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Introduction
We define a bridge node to be a node whose neighbor nodes are sparsely connected to 
each other and are likely to be part of different components if the node is removed from 
the network (and are hence likely to be part of different clusters or different communi-
ties identified by a clustering algorithm or a community detection algorithm). The above 
definition for a "bridge" node encompasses three different topological positions for the 
node: (1) A node whose majority (but not all) of the incident links are with the nodes in 
its home cluster (i.e., in the same cluster as the cluster to which the bridge node belongs 
to) and the rest of the links (one or few links that are nevertheless critical for connectiv-
ity between the clusters) are to bridge nodes in the other alien clusters. We refer to a 
node playing such a role as "bridge: hub" node. (2) A node that is in the periphery of its 
home cluster whose majority of the links are with bridge nodes in the other alien clusters 
(that would not be connected or connected via a much longer path without this node), 
but has one or few links with nodes that are part of its home cluster. We refer to a node 
playing such a role as "bridge: border" node. (3) A node that is not part of any cluster, 
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but connects two or more clusters or nodes that would otherwise be not connected or 
sparsely connected. We refer to a node playing such a role as "bridge: between-clusters" 
node. The extent to which a node plays the function of a bridge node in one or more of 
these three topological positions would vary among the nodes in a complex network. To 
the best of our knowledge, all the existing work in the literature could effectively identify 
bridge nodes with respect to at most two of the above three topological positions, and 
not all the three. Hence, there is a need to comprehensively take into account the above 
three possible topological positions and quantify the extent to which a node plays the 
role of a bridge node in a complex network.

Bridge nodes are essential for various phenomena in complex networks. Due to their 
likely proximity to several clusters, bridge nodes are the perfect choice for cluster heads 
in communication networks. For information cascade to be successful/complete in social 
networks, the bridge nodes of a cluster need to first adopt a decision before the internal 
nodes of the cluster (nodes that are not connected to any node outside their home clus-
ter) can adopt the decision. Hence, bridge nodes are ideal candidates to be picked as ini-
tial adopters to accomplish complete information cascade (i.e., for a unanimous decision 
to be made by all the nodes in a network) (Tulu et al. 2018; Berahmand et al. 2019). To 
prevent an infection spread within a cluster, the bridge nodes of the cluster need to be 
meticulously identified and vaccinated (Ghalmane et al. 2019a; Masuda 2009) so that the 
internal nodes could be protected. In collaboration networks, bridge nodes could indi-
cate authors who have collaborated with people who have themselves not collaborated 
with each other. The identification of such bridge nodes in collaboration networks could 
lead to new research collaborations among individuals of diverse expertise. Bridge nodes 
in social networks could lead to acquaintance (could eventually lead to close friendship) 
between people who had not known each other until then. Likewise, one could enumer-
ate many such phenomena across various complex network domains in which bridge 
nodes would serve or identify a crucial role. Hence, it is important that we have a quan-
titative approach to efficiently and effectively identify bridge nodes in complex networks 
as well as be able to rank all the nodes in a network on the basis of the extent to which 
they can play the role of bridge nodes.

Centrality metrics quantify the topological importance of nodes in complex networks 
(Newman 2010). At a broader level (Meghanathan 2016; Oldham et al. 2019), central-
ity metrics could be neighborhood-based and shortest path-based. Among the neigh-
borhood-based centrality metrics, the degree centrality (DC) and eigenvector centrality 
(EC) are the most prominent. While the degree centrality (Newman 2010) of a node is 
simply the number of neighbors of the node, the eigenvector centrality (Bonacich 1987) 
of a node is a measure of the degree of the node as well as the degree of its neighbors. 
The DC and EC metrics primarily capture the extent to which a node plays the role of a 
"hub" node in the network. The shortest path-based centrality metrics (Freeman 1977, 
1979) quantify the importance of a node on the basis of either the node’s location in the 
shortest path between any two nodes (betweenness centrality: BC) or the length of the 
shortest paths to the rest of the nodes in the network (closeness centrality: CC).

The approaches taken so far in the literature to propose centrality metrics to quan-
tify the role of nodes as bridge nodes are primarily of two types: community-aware and 
community-unaware. Though multiple valid definitions exist in the literature for the 
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term "community" in a network (Peel et al. 2017), we consider a community as a clus-
ter of nodes that are more densely connected among themselves than to the rest of the 
nodes in the network (Cormack 1971; Hoffman et al. 2018). The underlying idea behind 
the community-aware approach is to first run a community detection algorithm on the 
network and then estimate the extent of bridgeness of a node by computing a weighted 
average of the measures quantifying the topological aspects of a node within its com-
munity as well as with other communities. Like in most of the works on community-
aware centrality measures, in this paper, we only consider algorithms that are designed 
to detect non-overlapping communities. The underlying idea behind the community-
unaware approach is to first determine the centrality metrics to individually quantify the 
extent of "hubness" (typically using neighborhood-based metrics such as DC or its vari-
ants) and "betweenness" (using shortest path-based metrics such as BC or its variants) 
and then mathematically combine these two metrics (typically, by taking the product or 
the ratio of these two metrics) to quantify the extent of "bridgeness" of a node.

