Finn cycling 
index in 2014, c the country fixed effect relative to the mean value
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operation of countries: their mere size, availability of production resources, openness 
and asymmetry. Having this in mind, it is not surprising that China turns out to be at the 
top of the ranking with respect to the cycling index: being the largest country, it has an 
opportunity to efficiently develop self-sufficient production systems. However, one may 
ask how systemic the Chinese economy is given its size, level of development, openness, 
etc.

The econometric technique used above, namely fixed effect panel estimation pro-
vides a straightforward answer to this question. These estimations provide an estimate 
of the country fixed effects, i.e. µc in Eq. 6. By the construction of this method, these 
fixed effects capture all heterogeneity in the dependent variable (the FCI), which is not 
accounted for by the other covariates on the right hand side and constant over time. As a 
result, these fixed effects are good candidates to measure that part of cycling, what is not 
explained by the independent variables included in the model.

In other terms, using fixed effect estimates from Model 4 can show the extent of sys-
temic operation which is specific to a given country, and can not be attributed to open-
ness, asymmetry, population, hours and capital. Panel (c) in Fig. 7 presents the country 
fixed effects estimated in Model 4. In order for a clear interpretation, we subtracted the 
average of these fixed effects from the value of all countries, thus the figure shows the 
deviation of the fixed effects from their mean (which can be regarded as an overall con-
stant term in the regression).

Looking at the picture of these fixed effects, the most important observation is that 
the ranking of countries can significantly change compared to the raw cycling indices 
presented in Fig.  6. Although China keeps its top position, its relative advantage over 
the second rank is smaller. Also, Poland and Japan come up from the mid-range of the 
cycling index to the top, while the US arrives 5th after a position in the last third with 
respect to the cycling index. This means that these economies show a relatively high 
level of systemic operation even if we rule out those natural conditions which proved to 
be important in shaping the cycling index. In other terms, this ranking is able to draw 
attention to those countries which show some additional extent of cycling or systemic 
operation inherent in their domestic production networks, which is not attributable to 
their size, factor endowment, openness or structural asymmetry.

Discussion and conclusion
In this paper, we examined the systemic operation of domestic production networks and 
showed how structural properties, such as openness and asymmetry, affect this systemic 
operation. The structure of the domestic production network is different across coun-
tries in terms of sectors’ centrality and the intensity of the linkages between domestic 
sectors. The fixed effect panel regressions revealed that the other country-specific prop-
erties also play an important role in shaping systemic operation.

The level of systemic operation measured by the Finn cycling index can be a useful 
signal of how resilient an economy is to emerging global shocks such as a pandemic, 
natural disasters or wars. For example, lockdowns triggered by the COVID-19 pandemic 
may hit those countries more harshly which are characterized by lower levels of systemic 
operation because it is challenging for local companies to replace foreign inputs with 
domestic substitutes. The over-dependence on trade relations and the lack of strong 
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interconnectedness among domestic economic actors, as reflected by the Finn cycling 
index, makes an economy vulnerable to this type of shock. However, our dataset is not 
suitable to directly analyze the recent pandemic due to its time coverage. Still, further 
research should clearly focus on this issue in more detail.

The ranking of systemic operation shows the Chinese economy relies the most on 
domestic inputs. However, the previous studies in the literature suggest that the Chinese 
value-added ratio of gross export is similar to the US (Johnson and Noguera 2012; Tim-
mer et al. 2015). The reason for this seeming contradiction that the Chinese economy 
is basically involved in the lower stages of the production phase, processing basic raw 
materials and carrying out simpler, less technologically demanding production (Cingo-
lani et al. 2017). In contrast, the U.S. economy relies less on domestic inputs, but per-
forms higher stages of production phases, resulting in relatively higher value-added 
production. The manufacture of smartphones gives a good example of this production 
process. The devices are mainly manufactured in China, but innovation and software 
development take place in the US.

