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Introduction
The main goal in a crisis in undoubtedly its effective and timely resolution. However, 
in the modern interconnected and complex world it is often the case that the parties 
involved for a crisis’ resolution have significantly different perceptions of the situation 
at hand. This can be for a number of reasons, pertinent to the nature of the crisis as well 
as to the responsive mechanisms in place to face it. In addition, this intricate systemic 
complexity renders large-scale, unprecedented threats increasingly likely (Taleb 2007).

Biosecurity threats consist of a class of crises of massive impact where expert knowl-
edge does not always coincide with the situational awareness of the officials in the first 
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lines of response. With past instances of dispatched weaponised agents against a naive 
population (Wein et  al. 2003; Alibek 2008; Kaszeta 2020) up to recent examples of 
malevolent cybersecurity infiltration on essential infrastructure (The New York Times 
2021), the imminence of biosecurity threats is increasingly becoming a tangible liability. 
Furthermore, statistical analysis on past adversarial events classified as terrorist attacks 
testifies to a likely periodical time horizon in which they can be anticipated (Clauset 
et al. 2013). More broadly, along with cybersecurity threats excessively large-scale ones 
being specified as increasingly recurring (Flyvbjerg 2020), it is imperative to have emer-
gency and effective response mechanisms readily deployable.

In this context, momentum was gained after the US 9/11 attacks on biosecurity attacks 
with the seminal work of Wein, Craft and Kaplan in 2003 on a hypothetical Anthrax 
airbourne point delivery in an urban environment. This modelled various scenarios on 
the impact of the attack and the corresponding response mechanisms (Wein et al. 2003). 
Further, biosecurity topics have occupied instances of the vast epidemics literature inas-
much social behavioural implications are involved in mitigating adversarial biological 
attacks in the general population (Del Valle et al. 2005). Notwithstanding, the attention 
on the matter culminated with the multiagent model of Carley et al. published in 2006 
and modelling a wide range of social and economic factors, which contribute to the 
spread and mitigation of maliciously introduced diseases in urban centres. The novelty 
of the work lay especially in the network and agent behavioural patterns availing them-
selves to the formulation of tracking and surveillance protocols by policy makers.

Within the time-criticality context, previous work has established methods and limi-
tations of mobilisation mechanisms to unequivocally detect targets (Rutherford et  al. 
2013a, b). This would be the first step to activate a network of response mechanisms in 
a coordinated fashion against a globally distributed biosecurity threat, i.e. clarifying the 
mechanisms’ situational awareness. Nevertheless, the mechanisms (essentially admin-
istrators), being human and systemic, are not infallible, are characterised by bounded 
rationality and often exhibit biases and delays in the realisation of a crisis, ranging from 
the individual to the collective level (Simon 1956; Tversky and Kahneman 1971, 1974; 
Pescetelli et al. 2016; Rosenberg et al. 2016).

Aiming to tackle this situational awareness dilemma encumbering policy makers, 
with this work we aspire to provide a computational framework modelling the range 
of the corresponding perceived dangers on behalf of policy making organisations and 
their executive branches, as dynamical individual and collective cognitive processes. We 
assume that the organisations in question are spatially distributed in different urban set-
tings but each one forms their own social network, not necessarily belonging in the same 
environment [akin to a multilayer representation (Kivelä et al. 2014; Strano et al. 2015)]. 
The behavioural insight of the work constitutes a first step towards preparing in a coor-
dinated fashion for biological attacks but also more broadly for attacks or threats of an 
unexpected nature (Madnick 2020). Lastly, it is noteworthy that the cognitive problem 
we are tackling has recently drawn increased attention from the epidemics community 
(Granell et al. 2013, 2014; Agaba et al. 2017), signifying its importance across disciplines.
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Methods
For the purpose of our study we formulated an agent-based model of discrete time dis-
tributed over 18 cells representing urban metropolitan areas, from here onwards to be 
referred to as cities. The constraint was to choose urban agglomerations with a met-
ropolitan population of at least 107 (Citypopulation 2021) but otherwise the selection 
was such as to introduce a small global urban ecosystem for illustrative purposes and 
accounts for the flexibility of the model (the list of cities can be found in Table 1 of the 
Appendix). The agents themselves represent policy-making organisations and affiliated 
branches with a vital role in the response to biosecurity threats. We assumed that the 
number of agents within each city was proportional to the population of the city and 
that the number of the total agents was 1000 (see Table 1 in the Appendix for an over-
view of the scaling factor’s effect on the population). For this latter figure, to the extent 
of our knowledge, there does not exist any specific single dataset, tailored to explicitly 
substantiate it and as such remains an educated guess. As we will see in the following 
however, these agents-organisations form an information exchange network and can 
therefore be regarded under a transnational scope. In this sense and drawing from Vitali 
and Battiston’s work on the global corporate network, we can expect to be at least in the 
right order of magnitude, assuming a 1:43 ratio of organisations encumbered with emer-
gency responses to biological attacks against the 43,060 transnational corporations in 
the dataset of the aforementioned authors (Vitali and Battiston 2014).