The community-aware approach has the weakness of overlooking at the role of a node 
as "bridge: between-clusters node" that need not be part of any community (or form a 
sparsely connected smaller community with a handful of nodes) but connect two or 
more densely connected communities. In addition, the requirement for the community-
aware approach to run a community detection algorithm a priori could become very 
taxing if the network is very large and we are interested in deciding whether or not just 
a particular node or a few selected nodes could serve as bridge node(s). On the other 
hand, with the community-unaware approach, the product or ratio of the metrics repre-
senting the hubness and betweenness (measures that quantify two structurally different 
characteristics) may not be an accurate measure of the extent to which a node func-
tions as a bridge: hub node vis-a-vis as a bridge: border node or a bridge: between-clusters 
node. As stated earlier, there is a need to comprehensively take into account the extent 
to which a node serves in the three different topological positions for a bridge node, but 
in a quest to represent bridge node centrality as a scalar value, we opine that the existing 
formulations under both the community-aware and community-unaware approaches 
actually end up overestimating or underestimating the role of a node as a bridge node 
(see “Related work and motivation” section for more details).

To the best of our knowledge, centrality metrics are until now represented using a sca-
lar value or as a vector of the classical centrality metrics or their variants that is con-
verted to a scalar value using a weighted average formulation. Hence, for the first time 
in the literature, we propose a centrality tuple, referred to as the neighborhood-based 
bridge node centrality (NBNC) tuple, whose entries (a sequence of three terms) could be 
unequivocally used to rank the nodes on the basis of the extent to which they can play 
the role of a bridge node in a network. Our formulation for the NBNC tuple of a node 
stems from the definition of a bridge node (stated earlier in this section). In this context, 
we propose the notion of a "neighborhood graph" of a node that comprises of the neigh-
bors of the node as vertices and the links connecting these neighbors as the edges. The 
first term of the NBNC tuple for a node is the number of components in its neighbor-
hood graph and the second term is the algebraic connectivity ratio (Fiedler 1973) of the 
neighborhood graph. In order to break the ties for nodes having the same values for the 
first and second terms, we include a third term in the NBNC tuple, which is the number 
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of nodes in the neighborhood graph. The NBNC tuple for a top-ranked bridge node is 
expected to include a larger value for the number of components, a lower value for the 
algebraic connectivity ratio and a larger value for the number of neighbors. The NBNC 
tuple can be asynchronously computed (i.e., can be computed just for the node in ques-
tion without requiring to be simultaneously computed for every node in the network) 
just based on the two-hop neighborhood knowledge (i.e., local knowledge) of a node and 
is thus computationally light.

The rest of the paper is organized as follows: “Related work and motivation” section 
reviews related work in the literature to quantify the role of a node as a bridge node, 
highlights the weaknesses of the existing approaches and motivates the need for a cen-
trality tuple (vis-a-vis a centrality metric) to rank nodes on the basis of their role as 
bridge nodes. “Neighborhood-based bridge node centrality (NBNC) tuple” section pre-
sents a detailed description of the computation procedure of the proposed neighbor-
hood-based bridge node centrality (NBNC) tuple as well as presents the rules to rank 
the nodes in a network based on the entries in the NBNC tuple. “Neighborhood-based 
bridge node centrality (NBNC) tuple” section also demonstrates the computation and 
ranking procedures for the NBNC tuple using a toy example graph. “Analysis of real-
world networks” section first introduces a suite of 60 real-world networks analyzed in 
this research and then demonstrates the computational lightness, effectiveness, effi-
ciency/accuracy and uniqueness of the proposed NBNC tuple to rank nodes on the basis 
of the extent to which they function as bridge nodes in a real-world network. “Conclu-
sions and future work” section concludes the paper and outlines plans for future work. 
All the real-world networks analyzed in this research are considered as undirected 
graphs.

Throughout the paper, the terms ’node’ and ’vertex’, ’link’ and ’edge’, ’network’ and 
’graph’, ’cluster’ and ’community’ are used interchangeably. They mean the same. A net-
work of nodes and links is referred to as a graph of vertices and edges. Accordingly, we 
refer to a node in a network as a vertex in a graph and a link in a network as an edge in a 
graph. Also, note that the neighbor nodes of a bridge node that are in different compo-
nents in the neighborhood graph of the node could potentially be in different clusters/
communities (identified by a clustering/community detection algorithm that is designed 
to detect non-overlapping clusters/communities).