On the other hand, the other interesting result is the positive effect of asymmetry on 
the systematic operation. Acemoglu et al. (2012) showed that the higher asymmetry of 
structure can lead to higher volatility in aggregate output. It means that the shock prop-
agation between sectors is powerful in an asymmetric economy. This process may be 
based on the fact that the sectors rely more on each other’s input products in the case of 
an asymmetric structure, in other words, they are more interdependent. This result con-
firms that renationalizing can reduce risks from abroad, but at the same time, raises the 
risks of the domestic economy (Bonadio et al. 2020).

A methodological deficiency of this study is the question of the gross and net input–
output table, shortly discussed in the study. The assumption that the intrasectoral 
transactions are basically intersectoral, needs deeper analysis. Additionally, the level of 
aggregation might alter the results about the asymmetry of sectors. Similarly, the separa-
tion of the effects of openness, asymmetry, and other macroeconomic variables can be 
performed in different ways and the suggested method of this paper might not be the 
best one. All these deficiencies at the same time are further research areas. However, 
apart from these starting difficulties of the usage of the toolbox of ecological network 
analysis, results shed light on new aspects of the nature and effect of the international 
supply chain.

Appendix
Appendix 1: derivation of general cycling index values for the two extreme cases

In the first extreme case, the transaction matrix W is the identity matrix with zeros on 
its main diagonal and zeros elsewhere. In these derivations, without restricting the gen-
erality of the results, we assume vi = 0 ∀i , and mi = m ∀i . As a result, we get xi = 1+m 
for all sectors i. According to the definition in 1, the diagonal elements of matrix A are 
identically 1/(1+m) , while we have zeros elsewhere. Finally, the Leontief-matrix L in 
this case contains 1− 1/(1+m) = m/(1+m) on its main diagonal and zeros elsewhere.

In the second extreme case, the transaction matrix contains ones at all of its entries. 
Assuming again vi = 0 ∀i , and mi = m ∀i , we have xi = N +m for all sectors i. The 



Page 22 of 26Braun et al. Appl Netw Sci            (2021) 6:69 

Leontief-coefficients in A turn out to be 1/(N +m) at all entries, while the Leontief-
matrix L has (N +m− 1)/(N +m) on its main diagonal and −1/(N +m) elsewhere.

These calaculations show that in both cases the Leontief-matrix L = I− A has the 
general form where we have identical values a on the main diagonal and also identi-
cal values b off the main diagonal. As a result, solving for the Leontief-inverse L−1 
requires the solution of the following matrix equation:

In the equation above, we know the values a and b, while the entries (k and h) in the 
inverse matrix are unknown. Due to the specific structure of the original matrix, the 
inverse matrix has the same structure with identical values on the diagonal and off-diag-
onal separately.

This matrix equation defines N 2 linear equations in k and h, but these collapse into 
two different (independent) equations determining the diagonal (k) and off-diagonal 
(h) elements of the inverse matrix:

From the first equation we have

Substituting this into the second equations yields:

Going back to the two extreme cases, in the first case economy we have a = m/(1+m) 
and b = 0 . Using the results for the inverse matrix above, the Leontief-inverse L−1 in this 
case have k = 1/a = (1+m)/m on its main diagonal and zeros elsewhere. Using Eq. 3 
the sector-level cycling index becomes

for all sectors i, and in the last equation we used the normalized openness as in Eq. 5.
In the second extreme case, with the balanced economy, we have 

a = (N +m− 1)/(N +m) and b = −1/(N +m) . Substituting these values into the 
former solution for the Leontief-inverse we have k = (m+ 1)/m . It follows that the 
sector-level cycling indices become
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Appendix 2: sample countries and sectors

Tables 4 and 5.