The agents do not act in isolation, rather form a network of information exchange on 
situational awareness of biologically related dangers for each and every one of the net-
work’s cities. Therefore, each agent (node of the network) has a situational awareness for 
18 locations-cities. We do not take any agent mobility into account, ergo, the network 
is static. Simultaneously the agents make personal measurements within their own city 
(i.e. with the information locally available), which they then jointly assess with the avail-
able (social) information from their network. In this way a dynamical process takes place 
with which the agents make a final personal judgment for the current degree of danger 
in their own locale and in every other city. A minimal, invented example of three cit-
ies (New York City, Karachi and Shanghai) with their agent-agencies’ social information 
network as well as a snapshot of the underlying processes is illustrated in Fig. 1, while 
in the inlet between the main figure and the colour code scale lies an abstraction of the 
upper.

Agent network

For the connectivity of the network, which determines the strength of influence in 
the aforementioned dynamical process, we examined three of the prototype networks 
(empirical networks are beyond the scope of this work), namely the Erdős–Rényi (ER) 
(Erdős and Rényi 1960; Newman 2018), the small-world introduced by Watts and Stro-
gatz (WS) (Newman 2018; Watts and Strogatz 1988) and the preferential attachment 
one generated by the Barabási–Albert (BA) model (Newman 2018; Barabási and Albert 
1999). A constraint that we set for all three of the networks was that they have the same 
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average edge density 〈ρ〉 over 100 realisations. Consequently and with 1000 nodes in 
each network this constraint narrowed the range of possibilities for different topologies 
to a single set of control parameters for each network,1 so that �ρ� ≈ 1000 . We summa-
rise the values for each case in the following:

Fig. 1  Minimal visual illustration of the model. Main figure: Crisis response agents-agencies (numbered) 
reside in each of the three urban landscapes New York City, Karachi and Shanghai forming a static, social 
communication network (dashed lines). In each city there is a level of true danger (TD) with values ranging 
from zero (“no danger”) to one (“highest danger”). We match this numerical range with a colour code 
ranging from green to red respectively and select three arbitrary colour values from that range for illustrative 
purposes. Each agent makes their estimation for their own urban environment and all others in the system, 
which is delineated by the triplets corresponding to each of them. Inlet: An abstraction of the five agents’ 
network, with their underlying colour being the true danger of the city in which they are located

1  For N nodes the BA graph cannot have less than N − 1 edges and likewise the WS.
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•	 ER connection probability: pER = 2× 10−3.
•	 WS: nearest-neighbours kWS = 2 and rewiring probability pWS = 0.5.
•	 BA: edges to attach from a new node to existing ones: kBA = 999 or kBA = 1 (single 

hub-topology and cliques respectively).

Note that for kBA = 1 we retrieve the same density as kBA = 999 . The difference lies in 
the topology. In the first case all nodes are connected to a single one, while in the latter 
several nodes share the property of being a hub, distributing (unevenly in general) the 
amount of attached nodes among each other.