Related work and motivation
In this section, we review the prominent community-aware and community-unaware 
approaches in the literature to quantify the role of a node as bridge node in a complex 
network. We will use the graph shown in Fig. 1 for reference to highlight the weaknesses 
of the existing approaches as well as motivate the need for a centrality tuple (vis-a-vis a 
scalar value) to comprehensively capture the extent to which a node plays the role of a 
bridge node (in the positions of a bridge: hub node, bridge: border node, bridge: between-
clusters node). The non-overlapping clusters/communities shown in Fig.  1 are those 
determined using the well-known Louvain community detection algorithm (Blondel 
et al. 2008).

Among the ten nodes in Fig. 1: nodes 1, 2, 3, 5, 6, 7 and 8 qualify for the role of a bridge 
node; however, the extent to which they play the role of a bridge node varies with their 
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topological positions. Node 5 effectively plays the roles of both a bridge: hub node and 
a bridge: border node. Without node 5, two of the three neighbors (i.e., nodes 0 and 9 
among nodes {0, 6, 9}) in its home cluster would be disconnected from the rest of the 
network (in this context: node 5 strongly plays the role of a bridge: hub node) and the 
other three neighbors (nodes 1, 6 and 7) would have to communicate on a longer path 
(in this context: node 5 strongly plays the role of a bridge: border node). On the other 
hand, node 1 (that has the same degree as node 5) is weak in its role as a bridge: hub 
node and moderate in its role as a bridge: border node. The nodes in the home cluster 
of node 1 are not entirely dependent on node 1 to stay connected to each other as well 
with nodes in the other clusters. Hence, we argue that any centrality metric proposed in 
the literature to quantify and rank the nodes in Fig. 1 for the role of bridge nodes should 
rank node 5 higher than node 1. Likewise, nodes 7 and 8 that are part of their own clus-
ter, but connected to the other two clusters, are ideal candidates to be considered as 
bridge: between-clusters nodes as well as bridge: border nodes and be ranked high as 
bridge nodes. Among nodes 1, 2 and 3, we argue that node 3 be ranked relatively higher 
because of its topological position to be the only node to directly connect its home clus-
ter {1, 2, 3, 4} with an alien cluster {7, 8}; whereas, neither node 1 nor node 2 are the only 
nodes to directly connect their home cluster {1, 2, 3, 4} with an alien cluster. The extent 
to which each of nodes 1, 2 and 3 play the role of a bridge: hub node or bridge: border 
node appear to be about the same; however, the extent to which node 3 plays the role 
of a bridge: between-clusters node is relatively more stronger than that of nodes 1 and 2. 
In “Community-aware approach and Community-unaware approach” sections, we high-
light the lapse in the existing work in the literature to differentiate nodes on the basis of 
the extent to which they play the role of a bridge node in the three topological positions 
and illustrate how they end up overestimating or underestimating the role of a node as a 
bridge node.

Community‑aware approach

The community-aware approach requires a community detection algorithm to be run a 
priori and use the identified communities as the basis to quantify the role of a node as a 
bridge node. Most of the works on the community-aware approach assume the commu-
nities to be non-overlapping in nature (i.e., a node can be part of only one community).

Ghalmane et al. (2019a) propose the notion of a community hub-bridge (CHB) meas-
ure that appears to take into consideration the role of a bridge node both as a bridge: 
hub node and a bridge: border node, but not as a bridge: between-clusters node. Per 

Fig. 1  Motivating example graph and its clusters/communities
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(Ghalmane et al. 2019a), the CHB measure for a node i in community Ck is the sum of 
the terms: |Ck| * DCintra(i, Ck), quantifying the role of the node as a bridge: hub node and 
βc(i) * DCinter(i, Ck), quantifying the role of the node as a bridge: border node; where |Ck|, 
DCintra(i, Ck), βc(i) and DCinter(i, Ck) respectively represent the number of nodes in com-
munity Ck, the number of nodes connected to node i in its home cluster Ck, the number 
of neighboring communities for node i and the number of nodes connected to node i 
from other clusters. Table 1 lists the CHB scores for the nodes in the example graph of 
Fig. 1 with the Louvain clusters considered as the communities of the nodes. We observe 
bridge: between-clusters nodes such as nodes 7 and 8 incur CHB scores of 3 each, which 
is even less than the score for nodes 0, 4 and 9 that are all purely internal nodes within a 
community and cannot be considered as bridge nodes.

