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Introduction
Big complex networks are abundant in many application domains, such as social net-
works and systems biology. Examples include social networking websites, protein-
protein interaction networks, biochemical pathways and web graphs. However, good 
visualization of big complex networks is challenging due to scalability and complexity. 
For example, visualizations of big complex networks often produce hairball-like visuali-
zation, making it difficult to understand the structure of the graphs.

Graph sampling methods have been widely used to reduce the size of graphs in 
graph mining (Hu and Lau 2013; Leskovec and Faloutsos 2006). Popular graph sam-
pling methods include Random Vertex sampling, Random Edge sampling and Ran-
dom Walk. However, previous work based on random sampling methods often fails to 
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preserve the connectivity and important structures of the original graph, in particular 
for visualization (Wu et al. 2017).

Spectral sparsification is a technique to reduce the number of edges in a graph while 
retaining its structural properties (Spielman and Teng 2011). More specifically, it is a 
sampling method which uses the effective resistance values of edges, which is closely 
related to the commute distances of graphs. However, computing effective resistance 
values of edges is rather complicated, which can be very slow for big graphs (Eades 
et al. 2017b).

Another method to address scalability issues in computing is distributed computing. 
With the advent of technology, cloud computing services are becoming much cheaper 
and convenient for anyone to use, leading to the widespread use of distributed com-
puting on the cloud. Recent works have used cloud computing for distributed graph 
drawing (Arleo et al. 2019). However, communication overhead still poses a problem, 
impacting the efficiency gains.

This paper introduces divide and conquer algorithms for spectral sparsification, 
based on the graph connectivity, called the BC (Block Cut-vertex) tree decomposi-
tion, which represents the decomposition of a graph into biconnected components. 
More specifically, the main idea is to divide a big complex network into biconnected 
components, and then compute the spectral sparsification for each biconnected com-
ponent in parallel to reduce the runtime as well as to maintain the graph connectivity. 
Namely, the effective resistance values of edges are computed for each biconnected 
component, as an approximation of the effective resistance values of the original 
graph. We also introduce a BC tree-based distributed framework for spectral sparsi-
fication and graph drawing, designed for use in a cloud-based distributed computing 
environment.

The main contributions of this paper are summarized as follows: 

1	 We present two new variations of spectral sparsification based on connectivity, 
spectral edge sampling BC_SS (BC Spectral Sampling) and spectral vertex sampling 
BC_SV  (BC Spectral Vertex). Spectral edge sampling mainly sparsifies the edge set, 
while the spectral vertex sampling focuses on reducing the size of the vertex set.

2	 We present DBC_SS (Distributed BC Spectral Sampling), a distributed algorithm for 
spectral sparsification integrating BC tree decomposition. Effective resistance values 
of edges are computed independently on each biconnected component in parallel to 
improve the runtime efficiency of spectral sparsification.

3	 We present DBC_GD (Distributed BC Graph Drawing), a distributed graph draw-
ing algorithm integrating BC tree decomposition. Using a radial tree drawing of the 
BC tree of a graph as an initial layout, biconnected components are drawn indepen-
dently in parallel, and each vertex of the BC tree is replaced with the drawing of the 
biconnected component it represents to obtain a drawing of the whole graph.

4	 We implement and evaluate BC_SS and BC_SV  in comparison to sequential spectral 
sparsification. Experimental results demonstrate that our BC_SS and BC_SV  meth-
ods are significantly faster than the original SS (Spectral Sparsification) (Eades et al. 
2017b) and SV (Spectral Vertex sampling) (Hu et  al. 2019) at about 72% faster on 
average, while preserving the same sampling quality, using a comparison of the effec-
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tive resistance values and rankings of edges (resp., vertices), sampling quality met-
rics, graph similarity, and visual comparison.

5	 We implement and evaluate DBC_SS in comparison to sequential effective resist-
ance value computation SS. Our experiments show that DBC_SS obtains runtime 
improvements over SS by 27% and 47% when running on 2 servers and 5 servers 
respectively.

6	 We implement and evaluate DBC_GD with three variations based on the layout used 
to draw each biconnected component: DBC_FR (Fruchterman-Reingold), DBC_SM 
(Stress Majorization), and DBC_FM3 (FM3). Compared to the sequential layouts, 
DBC_FR is 26 times and 52 times faster than FR when running on 2 servers and 5 
servers respectively, DBC_SM is 31 times and 71 times faster than SM when running 
on 2 servers and 5 servers respectively, and DBC_FM3 is 2 times and 4 times faster 
than FM3 when running on 2 servers and 5 servers respectively. DBC_GD also sur-
prisingly obtains better quality metrics than the original layouts.

Related work
Graph sampling

Graph sampling methods have been extensively studied in graph mining to reduce 
the size of big complex graphs. Consequently, many stochastic sampling methods are 
available (Hu and Lau 2013; Leskovec and Faloutsos 2006). For example, most popu-
lar stochastic sampling include Random Vertex sampling and Random Edge sampling. 
However, it was shown that random sampling methods often fail to preserve connec-
tivity and important structure in the original graph, in particular for visualization (Wu 
et al. 2017).

Newer sampling methods have attempted to improve upon stochastic sampling, such 
as by using topology-based decomposition to preserve connectivity (Hong et al. 2018) 
or by preserving edges representing significant deviations in the weight distribution of a 
weighted graph (Serrano et al. 2009).