Danger perceived by agents

Based on previous work demonstrating the distinction between personal and social 
components forming perceptions (Pescetelli et  al.2016), we define two mechanisms 
dynamically determining an agent’s perception of a given danger. In particular, these 
mechanisms are dependent either on the information available to the agent at hand or 
to the information conveyed through their network of acquaintances. Hence, we set the 
dynamical progression for each agent to be

with PDi,t+1 denoting the perceived danger of an agent i at time t + 1 , f  a vector function 
mapping a given true danger TDx,i,t+1 of city x where agent i resides at time t to a per-
sonal estimation (e.g. by measurement) for the true danger by the agent, and g a vector 
function mapping the perceived danger of agent i and that of every other agent j  = i to 
an overall influence for the danger value exerted on agent i at time t. The boldface font 
marks a vector with components being the perceived danger values of the agent in ques-
tion for every city. Thus for 18 cities in the system, every agent i has 18 perceptions of 
danger and consequently there are 18 corresponding values of the true danger for every 
time step t. Both PD as well as TD take values in [0, 1], hence assuming two extremes of 
a danger degree, where 0 stands for complete lack of danger and 1 for total danger (the 
maximum degree). A special note needs to be made for the time indices of the two terms 
in (1). The personal estimation term is happening at the time of updating the perceived 
danger (thus introducing time-criticality to the personal assessment task via the latest 
local information available), while the influence is coming from the exact previous time 
step due to a minimal time lag in communications and cognitive processing. Lastly, the 
“Mean” in (1) refers to the arithmetic average (coinciding with the median since we are 
referring to two arithmetic quantities). However, its purpose is to introduce a measure 
of coestimation of the personal estimation and influence quantities and can therefore 
assume in principle any other plausible form, introducing, for instance, bias. We will 
consider only an unbiased estimation here.

Personal estimations

In the absence of data for the scope of our study, we simulate the personal measure-
ment function f with draws from a number of plausible representational probability 

(1)PDi,t+1 = Mean
(

f
(

TDx,i,t+1

)

, g
(

PDi,t ,PDj �=i,t

))
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distributions, while the influence function g from established influence models. Firstly 
and for the personal estimation we set f to draw a random variable X from the triangu-
lar distribution, the Gaussian, the Laplacian and a power-law for every time step, para-
metrised by TDx,i,t (the locally available information) as follows: 

1	 Triangular: Tr(X; a, mode, b) = Tr(X; 0, TDx,i,t , 1) . As such the agent makes a per-
sonal estimation of the true danger for every city x with information about the true 
danger in their city of residence serving as the mode of the distribution.

2	 Gaussian: |N (X;µ, σ)| = |N (X;TDx,i,t , 1)| . In this case, the agent’s personal esti-
mation for every city x is drawn from an absolute valued Gaussian, centered on the 
true danger of the agent’s city of residence and with a scale parameter being the 
maximum possible fluctuation for the danger estimation they can have. If values are 
drawn beyond 1, then we assume that the agent made a far-fetched personal estima-
tion of the danger and therefore uniformly, randomly assign to this estimation the 
extreme value of either 0 or 1.

3	 Laplacian: |L(X;µ, b)| = |L(X;TDx,i,t , 1)| . The personal estimation in this instance 
is similar to the case of the Gaussian estimation in terms of the location and scale 
parameter of the distribution, as well as for the assigned values in case of draws 
beyond 1. The sole difference lies in the form of the distribution (pronounced center 
and fat tails).

4	 Power-law: P(X; a) = P(X;TDx,i,t) . For this case, the agent’s personal estimate fol-
lows a power-law distribution of the form αXα−1 with α = TDx,i,t ∈ (0, 1] in the role 
of the exponent. In case of a zero value of the true danger, then the personal estimate 
is also set to zero.

The rationale for the selection of the previously mentioned distributions is to exam-
ine a broad range of generative personal estimations of the danger degree via a single 
measurement (in the context of time-criticality), in a reference time and given only local 
information for an arbitrary population. The selection is by no means exclusive and its 
ultimate justification could come from some data proxy (e.g. by means of lexicographical 
analyses on social media platforms (Zhang et al. 2020; Aiello et al. 2020)].

Social influence

It is by now well understood that in a social environment, a personal view on a topic is 
not just based on personal estimations (e.g. via measurements) rather is weighed against 
the range of other views held on the same topic by the corresponding social network 
(Sherif et al. 1965). The phenomenon is called social judgment and is a major driver in 
the established literature of influence models (Flache et al. 2017).