Table 4  The list of countries in WIOD

Australia Estonia Latvia Russia

Austria Finland Lithuania Slovakia

Belgium France Luxembourg Slovenia

Bulgaria Germany Malta Spain

Brazil Greece Mexico Sweden

Canada Hungary Netherlands Switzerland

China India Norway Turkey

Croatia Indonesia Poland Taiwan

Cyprus Ireland Portugal United Kingdom

Czech Republic Italy Republic of Korea United States of America

Denmark Japan Romania

Table 5  The list of sectors in WIOD

Nr. Sectors Groups

1 Crop and animal production, hunting and related service activities Agriculture and mining

2 Forestry and logging Agriculture and mining

3 Fishing and aquaculture Agriculture and mining

4 Mining and quarrying Agriculture and mining

5 Manufacture of food products, beverages and tobacco products Manufacturing industries

6 Manufacture of textiles, wearing apparel and leather products Manufacturing industries

7 Manufacture of wood and of products of wood and cork, except furniture; etc. Manufacturing industries

8 Manufacture of paper and paper products Manufacturing industries

9 Printing and reproduction of recorded media Manufacturing industries

10 Manufacture of coke and refined petroleum products Manufacturing industries

11 Manufacture of chemicals and chemical products Manufacturing industries

12 Manufacture of basic pharmaceutical products and pharmaceutical preparations Manufacturing industries

13 Manufacture of rubber and plastic products Manufacturing industries

14 Manufacture of other non-metallic mineral products Manufacturing industries

15 Manufacture of basic metals Manufacturing industries

16 Manufacture of fabricated metal products, except machinery and equipment Manufacturing industries

17 Manufacture of computer, electronic and optical products Manufacturing industries

18 Manufacture of electrical equipment Manufacturing industries

19 Manufacture of machinery and equipment n.e.c. Manufacturing industries

20 Manufacture of motor vehicles, trailers and semi-trailers Manufacturing industries

21 Manufacture of other transport equipment Manufacturing industries

22 Manufacture of furniture; other manufacturing Manufacturing industries

23 Repair and installation of machinery and equipment Manufacturing industries

24 Electricity, gas, steam and air conditioning supply Other industries

25 Water collection, treatment and supply Other industries

26 Sewerage; waste collection, treatment and disposal activities; materials recovery Other industries

27 Construction Other industries

28 Wholesale and retail trade and repair of motor vehicles and motorcycles Services

29 Wholesale trade, except of motor vehicles and motorcycles Services

30 Retail trade, except of motor vehicles and motorcycles Services
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Abbreviations
FE: Fixed effect; GDP: Gross domestic product; OLS: Ordinary least squares; UK: United Kingdom; US/USA: United States of 
America; WIOD: World Input–Output Database.
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Table 5  (continued)

Nr. Sectors Groups

31 Land transport and transport via pipelines Services

32 Water transport Services

33 Air transport Services

34 Warehousing and support activities for transportation Services

35 Postal and courier activities Services

36 Accommodation and food service activities Services

37 Publishing activities Services

38 Motion picture, video and TV programme production, sound recording and 
music publishing activities; etc.

Services

39 Telecommunications Services

40 Computer programming, consultancy and related activities; information service 
activities

Services

41 Financial service activities, except insurance and pension funding Services

42 Insurance, reinsurance and pension funding, except compulsory social security Services

43 Activities auxiliary to financial services and insurance activities Services

44 Real estate activities Services

45 Legal and accounting activities; activities of head offices; management consul-
tancy activities

Services

46 Architectural and engineering activities; technical testing and analysis Services

47 Scientific research and development Services

48 Advertising and market research Services

49 Other professional, scientific and technical activities; veterinary activities Services

50 Rental and leasing activities, Employment activities, Travel services, security and 
services to buildings

Services

51 Public administration and defence; compulsory social security Services

52 Education Services

53 Human health and social work activities Services

54 Creative, Arts, Sports, Recreation and entertainment activities and all other 
personal service activities

Services

55 Activities of households as employers; undifferentiated goods- and services-
producing activities of households for own use

Services

56 Activities of extra-territorial organisations and bodies Services
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