Spectral sparsification

Spectral graph theory is concerned with the eigenvalues and eigenvectors of matrices 
associated with graphs (Spielman 2007). The spectrum of a graph is the list of eigen-
values of its Laplacian matrix L , which is defined as L = D − A where D is the degree 
matrix and A is the adjacency matrix. The spectrum of a graph is closely related to 
important structural properties such as connectivity, clustering, stress, and commute 
distance. Graph spectrum has been used to draw aesthetics-focused graph layouts with 
fast runtime (Koren 2003) as well as to support various types of of graph analysis (For-
man et al. 2005; Gera et al. 2018; Galimberti et al. 2019).

A spectral sparsifier is a subgraph whose Laplacian quadratic form is approximately 
the same as the original on all real vector inputs. Every n-vertex graph has a spectral 
approximation with O(n log n) edges (Spielman and Teng 2011).

Spectral sparsification selects edges based on their effective resistance. Modelling a 
graph as an electrical network, the effective resistance of the edge is defined as the volt-
age drop across the edge and its value is equivalent to the probability of the edge to be 
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included in a random spanning tree of the graph (Spielman and Srivastava 2011). How-
ever, computing effective resistance values of edges is quite complicated and can be very 
slow for big graphs (Eades et al. 2017b).

Spectral sparsification-based sampling has been shown to obtain superior sampling 
quality compared to stochastic sampling (Eades et al. 2017b; Hu et al. 2019), as well as 
compared to sampling based on graph centrality (Hong and Lu 2020).

BC (Block Cut‑vertex) tree decomposition

The BC tree represents the tree decomposition of a connected graph G into bicon-
nected components, which can be computed in linear time (Hopcroft and Tarjan 1973). 
A biconnected graph is a graph without a cut vertex, that is a vertex whose removal 
disconnects the graph; a biconnected component is a maximal biconnected subgraph. 
There are two types of nodes in the BC tree T; a cut vertex c and a biconnected compo-
nent B. A cut vertex is a vertex whose removal from the graph makes the resulting graph 
disconnected. A biconnected component (or block) is a maximal biconnected subgraph.

Graph sampling quality metrics

There are a number of quality metrics for graph sampling (Hu and Lau 2013). For our 
experiment, we use the following most popular quality metrics:

•	 Degree Correlation Associativity (Degree): a basic structural metric, which computes 
the likelihood that vertices link to other vertices of similar degree, called positive 
degree correlation (Newman 2003).

•	 Closeness Centrality (Closeness): a centrality measure of a vertex in a graph, which 
sums the length of all shortest paths between the vertex and all the other vertices in 
the graph (Freeman 1978).

•	 Average Neighbor Degree (AND): the measure of the average degree of the neighbors 
of each vertex (Barrat et al. 2004).

•	 Clustering Coefficient (CC): measures the degree of vertices which tend to cluster 
together (Saramki et al. 2007).

Graph drawing algorithms

One of the most popular graph drawing algorithms is the force-directed or spring algo-
rithm, which models a graph as a system with attraction forces between neighboring 
vertices and repulsion forces between all pairs of vertices (Eades 1984). Although spring 
algorithms are able to produce high-quality graph layouts, traditional spring algorithms 
do not scale well to larger graphs due to the repulsion force computation taking O(n2) 
runtime.

Multi-level algorithms have been developed which improves the runtime to O(n log n) 
in practice using a coarsening and refinement technique. Here, vertices are gradu-
ally clustered in the coarsening phase until a simple graph that can be drawn easily is 
obtained, and in the refinement step, the drawing of the “coarse” graph is then used as an 
initial layout for the next level with more vertices. An example is the FM3 (Fast Multipole 
Multilevel Method) algorithm (Hachul and Jünger 2004).



Page 5 of 23Hu et al. Appl Netw Sci            (2021) 6:60 	

Other layout types include stress-based layouts, which utilize the stress function from 
MDS (multi-dimensional scaling). These methods compute a layout by minimizing an 
adapted stress function, which is lower when the geometric distances between vertices 
are proportional to their graph theoretic distances (Gansner et al. 2004).

For drawing trees, specific algorithms have been introduced. An example is the radial 
tree drawing algorithm (Eades 1991). Starting at a root vertex, subtrees are assigned 
a wedge around the root with width proportional to its size, and further subtrees are 
recursively assigned a sub-area of its parent’s wedge.

BC tree‑based spectral graph sampling
In this section, we introduce a new divide and conquer algorithm for spectral sparsifi-
cation, by tightly integrating the BC tree decomposition, aiming to reduce the runtime 
for computing the effective resistance values as well as to maintain the graph connectiv-
ity. We present two variations, called BC_SS (for spectral sparsification of edges) and 
BC_SV  (for spectral sampling of vertices).

More specifically, we divide a big complex graph into a set of biconnected compo-
nents, and then compute the spectral sparsification (i.e., effective resistance values) for 
each biconnected component in parallel. Namely, the effective resistance values of the 
edges are computed for each biconnected component, as a fast approximation of the 
effective resistance values of the original graph.

Let G = (V ,E) be a graph with a vertex set V ( n = |V | ) and an edge set E ( m = |E| ). 
The adjacency matrix of an n-vertex graph G is the n× n matrix A, indexed by V, such 
that Auv = 1 if (u, v) ∈ E and Auv = 0 otherwise. The degree matrix D of G is the diago-
nal matrix where Duu is the degree of vertex u. The Laplacian matrix of G is L = D − A . 
The spectrum of G is the eigenvalues of L, �1, �2, . . . , �n . Suppose that we regard a graph 
G as an electrical network where each edge e is a 1-� resistor, and a current is applied. 
The effective resistance r(e) of an edge e is the voltage drop over the edge e, see (Spiel-
man and Teng 2011).