In this context and in regard to the information exchange mechanism among the 
agents about the true danger in the various cities, we utilise three models from the social 
dynamics literature to represent the coupling in the danger estimation among agents in 
different cities. In particular, the one due to Friedkin and Johnson (F–J) accounting for 
assimilative social influence (consensus) (Flache et al. 2017; Friedkin and Johnsen1990), 
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the one due to Deffuant and collaborators accounting for embracement of opinions with 
a selective bias (the emergence of fractions) (Flache et  al. 2017; Deffuant et  al. 2000), 
and the one due to Jager and Amblard (J–A) accounting for a repelling effect to per-
suasive views beyond a certain threshold (polarisation) (Flache et  al. 2017; Jager and 
Amblard 2005). With an adjusted form of these models we formulate the g function in 
the dynamic perceived danger relation (1). The exact form of each model as utilised is as 
follows: 

1.	 F–J: 

 where 0 < µ ≤ 1 is the rate of opinion convergence (we chose µ = 0.5 ), D1/2 the 
distance matrix with inverse entries for all non-zero elements and wi,j is a weight 
of opinion importance ascribed to an agent’s network. We assume this weight to be 
subject to the constraint 

∑

j wi,j = 1, ∀i . We generate the weights from a uniform 
random distribution in [0,  1) and normalise them. Note that the boldface (vector 
notation) applies to the weights as well, since each agent’s perceived danger involves 
all the 18 cities in the simulation.

2.	 Deffuant: 

 with the weight function being 

 The quantity ǫ (we choose ǫ = 0.2 ) is simply the tolerance up to which a danger esti-
mation other than that of the agent in question (i) will influence them (in this case 
0 < µ ≤ 0.5 and we select µ = 0.5 again). Beyond that tolerance they simply ignores 
different estimates.

3.	 J–A: This is as the Deffuant model but the weight function assumes the form 

 Thus, the agent can be persuaded of the danger estimation of a peer up to a certain 
tolerance. Beyond that however, instead of ignoring the estimation of the other agent 
as in the Deffuant model the agent is thrown to the other side of the spectrum in 
respect to that estimation. For example, a moderately high estimation of danger by 
a peer will be in this case interpreted by the (influenced) agent as a moderately low 
danger.

(2)gi,t
(

PDi,t ,PDj  =i,t

)

= PDi,t + µD1/2

∑

j  =i

wi,j

(

PDj,t − PDi,t

)

,

(3)gi,t
(

PDi,t ,PDj  =i,t

)

= PDi,t +D1/2

∑

j  =i

hw
(

PDi,t ,PDj,t

)(

PDj,t − PDi,t

)

(4)hw =

{

µ, if
∣

∣PDi,t − PDj,t

∣

∣

≤ ǫ

0, otherwise.

(5)hw =

{

µ, if
∣

∣PDi,t − PDj,t

∣

∣

≤ ǫ

µ
(

1− 2
∣

∣PDi,t − PDj,t

∣

∣

)

, otherwise.
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True danger progression

Finally, for the true danger degree value’s evolution with time in a particular city we can 
use any arbitrary function to represent it. Indeed, following the example of Wein et al. 
on a point air-delivery of Anthrax (Wein et al. 2003) we have built in our model vari-
ous functions with which the impact of danger can progress. This need not necessarily 
be decaying. Our purpose here is to unveil the interplay between the perceived danger, 
the social influence and the actual magnitude of a given danger so there is no reason to 
use anything overly elaborate or to exhaust all the possible underlying true danger pro-
gression possibilities in a sensitivity analysis. Therefore, we will assume two cases: firstly, 
one typical of an epidemic spread (SIR) of highly endemic conditions (Kermack and 
McKendrick 1927; Keeling and Rohani 2011) and secondly, a linearly decaying danger. 
Specifically, the second assumes that the true danger within a city decays (e.g. because 
the authorities intervened for its mitigation and the projected deaths or hospitalisations 
decrease) in a linear fashion with time down to a zero value at a specified point. The first 
merely identifies the danger with the normalised infectious class of the SIR model. These 
two approaches do not forbid the usage of any other function with which the true danger 
evolves, including periodic or increasing.

Results
The implementation of the simulation was executed in Python 3.8, in which the pack-
ages NetworkX 2.4 and NumPy 1.18.5 were employed. The simulation code as well as 
that to generate the graphs presented in this work can be found at https://​github.​com/​
Yperi​dis/​Threa​tPerc​eption.

The initial conditions for relation (1), i.e. the initial perceived dangers for each agent, 
were determined by a draw from a triangular distribution with extremities 0 and 1 and 
mode the initial danger of the agent’s city of residence.

Fig. 2  Plots of the real danger progression (as normalised infectious class of the SIR model) in Shanghai 
(solid blue), the average corresponding perceived danger progression of all its agents for Shanghai (dashed 
blue) and the average perceived danger progressions of all the agents of Karachi for the danger in Shanghai 
(solid red). The vertical axes represent the danger values while the horizontal the time steps. The different 
rows correspond to different influence models (F–J, Deffuant and J–A from top to bottom), and the different 
columns to different personal estimation models (Triangular, Gaussian, Laplace and Power-Law from left 
to right). The agent network is ER and the SIR infectious parameters are infectious transmission k = 1.5 and 
recovery time τ = 5 days/time steps ( Ro = 7.5 for highly endemic conditions). The initial conditions are 
(S, I, R)|t=0 = (1− It=0, It=0, 0)

https://github.com/Yperidis/ThreatPerception
https://github.com/Yperidis/ThreatPerception
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Citywide metrics

Although the simulation can probe at the individual level of an agent, for the evolution 
of danger and the associated processes we aggregate the agents over cities. In this way 
we can have an overview of all the danger processes at the scale of urban environments, 
while concurrently averaging the danger perceptions of individual outliers. Moreover, 
although the model enables us to predict the perceived danger for every city included 
in the simulation, for illustrative reasons we will focus on the collective perceptions of 
two arbitrarily chosen cities, Shanghai and Karachi, for one of the two (Shanghai). The 
initial danger in each is set to be TTD,in,Sh = 0.5 and TTD,in,Ka = 0.9 and the time at which 
the danger vanishes TTD,null,Sh = 80 and TTD,null,Ka = 90 for a total runtime of 100 time 
steps.

In Figs. 2 and 3 we present two cases of evolution of the true danger for Shanghai, one 
for the danger representing the normalised population of the infectious class of an SIR 
model and one for linear decay of the danger respectively. In the same graphs we overlay 
the aggregate danger perceptions of Shanghai’s agents and those of Karachi for each of 
the two instances of the true danger progressions for the city of Shanghai. The results 

Fig. 3  As in Fig. 2 but with a linearly declining real danger progression

Fig. 4  Box plots of agent danger perception distribution in Shanghai for Shanghai and for different personal 
estimation methods: a Corresponds to the times where each method had the maximum MSE value, while b 
to the times where the MSE attained its minimum value. In both a and b the exact corresponding times are 
inscribed. The horizontal, blue line segments demarcate the true danger (SIR) of Shanghai for the referenced 
times. ER topology and F–J influence assumed
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examine each case of personal estimation (columns) and influence model (rows) as out-
lined in the section of methods. Each time-series was averaged over ten runs to lessen 
stochastic effects. We have also inscribed in every plot the mean squared error (MSE) of 
each time-series between the actual danger in Shanghai and the average perceived dan-
ger of its agents, i.e. that of the solid and dashed blue time-series lines.

The most striking result seems to be the minimal effect of the influence models on the 
perceived danger and hence of the network architecture (see Appendix for the formation 
of the perceived danger). Secondly and according to the MSE values, there is a ranking 
among the different personal estimation methods, with the power-law outperforming all 
of them. Second is the triangular distribution method, third the Laplace and the worst 
performance is exhibited by the Gaussian.

Individual agent metrics

We so far explored the collective perceived danger at the city level under a certain range 
of personal estimations and influence models. We would now wish to refer to the accu-
racy of individual agents within a single city, leading to their collective estimation of 
danger in it. One way of representing this accuracy is by distributing the perceived dan-
gers of the agents around the true value for selected times, so as to estimate the maxi-
mum and minimum perceived danger deviations from the real value. The box plots of 
Figs. 4 and 5 do exactly this for the city of Shanghai, sticking to our example. We choose 
the F–J influence model and ER topology for the demonstration but the result is robust 
across any constant influence model and topology.