Algorithm BC_SS

Let G = (V, E) be a connected graph with a vertex set V and an edge set E, and let 
Gi, i = 1, . . . , k , denote biconnected components of G.

The BC_SS algorithm first computes the BC tree decomposition, and then adds the cut 
vertices and their incident edges to the spectral sparsification G′ of G. This is due to the 
fact that the cut vertices play important roles in preserving the connectivity of the graph 
as well as in social network analysis, such as brokers or important actors connecting two 
different communities.

Next, it computes a spectral sparsification G′
i for each biconnected component 

Gi, i = 1, . . . , k of G. Specifically, for each component Gi , we compute the effective resist-
ance values r(e) of the edges, and then sample the edges with the largest effective resist-
ance values. Finally, it merges G′

i , i = 1, . . . , k to obtain the spectral sparsification G′ of G. 
The BC_SS algorithm is described as follows:

Algorithm: BC_SS 
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1.	 Partitioning: Divide a connected graph G into biconnected components, Gi , 
i = 1, . . . , k.

2.	 Cut vertices: Add the cut vertices and their incident edges to the spectral sparsifica-
tion G′ of G.

3.	 Spectral sparsification: For each component Gi , compute a spectral sparsification G′
i 

of Gi . Specifically, compute the effective resistance values r(e) of the edges, and then 
sample the edges with the largest effective resistance values.

4.	 Aggregation: Merge all G′
i of Gi to compute the spectral sparsification G′ of the origi-

nal graph G.

Algorithm BC_SV

The BC_SV  algorithm is a divide and conquer algorithm that uses spectral sampling 
of vertices (Hu et al. 2019): i.e., adapt the spectral sparsification approach, by sampling 
vertices rather than edges. More specifically, we define an effective resistance value r(v) 
for each vertex v as the sum of effective resistance values of the incident edges, i.e., 
r(v) =

∑
e∈Ev

r(e) , where Ev represents a set of edges incident to a vertex v.
The BC_SV  algorithm first computes the BC tree decomposition, and then adds the 

cut vertices and their incident edges to the spectral sampling G′ of G. Next, it computes 
a spectral vertex sampling G′

i for each biconnected component Gi, i = 1, . . . , k of G. Spe-
cifically, for each component Gi , we compute the effective resistance values r(v) of the 
vertices, and then sample the vertices with the largest effective resistance values. Finally, 
it merges G′

i , i = 1, . . . , k to obtain the spectral sampling G′ of G. The BC_SV  algorithm 
is described as follows:

Algorithm: BC_SV  

1	 Partitioning: Divide a connected graph G into biconnected components, Gi , 
i = 1, . . . , k.

2	 Cut vertices: Add the cut vertices and their incident edges to the spectral sampling G′ 
of G.

3	 Spectral vertex sampling: For each component Gi , compute spectral vertex sampling 
G′
i of Gi . Specifically, compute the effective resistance values r(v) of the vertices, and 

then sample the vertices with largest effective resistance values.
4	 Aggregation: Merge all G′

i of Gi to compute the Spectral vertex sampling G′ of the 
original graph G.

BC tree‑based distributed framework
In this section, we introduce the BC-P (BC Parallel) framework, a framework integrating 
BC tree decomposition and cloud computing to achieve better scalability and efficiency 
for analysis and visualization of big complex graphs. We apply a Divide-and-Conquer 
method to divide a connected graph into biconnected components using BC tree 
decomposition. We then assign the components to a set of servers in a balanced manner 
based on the sizes of the components.
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Framework: BC-P

1	 BC Tree Decomposition: Divide a connected graph G into biconnected components 
Ci, i = 1, . . . , k

2	 Partitioning: Partition the set of components to be assigned to a set of servers 
Sj , j = 1, . . . , h based on the sizes of the components, in a balanced manner.

3	 Parallel computing: in parallel, each server independently performs the main analyti-
cal computation on its set of assigned components

4	 Aggregation: merge results from each server to obtain the result for the whole graph

Using the BC tree decomposition, communication overheads can be reduced. This is 
because the graph is divided into biconnected components, which only intersect on 
cut vertices and share no edges. Thus, each server can perform computations on their 
assigned components independently.

The BC tree can also be exploited in the merge phase to emphasize the connectivity 
and topological structure of the graph. For example, sampling can be made to always 
include cut vertices and edges incident on them, or a drawing of the graph may be com-
puted in a way that emphasizes the connectivity structure between the biconnected 
components.

Distributed BC tree‑based spectral sparsification

We present DBC_SS, a distributed algorithms for spectral sparsification. The input graph 
is decomposed into biconnected components using BC tree decomposition, and the 
effective resistance values of edges are computed per biconnected component in parallel. 
The DBC_SS algorithm is described as follows:

Algorithm: DBC_SS

1	 Divide a connected graph G into biconnected components Ci, i = 1, . . . , k

2	 Partition the set of components to be assigned to a set of servers Sj , j = 1, . . . , h 
based on the sizes of the components, in a balanced manner, using a greedy algo-
rithm.

3	 In parallel, each server independently computes the effective resistance values of 
edges per biconnected component.

4	 Combine all the results from all server using a master instance to produce the final 
result.

Using BC tree decomposition, communication overheads can be removed for parallel 
effective resistance values computation. This is because the biconnected components do 
not share any edges, thus the effective resistance values can be computed independently 
for each component.

Distributed BC tree‑based graph drawing

We present DBC_GD, a parallel algorithm for graph drawing. We use BC tree decompo-
sition on the graph and apply a radial tree drawing algorithm on the BC tree to obtain 
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an initial layout for the original graph. Each biconnected component is drawn separately, 
and then each vertex in the radial tree drawing representing a block vertex is replaced 
with the drawing of the corresponding biconnected component. The DBC_GD algo-
rithm is described as follows:

Algorithm: DBC_GD

1	 Divide a connected graph G into biconnected components Ci, i = 1, . . . , k

2	 Draw the BC tree using Radial Tree algorithm, each Block cut vertex representing 
either a cut vertex or a biconnected component.

3	 Partition the set of components to be assigned to a set of servers Sj , j = 1, . . . , h 
based on the sizes of the components, in a balanced manner, using a greedy algo-
rithm.

4	 Each server independently computes the layout of each biconnected component.
5	 Merge all the layout results of each biconnected component into the radial tree draw-

ing by replacing each block vertex in the BC tree with the drawing of its correspond-
ing biconnected component to produce the final layout of the original graph.

To ensure that the layout for each biconnected component can be computed indepen-
dently without causing issues in the merge step, we use a modified version of the radial 
tree layout where we scale the geometric size of the vertices of the BC tree by the size of 
the biconnected component represented. This size is then used to modify the size of the 
wedge assigned to the sub-tree as needed. This ensures that the drawings of the bicon-
nected component will not overlap in the merge step.

BC_SS and BC_SV  experiments
We first design experiments to compare the Spectral Sparsification (SS) (Eades et  al. 
2017b), BC_SS and Random Edge sampling (RE) (resp., Spectral Vertex sampling (SV) 
(Hu et  al. 2019), BC_SV  and Random Vertex sampling (RV)), implemented in Java. 
Analysis of experimental results such as metrics and statistics are implemented in 
Python, using the NetworkX library (Hagberg et al. 2008). All programs were run on a 
MacBook Pro with 2.2 GHz Intel Core i7, 16 GB 1600 MHz DDR3, and macOS Sierra 
version 10.12.6.

SS and SV have already been shown to obtain better quality samples compared to 
other well-known sampling methods (Eades et al. 2017b; Hu et al. 2019). Furthermore, 
an extensive comparison has been done showing the superior performance of spectral 
sparsification-based sampling to sampling based on various types of other graph analy-
sis (Hong and Lu 2020). Our main focus is then to show that BC_SS and BC_SV  obtain 
the same level of quality as SS and SV respectively with much better runtime. The main 
hypotheses of our BC_SS and BC_SV  experiments include:

•	 H1: BC_SS computes effective resistance values of edges faster than SS (Eades et al. 
2017b).

•	 H2: The effective resistance values and the rankings of edges (resp., vertices) com-
puted by BC_SS (resp., BC_SV  ) are good approximations of those computed by SS 
(resp., SV), and their similarity increases with the sampling ratio.
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•	 H3: Graph samples of BC_SS (resp., BC_SV  ) have almost the same sampling quality 
as SS (resp., SV), and significantly better than RE (resp., RV).

•	 H4: Graph samples computed by BC_SS (resp., BC_SV  ) produce almost the same 
visualization as SS (resp., SV).

The main rationale behind the hypotheses is that the graph samples computed by BC_SS 
and SS (resp., BC_SV  and SV) would be very similar, since the ranking of edges (resp., 
vertices) based on the resistance values are highly similar. We experiment with bench-
mark real world graphs (Eades et al. 2017b) and synthetic data sets, see Table 1. The real 
world graphs are scale-free graphs with highly imbalanced sizes of biconnected compo-
nents (i.e., big biconnected component). The graphs include social networks (facebook, 
oflights, p2pG, soch ,wiki) and biological networks (G4, G15, yeastppi). The synthetic 
graphs are generated with balanced sizes of biconnected components. The structure is 
created by first generating a k-ary tree, then replacing the vertices with either bicon-
nected components or cut vertices, alternating between levels; the generative model is 
similar to that used in Hong et al. (2018).

Runtime improvement

Figure 1 shows significant runtime improvement for computing effective resistance val-
ues by BC_SS over SS. We compute the runtime improvement of BC_SS over SS using 
the formula RI = t(SS)−t(BC_SS)

t(SS)  , where t(SS) and t(BC_SS) are the runtimes of SS and 
BC_SS respectively. The runtime improvement is much higher for the synthetic graphs, 
achieving above 99% on average, while the improvement on the real world graphs, on 
average 45%, varies depending on their structures. For example, BC_SS improved 77% of 
the runtime for the G4 graph, while it improved 23% for the Facebook graph due to the 
existence of the giant biconnected component. Overall, the average runtime improve-
ment over all datasets is 68%.

Overall, our experiments show that BC_SS is significantly faster than SS, supporting 
hypothesis H1.

Approximation of the effective resistance values

Figure 2a and b show the mean of the differences in effective resistance values computed 
by SS and BC_SS with sampling ratio from 5% to 100% . Figure 2c and d show the mean of 

Table 1  Data sets

(a) Real world graphs Synthetic graphs

Graph V E Graph Abbr V E

Facebook 4039 88234 syn_path20_150_200_True sp20 3462 5410

G4 2075 4769 syn_tree4_5_10_10_100_True st4_5 21,955 34,957

G15 1789 20459 syn_tree4_9_10_10_30_True_2 st4_9 18,936 40,411

Oflights 2939 14458 syn_tree6_3_4_10_30_True_2 st6_3 11,679 24,868

p2pG 8846 31839 syn_tree6_3_4_10_30_True_3 st6_3_3 13,237 41,936

soch 2426 16,630

wiki 7115 100,762

yeastppi 2361 6646
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Fig. 1  Significant runtime improvement by BC_SS over SS 

Fig. 2  The mean of the differences in effective resistance values computed by BC_SS and SS (a, b); by BC_SV  
and SV (c, d)
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the differences in effective resistance values computed by SV and BC_SV  with sampling 
ratio from 5% to 100%.