As the agents’ perceptions are dynamical processes we can only study their disper-
sion around a mean and the true value at a snapshot. Two meaningful points in time to 
do this are when the MSE of the agents aggregated over Shanghai assume their maxi-
mum and minimum values. This is what is depicted in panels (a) and (b) of Figs. 4 and 5 
respectively. Incidentally, one can notice the same ranking among the methods, regard-
less of the corresponding MSE value, as observed in the time-series of Figs. 2 and 3.

Fig. 5  As for Fig. 4 but for a linearly decaying underlying true danger
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Discussion
We have presented the results of a purely computational spatially distributed agent-based 
model emulating cognitive formation processes in estimating a threat parameter of vary-
ing degree under time pressure (uncertainty), limited information and social influence. 
The context of the threat was of a biological nature and assuming its release in urban 
environments. The utility of the model lies in its capacity to provide behavioural insight 
for a broad range of intertwined individual estimation biases of agents based on local 
information and their drifts due to peer pressure from their underlying social network.

Although only alluded in the presentation so far, the model can be regarded as a mul-
tilayer network with its different layers representing the agent and the city networks, 
as well as the corresponding processes taking place on them (perceived and true dan-
gers respectively). This alternative way of representation offers a summary overview of 
aggregate measures in an integrated framework and has a rich presence in the literature 
(Kivelä et al. 2014; Strano et al. 2015; De Domenico et al. 2013, 2015, 2016). It would be 
especially useful if the true danger processes of one city would be coupled to those of 
other cities.

The model appears to be robust to the influence among its agents, meaning that across 
the different opinion dynamics’ models and studied topologies the results remain largely 
unaltered for the presented accuracy. This is not an obvious finding and the explana-
tion lies in a better understanding of the mechanism dictated by the governing equation 
(1). As witnessed in Figs. 2, 3, 5 and 4 the personal estimation of the agents appears to 
be the pivotal force driving the perceived danger, which is the first term of the dynamic 
relation (1). The second term, which is the social influence, serves as an interference on 
the measurement taking place at the time of the danger’s perception. Thus, with a lag 
of one time step, the agents average their current personal estimation (a measurement 
for example) with the collective perceived danger of their network. This mechanism 
determines their final danger perception (see also the Appendix on the perceived dan-
ger perception). However, we expect that the initial, spatial agent opinion distribution, 
combined with non-standard [e.g. core-periphery (Rombach et  al. 2014)] or empirical 
network architectures connecting agents of diverse, non-cancelling opinions at the city 
level and between different cities (when looking at aggregate measures) would reveal a 
more significant effect of the influence term.

Reducing the system size to a total of 50 agents with the given heterogeneities (see the 
city populations in Table 1 in the Appendix) did not introduce any significant effects on 
the influence term across different topologies and models. Hence the role of the influ-
ence is to provide a regression to the mean of the agents’ perceived danger on the previ-
ous time step. Basically this implicates the effect of a lag in forming the perception of a 
danger on a given time. However, as the literature indicates (Flache et al. 2017), there are 
many ways to tune the opinion thresholds ǫ on the selective bias (Deffuant) and repelling 
(J–A) models, as well as the rates of convergence µ across all models so as to amplify 
the effect of the social interference to the personal estimation. The limits of these effects 
would be an interesting addition to the results so far, belonging to a sensitivity analysis.



Page 12 of 15Bassett et al. Appl Netw Sci            (2021) 6:59 

An additional note on the time horizon selection of one time step for the effect of the 
neighbouring agents (i.e. the influence term of Eq. (1)) is that we chose it so as to reflect 
an emergency. We envision an emergency being a chaotic situation of modern digital, 
rapid communications, where the data changes (smoothly) from one time stamp of com-
munication to the next, rendering previous information obsolete as a limiting case. Nev-
ertheless, a more realistic approach would consider at least several instances (steps) of 
previous information as well. Towards such a direction recent graph message-passing 
approaches (Kapoor et  al. 2020; Panagopoulos et  al. 2020) could be a promising way 
to extend the model exhibited with Eq.  (1). The data utilised to prepare (train) such a 
scheme could stem from inter-city [e.g. freight ship trade (Kaluza et al. 2010)] or indi-
vidual [e.g. post or email traffic (Hristova et al. 2016)] transactional flows, which would 
serve as a proxy for the strength of influence at the city and agent level respectively. This 
kind of data could also form the basis for an empirical network structure among cities 
and agents in a future study.