Overall, it clearly shows that the mean of the differences in effective resistance values 
computed by BC_SS and SS (resp., BC_SV  and SV) is very small for most of the data sets, 
supporting hypothesis H2.

More specifically, for BC_SS , smaller than -0.0175 for real world graphs; smaller than 
-0.12, with one outlier, for synthetic graphs. For BC_SV  , smaller than − 2.5 (compared 
to resistance values of edges, -2.5 is equivalent to -0.06) for real world graphs; smaller 
than -0.5 (equivalent to -0.08) for synthetic graphs.

Interestingly, in contrast to the runtime improvement results, real world graphs have 
a better similarity in the effective resistance values than synthetic graphs, due to the 
existence of the big giant component. Namely, the effective resistance values computed 
from the big biconnected component are very similar to the effective resistance values 
computed for the whole graph. In the case of sparser graphs (e.g. G4), graphs with a 
very large giant biconnected component and thus very unbalanced biconnected compo-
nent sizes (e.g. G15), or graphs with a very large number of cut vertices (e.g. st_4_9 ), the 
mean difference does not always change linearly.

It should be noted that even at 100% sampling rate, BC_SS and BC_SV  still compute 
effective resistance per biconnected component. Thus, it is possible to still have some 
minor differences compared to the effective resistance values computed by SS and SV, 
which computes the effective resistance based on the whole graph.

Approximation of the ranking of edges and vertices

We define the sampling accuracy based on the proportion of the common sampled edges 
(resp., vertices) between two graph samples computed by SS and BC_SS (resp., SV and 
BC_SV  ). A high sampling accuracy indicates that both graph samples are highly similar. 
Namely, the sampling accuracy shows how well the effective resistance values computed 
by BC_SS (resp., BC_SV  ) can serve as a good approximation of the values computed by 
SS (resp., SV).

Figure  3a and b (resp., (c) and (d)) show the sampling accuracy of BC_SS (resp., 
BC_SV  ) with sampling ratio from 5% to 100% . It is easy to observe that for all data sets, 
the sampling accuracy increases as the sampling ratio increases, supporting hypothesis 
H2.

Specifically, for BC_SS , synthetic graphs perform better: they achieve above 50% sam-
pling accuracy at sampling ratio 5% , and then quickly rise up to 80% at sampling ratio 
15% , with steady improvement towards 100% as the sampling ratio increases.

The performance of BC_SS on the real world graphs shows different patterns, depend-
ing on their structure. Interestingly, the Facebook graph has excellent sampling accuracy 
at all sampling ratios, achieving above 80% , while it performs the worst on the runt-
ime improvement and the difference in resistance values. On the other hand, graph G4 
shows very high performance on runtime improvement and the difference in resistance 
values is quite small, however the sampling accuracy is low when the sampling ratio is 
smaller than 20%.

For BC_SV  , synthetic graphs show excellent performance overall, achieving above 70% 
sampling accuracy at sampling ratio 5% , and then rise up to 90% at sampling ratio 10% , 
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with steady improvement towards 100% as the sampling ratio increases. For real world 
graphs, BC_SV  achieves above 70% sampling accuracy at sampling ratio 20% for all 
graphs. Particularly, the Facebook graph shows excellent sampling accuracy at all sam-
pling ratios, achieving above 99% . Similar to the mean differences, BC_SS and BC_SV  
computing effective resistance values per biconnected component may lead to cases 
where the accuracy is not 100% even at 100% sample size, such as with sparse graphs 
with uneven component sizes (e.g. G4).

Furthermore, the correlation analysis of the ranking of edges (resp., vertices) based 
on resistance values computed by SS and BC_SS (resp., SV and BC_SV  ) shows strong 
and positive results for all data sets. Overall, our experiments and analysis confirm that 
BC_SS (resp., BC_SV  ) computes good approximations on the rankings of edges (resp., ver-
tices) based on effective resistance values, compared to SS (resp., SV), supporting hypoth-
esis H2.

Graph sampling quality metrics comparison

We use well known sampling quality metrics (Hu and Lau 2013): Degree Correlation 
(Degree), Closeness Centrality (Closeness), Clustering coefficient (CC), and Average 
Neighbor Degree (AND). More specifically, we use the Kolmogorov-Smirnov (KS) dis-
tance to compute the distance between two Cumulative Distribution Functions (CDFs) 
(Gammon et al. 1967). The KS distance value is between 0 to 1: the lower KS value means 

Fig. 3  The sampling accuracy of BC_SS (a, b) and BC_SV  (c, d)
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the better result. Namely, a KS distance value closer to 0 indicates a higher similarity 
between CDFs.

Figure 4a and b show the average (over all data sets) of the KS distance values of the 
graph samples computed by BC_SS (red), SS (blue), and Random Edge sampling (RE) 
(yellow), with four sampling quality metrics. Clearly, SS and BC_SS perform consistently 
better than RE for both types of graphs, as we expected. More importantly, the perfor-
mance of SS and BC_SS are almost identical across all the metrics, especially for syn-
thetic graphs. For the real world graphs, the performance of SS and BC_SS are highly 
similar on Closeness, AND, and CC metrics.

Figure 4c and d show the average (over all data sets) of the KS distance values of the 
graph samples computed by BC_SV  (red), SV (blue), and Random Vertex sampling (RV) 
(yellow), with four sampling quality metrics. Clearly, SV and BC_SV  perform consist-
ently better than RV for both types of graphs, as we expected. More importantly, the 
performance of SV and BC_SV  are almost similar on all the metrics, especially for AND, 
Degree, and CC. In particular, we observe that BC_SV  shows the largest improvement 
on Closeness, significantly better than SV.

In summary, our experimental results with sampling quality metrics confirm that both 
SS and BC_SS (resp., SV and BC_SV  ) outperform RE (resp., RV), and the graph samples 
computed by BC_SS (resp., BC_SV  ) have almost the same sampling quality as those com-
puted by SS (resp., SV), supporting hypothesis H3.

Jaccard similarity index comparison

We also computed the Jaccard similarity index (Jaccard 1912) for testing the similarity 
between the original graph G and the graph samples G′ and G′′ computed by SS and 
BC_SS (resp., SV and BC_SV  ). More specifically, it is defined as the size of the intersec-
tion divided by the size of the union of the neighbourhood of vertices in the two graphs 
(value 1 indicates that two graphs are the same): MJS(G1,G2) =

1
|V |

∑
u∈V

|N1(u)∩N2(u)|
|N1(u)∪N2(u)|

 , 

Fig. 4  The KS values of the sampling quality metrics (Closeness, AND, Degree, CC) of graph samples. a, b: 
computed by BC_SS , SS, RE; c, d: BC_SV  , SV, RV. The lower KS value means the better result. BC_SS and SS 
(resp., BC_SV  and SV) perform highly better than RE (resp., RV) on all metrics
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where N1(u) (resp. N2(u) ) is the neighbourhood of u in G1 (resp. G2 ) (Eades et al. 2017a). 
Our usage of Jaccard similarity is consistent with previous work on graph sampling and 
spectral sparsification, where its effectiveness for comparing graphs have been demon-
strated (Hu et al. 2019; Meidiana et al. 2019).

Figure  5 shows the average Jaccard similarity values for real world graphs and syn-
thetic graphs for BC_SS and SS (resp. BC_SV  and SV), with sampling ratio from 5% to 
95% . Clearly, for both data sets, the Jaccard similarity index linearly increases with the 
sampling ratio, and SS and BC_SS (resp., SV and BC_SV  ) perform almost the same, sup-
porting hypothesis H3.

Visual comparison: SS versus BC_SS and SV versus BC_SV

We conduct visual comparisons of graph samples computed by SS, BC_SS , SV, and 
BC_SV  using the Backbone layout, specifically designed to untangle the hairball draw-
ings of large graphs (Nocaj et al. 2015).

Table 2 shows graph samples with sampling ratio at 20% for real world graphs (face-
book, G15, G4, oflights, soc_h, yeastppi) as well as a synthetic graph st4_5. Visual compar-
ison clearly shows that SS and BC_SS (resp., SV and BC_SV  ) produce almost identical 
visualizations, supporting hypothesis H4.

Overall, spectral edge sampling methods (SS and BC_SS ) and spectral vertex sam-
pling methods (SV and BC_SV  ) produce visually highly similar graph samples. For some 
cases, the density of graph samples are slightly different, depending on the density of the 
original graphs. For example, for graphs G4 and yeastppi, spectral vertex sampling meth-
ods (SV and BC_SV  ) compute graph samples which better captures the dense structure 
of the original graph.

DBC_SS experiments
We next conduct experiments comparing the efficiency of DBC_SS to sequential spec-
tral sparsification SS. We ran effective resistance value computation on three different 
settings: sequential SS, DBC_SS on 2 servers, and DBC_SS on 5 servers; the usage of 
2 and 5 servers is consistent with the experimental setup of previous topology-based 
and spectral sparsification-based distributed sampling works (Hong et al. 2018; Meidi-
ana et al. 2019), chosen as a starting point to demonstrate the difference in runtime on 

Fig. 5  Jaccard similarity index comparison of graph samples, computed by BC_SS and SS (a (resp., BC_SV  and 
SV (b)): almost identical
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multiple configurations even on a small number of servers. We then compare the runt-
ime improvements of DBC_SS on 2 and 5 servers to the baseline SS.

We conducted experiments using a mix of real world and synthetic datasets, described 
in Table 3. The real world datasets have been taken from the library of Hachul and Jünger 
(2007), the sparse matrices collection (Davis and Hu 2011), and the network repository 
(Rossi and Ahmed 2015), while the synthetic datasets were created with a globally sparse 
structure with locally dense “blobs”.

We expect that the parallel DBC_SS will provide better runtime efficiency over SS. 
We also expect DBC_SS to compute sparsifications which preserve the global skeleton 
structure of the full graphs. We formulate the following hypothesis:

Table 2  Comparison of graph samples of real world graphs and a synthetic graph with 20% 
sampling ratio, computed by SS, BC_SS , SV and BC_SV

Original - facebook SS - 20% BC SS - 20% SV - 20% BC SV - 20%

Original - G15 SS - 20% BC SS - 20% SV - 20% BC SV - 20%

Original - G4 SS - 20% BC SS - 20% SV - 20% BC SV - 20%

Original - oflights SS - 20% BC SS - 20% SV - 20% BC SV - 20%

Original - soc h SS - 20% BC SS - 20% SV - 20% BC SV - 20%

Original - yeastppi SS - 20% BC SS - 20% SV - 20% BC SV - 20%

Original - st4 5 SS - 20% BC SS - 20% SV - 20% BC SV - 20%

SS and BC_SS (resp. SV and BC_SV  ) produce almost identical visualizations
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•	 H5: DBC_SS runs faster than SS.
•	 H6: DBC_SS computes sparsified graphs with similar visualisation to the full graphs.