Interestingly and in regard to aggregating agent perceptions over cities, these are not 
necessarily contained within the boundaries of a single urban environment. Affiliated 
organisations or different branches of the same organisation, represented as agents in 
the simulation, might not form a consensus cluster within their common spatial loca-
tion. Important as this observation might be to identify these clusters in a data-driven 
analysis, it is however out of scope within the limits of our study, as we have assumed 
indistinguishable agents.

To end with, the model’s flexibility in personal and social estimation of a danger 
renders it suitable for mixture of the models investigated in either component, thus 
attempting to capture more pragmatic behavioural features of the agents. Indeed such an 
approach could introduce higher levels of realism but should be of course based on evi-
dence and thus justified by indicators stemming from data (see again Kaluza et al. 2010, 
Hristova et  al. 2016). Furthermore, since the personal estimations act as the principal 
driver of the model’s dynamics, a data-driven approach focused on coordinating reports 
of measurement rather than opinions would be of more significance as the model has 
been framed. Under the scope of coordination does the full magnitude of situational 
awareness manifest itself as an invaluable ingredient for mitigating biosecurity threats 
within the time-critical context that they demand. Needless to say, the model can be fit-
ted to any threat as long as the elements of time-criticality and coordinated response 
involving personal estimations and social influences are present.

Appendix
City populations and scaling

The scaling factor to bring the total urban populations in question down to 1000 agents 
was 2.631× 10−6 (Table 1).
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Formation of perceived danger

As alluded to in the main text, the influence is posited to average the exaggerated per-
sonal estimation of the running time step in regard to the influence of the previous one. 
Due to the initialisation of influence and the dominance of the personal estimation term 
as per relation (1), the effect of influence (and thus the effect of the network) on the per-
ceived danger formation of any agent is significantly different than the personal estima-
tion only on the first time step. This effect is exhibited in Fig. 6 for an arbitrarily chosen 
topology (ER) and influence model (F–J), for illustrative purposes, for the city of Shang-
hai (case of linearly decaying underling real danger). The perceived danger (blue solid 
curve) results as an average of the personal estimations of all the agents of Shanghai for 
Shanghai (orange dashed curve) and of the average influence exerted on them by each of 
their social networks (green dashed-dotted curve) for all the combinations of different 

Table 1  The list of cities, their population and their corresponding agents in ascending order, as set 
in the simulation

City Population (×106) Agents

Paris 11.4 30

Johannesburg 13.9 37

London 14.8 39

Tehran 15.3 40

Istanbul 16.0 42

Buenos Aires 16.4 43

Moscow 17.3 46

Karachi 17.8 47

Lagos 19.4 51

Dhaka 20.2 53

Cairo 21.0 55

New York City 22.1 58

São Paulo 22.4 59

Mexico City 23.0 61

Seoul 24.8 65

Delhi 30.3 80

Shanghai 33.6 88

Tokyo 40.4 106

Total 380.1 1000

Fig. 6  The evolution curves of the perceived danger (solid blue) for Shanghai, averaged over all its agents, 
along with its component curves of personal estimations (dashed orange) and influence (dashed-dotted 
green) for the underlying danger being the normalised infectious class of an SIR model. The columns from 
left to right correspond to a different method of personal estimation. The topology is ER and the influence 
model the F–J. Averaged results over 10 realisations. The SIR infectious parameters are infectious transmission 
k = 1.5 and recovery time τ = 5 days/time steps ( Ro = 7.5 for highly endemic conditions). The initial 
conditions are (S, I, R)|t=0 = (1− It=0, It=0, 0)
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personal estimation methods. Equivalently said, the three curves represent the perceived 
danger as an average of the personal estimation and the influence on a “super agent” 
representing all the agents in the city of Shanghai. Given that the columns of the panels 
in Fig.  6  reflect a different personal estimation method, the trends draw similarities to 
those across the columns of the panels of Figs. 2 and 3, while providing an explanation 
for their particular form.
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