Runtime improvement

We compute the runtime improvement of DBC_SS over SS using the formula 
RI = t(SS)−t(DBC_SS)

t(DBC_SS)  where t(SS) is the runtime of SS and t(SS) is the runtime of DBC_SS.
Figure 6 shows the runtime improvement of DBC_SS over sequential effective resist-

ance value computation. DBC_SS runs faster than SS on all datasets, on average with 27% 
runtime improvement on a 2-server configuration and 42% runtime improvement on a 
5-server configuration. Larger improvements when using 5 servers over 2 servers can 
be seen when the graph has evenly-sized biconnected components (e.g. cycleblackhole 

Table 3  Data sets for DBC_SS experiments

Graph |V| |E| Graph |V| |E|

Airlines 235 2101 rnode_5_4_1 4348 65,810

gridblackhole2 1535 14939 rnode_4_5_1 4622 86,690

G_13 1647 6487 tree_20_1 4702 95,727

G_15 1785 20459 cycleblackhole1 5080 51,767

hamsterster_lcc 2000 16097 cycleblackhole2 5080 51,829

yeastppi_lcc 2224 7049 as19990606 5188 10,974

flights_lcc 3397 19231 migrations_lcc 6025 9378

rnode_4_5_2 3466 19247 tree_25_1 6960 116,687

rnode_4_5_3 3881 36560 cycle_25_1 28,766 223,903

facebook01 4039 88,234

Fig. 6  Runtime improvement of DBC_SS over SS. On average, DBC_SS on 5 servers obtains 47% runtime 
improvement over SS 
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graphs), compared to graphs with a giant biconnected component (e.g. airlines, ham-
sterster). Overall, the results show that DBC_SS run significantly faster than SS, support-
ing hypothesis H5.

Visual comparison

Table 4 shows a visual comparison between the drawings of the original graph G and the 
sparsified graph G′ for a few data sets. G′ is computed by using DBC_SS to compute the 
effective resistance values per biconnected component of a graph G, adding all edges 
incident to the cut vertices of G, and then, for each biconnected component, adding 
edges in descending order of effective resistance until the desired sparsification rate is 
achieved. It can be seen that the sparsified graphs produced by DBC_SS display a similar 
global structure to the original graphs, supporting hypothesis H6.

DBC_GD experiments
To evaluate the efficiency and effectiveness of DBC_GD, we executed experiments com-
paring DBC_GD to sequential graph drawing algorithms. We selected three original 
graph layouts of different types to be compared: FR (Fruchterman-Reingold) (Fruchter-
man and Reingold 1991), a force-directed layout; FM3 (Hachul and Jünger 2004), a 
multi-level layout; and SM (Stress Majorization) (Hachul and Jünger 2004), a stress-
based layout. We denote the respective DBC_GD variants as DBC_FR, DBC_FM3, and 
DBC_SM.

For each original graph layout, we draw the graphs using the layout and the corre-
sponding DBC_GD variants. We then compare the results on runtime and quality 
metrics.

For this experiment, we created synthetic datasets where the BC tree decomposition 
produces a balanced tree. The details of the graphs are shown in Table 5, named in the 

Table 4  Visual comparison between drawings of full graphs G and their sparsifications G′ computed 
by DBC_SS

airlines(G) facebook(G) G 15(G)

airline(G′) facebook(G′) G 15(G′)

DBC_SS computes sparsifications that preserve the global skeleton structure of the graph
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format treev_ [# of children per BC tree node]_[# of levels]_[approx. # of vertices per 
biconnected component].

We expect that the DBC_GD algorithms will run faster than the sequential graph lay-
outs. Furthermore, we expect that they will obtain drawings that are at least of similar 
quality as the sequential graph layouts, due to the BC tree decomposition emphasiz-
ing the connectivity between the biconnected components. We formulate the following 
hypotheses:

•	 H7: DBC_FR, DBC_SM, and DBC_FM3 run faster than FR, SM, and FM3 respec-
tively.

•	 H8: DBC_FR, DBC_SM, and DBC_FM3 computes drawings on the same level of 
quality as FR, SM, and FM3 respectively.

Runtime improvement

Figure 7 shows the runtime improvements of DBC_GD over the original sequential lay-
outs. For this experiment, as the runtime is often very low compared to the original, the 
runtime improvement formula used for the DBC_SS experiments often does not ade-
quately show the difference in efficiency between 2- and 5-server settings. We use the 
following formula: RI = t(OL)

t(DBC_GD) where t(OL) is the runtime of the original sequential 
layout and t(DBC_GD) is the runtime of our algorithms.

Compared to the original sequential algorithms, DBC_GD obtains significant runtime 
improvements, as shown in Fig. 7. DBC_FM3 on 2 and 5 servers is 1.86 times and 4.14 
times faster than sequential FM3 respectively. More significant runtime improvements 
are seen with DBC_FR and DBC_SM: DBC_FR with 2 and 5 servers is 26.28 times and 
52.31 times faster than FR respectively; DBC_SM on 2 and 5 servers is 31.61 times and 
71.48 times faster than SM respectively. In summary, all variants of DBC_GD run faster 
than their respective sequential layouts, supporting hypothesis H7.

Visual comparison

Table 6 shows the visual comparison of the graph drawings using six algorithms: FR, 
SM, FM3, and their respective DBC_GD counterparts. With the synthetic datasets 

Table 5  Dataset for DBC_GD experiments

Graph |V| |E| Graph |V| |E|

treev_3_3_1000 12795 39144 treev_4_3_1000 16,424 49,554

treev_3_3_700 8842 26374 treev_4_3_700 11,592 35,852

treev_3_3_500 6469 20397 treev_4_3_500 8341 25,308

treev_3_3_300 3971 12666 treev_4_3_300 5001 15,195

treev_4_2_1000 12765 39517 treev_4_4_1000 20,673 62,441

treev_4_2_700 9028 27370 treev_4_4_700 14,282 44,336

treev_4_2_500 6422 19241 treev_4_4_500 10,269 29,920

treev_4_2_300 3815 11448 treev_4_4_300 6335 18,852
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with balanced BC trees, such as the first row of Table 6, DBC_GD with FR and SM 
obtain better shape drawings than their sequential counterparts, with fewer cross-
ings than FR and with better separation between biconnected components than SM. 
Compared to FM3, DBC_GD obtains similar shape for the global skeleton, while also 
not collapsing each biconnected too extremely. These results support hypothesis H8.

We also show an example combining the layout of DBC_GD with the sparsification 
of DBC_SS, displayed in Fig. 8. It can be seen that not only the global skeleton of the 
graph is displayed, but the sparsification shows details of the intra-component struc-
ture that may be missed in the drawing for the original graph, where each bicon-
nected component are displayed as “blobs”. Thus, combining DBC_GD with DBC_SS 
can be useful in further highlighting important topological structures of graphs.

In summary, DBC_GD obtains drawings with better shape than the sequential 
counterparts, supporting hypothesis H8. Furthermore, a combination of DBC_SS and 
DBC_GD is able to both show the global skeleton and local structure of a graph.

Quality metrics comparison

We also compute quality metrics for the drawings to further evaluate the effectiveness of 
DBC_GD. We use edge crossing and shape-based metrics. The shape-based metric (Eades 
et al. 2017a) measures the faithfulness of graph drawing, i.e., how well the shape of the 
drawing represents the structure of the graph.

Figure 9a and b show the improvements obtained by DBC_GD in edge crossing and 
shape-based metrics respectively. DBC_GD obtains significantly fewer edge crossings 

Fig. 7  Runtime improvements of DBC_GD over SM, FR, FM3. All variants of DBC_GD obtain significant 
runtime improvements over the respective sequential layouts, with DBC_SM obtaining the biggest runtime 
improvements, followed by DBC_FR 
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than SM, FR and FM3 at 39.63%, 28.2%, 21.18% respectively. With SM, DBC_GD obtains 
significantly higher shape-based metrics, at 58.38 %. Furthermore, DBC_FR obtains 
13.84% higher shape-based metrics than FR. In summary, the improvement in metrics 
shows that DBC_GD is even more effective than the corresponding sequential layouts, 
supporting hypothesis H8.

Table 6  Visual comparison between FR, SM, FM3 and DBC_GD variants

FR SM FM3

DBC FR DBC SM DBC FM3

FR SM FM3

DBC FR DBC SM DBC FM3

DBC_GD produces layouts with similar quality to FM3 and better than FR and SM

Fig. 8  Visual comparison of DBC_FR (a) and sparsified DBC_FR (sample sizes 20% (b) and 10% (c))
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Conclusion and future work
In this paper, we presented two new spectral sampling methods, BC_SS and BC_SV  , 
tightly integrating the BC tree decomposition for fast computation and spectral sparsifi-
cation to obtain high quality graph samples, preserving structural properties of graphs. 
We also designed, implemented, and evaluated DBC_SS and DBC_GD , distributed algo-
rithms for spectral sparsification and graph drawing integrating BC tree decomposition 
of graphs with distributed computing on the cloud.

Extensive experimental results with both real world graphs and synthetic graphs dem-
onstrate that our new BC tree-based spectral sampling approaches, BC_SS and BC_SV  , 
are significantly faster than existing methods, on average 72% faster, while preserving 
highly similar quality sampling results, based on the comparison of resistance values, 
rankings of edges/vertices, graph sampling quality metrics, Jaccard similarity index, and 
visual comparison.

Furthermore, we also validate the effectiveness of our BC tree-based distributed 
framework: DBC_SS obtains significant runtime improvements over sequential spectral 
sparsification, at 47% on average when running on 5 servers. DBC_GD runs 4, 52, and 
71 times faster than sequential FM3, FR, and Stress Majorization respectively, while also 
producing graph drawings with similar or better quality than the sequential graph draw-
ing algorithms.

For future work, we plan to design new graph sampling methods for big graph visu-
alization, by combining other graph partitioning methods. For example, see (Meidiana 
et  al. 2019) for an edge sampling method integrating spectral sparsification with the 
decomposition of biconnected graphs into triconnected components.

Abbreviations
AND: Average neighbor degree; BC: Block cut-vertex; BC_P: Block cut-vertex parallel; BC_SS: Block cut-vertex spectral 
sparsification; BC_SV: Block cut-vertex spectral vertex; CC: Clustering coefficient; CDF: Cumulative distribution function; 
DBC_SS: Distributed block cut-vertex spectral sparsification; DBC_GD: Distributed block cut-vertex graph drawing; FR: 
Fruchterman–Reingold; FM3: Fast multipole multilevel method; KS distance: Kolmogorov–Smirnov distance; RE: Random 
edge; RV: Random vertex; SM: Stress majorization; SS: Spectral sparsification; SV: Spectral vertex sampling.

Fig. 9  Quality metrics improvement for DBC_GD. All variants of DBC_GD obtains improvements over the 
original layouts
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