Ghalmane et  al. (2019a) also propose that the actual number of disjoint communi-
ties (referred with an acronym: NDC in “Analysis of real-world networks” section for 
comparison purposes) to which a node has incident edges as the basis to rank nodes as 
bridge nodes: nodes with incident edges to several disjoint communities are considered 
to more suit the role of a bridge node. However, such a formulation will fail to consider 
the bridge: between-clusters nodes (like nodes 7 and 8 in Fig. 1) that are connected to 
only two or few disjoint communities as well as the bridge: hub nodes (like node 3 in 
Fig. 1) that tend to have a larger fraction of its links to nodes within the community, but 
connected to relatively fewer number of disjoint communities (however, the links to the 
outside communities are important from betweenness and connectivity point of view).

Gupta et  al. (2016) propose a community centrality measure based on simply the 
intra-degree (number of edges to nodes within the community) and inter-degree (num-
ber of edges to nodes in other communities) of the nodes. For two nodes i and j, node 
i gets ranked higher than node j with respect to the community centrality measure, if 
node i has both a larger intra-degree as well as a larger inter-degree than node j (or) 
node i has an intra-degree that is not significantly smaller than that of node j, but has a 
larger inter-degree. For two nodes i and j with equal intra-degree (or equal inter-degree), 
node i is ranked higher than node j with respect to the community centrality measure if 
node i has a larger inter-degree (or larger intra-degree). We claim that the community 

Table 1  Computation of the community hub-bridge (CHB) scores (Ghalmane et al. 2019a) for the 
Nodes in Fig. 1

Node i Home 
cluster, Ck

|Ck| DCintra(i, Ck) βc(i) DCinter(i, Ck) |Ck| 
*DCintra(i, 
Ck)

βc(i) 
*DCinter(i, 
Ck)

CHB(i)

0 0 4 1 0 0 4 0 4

1 2 4 3 1 2 12 2 14

2 2 4 3 1 1 12 1 13

3 2 4 3 1 1 12 1 13

4 2 4 3 0 0 12 0 12

5 0 4 3 2 2 12 4 16

6 0 4 1 1 2 4 2 6

7 1 2 1 1 1 2 1 3

8 1 2 1 1 1 2 1 3

9 0 4 1 0 0 4 0 4
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centrality measure cannot be a good measure to rank nodes with respect to the extent 
of "bridgeness" as the inter-degree of a node need not always correspond to the num-
ber of distinct communities a node is connected to, a very important characteristic to 
consider for a bridge node (with regards to the position as a bridge: border node). For 
instance, in Fig. 1, the (intra-degree, inter-degree) of both nodes 1 and 5 are (3, 2). Per 
the community centrality measure, both nodes 1 and 5 will be equally ranked as bridge 
nodes; whereas, we argue that node 5 should be ranked higher than node 1 (see the ear-
lier discussion).

Magelinski et al. (2021) recently proposed the notion of "modularity vitality" (referred 
to as MVIT in “Analysis of real-world networks” section for comparison purposes) to 
identify nodes whose majority of incident links are inter-community links and exist in 
the periphery of a community (such nodes are referred to as bridge nodes in Magelinski 
et al. (2021)) and nodes whose majority of incident links are intra-community links and 
exist well-inside a community (such nodes are referred to as hub nodes in Magelinski 
et al. (2021)). In this pursuit, a node whose removal results in an increase in the overall 
modularity score of the network is considered to play the role of a bridge node and a 
node whose removal results in a decrease in the overall modularity score of the network 
is considered to play the role of a hub node. However, we claim that the decrease in the 
overall modularity score due to the removal of a node cannot be alone used to conclude 
that a node is "not a bridge node". For example, the removal of node 5 in Fig. 1 would 
result in the largest decrease in the overall modularity score for the network and per the 
modularity vitality measure, node 5 could be concluded as a hub node and not a bridge 
node. However, we claim that node 5 is a bridge node, serving as both a bridge: hub node 
as well as a bridge: border node. Thus, the modularity vitality approach has the weakness 
of not able to identify bridge nodes that could potentially serve as hub nodes of larger 
degree within their home cluster.

Ghalmane et al. (2019b) proposed to quantify the centrality of a node with respect to 
a classical centrality metric (DC, BC, EC or CC) as a vector of two entries that quan-
tify the contribution of a node within its local network as well as in the global network 
with respect to the particular classical centrality metric. For a given network and the 
communities identified using a community detection algorithm, the local network is 
constructed by removing all the inter-community links in the original network and the 
global network is constructed by removing all the intra-community links in the original 
network. The intention is that nodes with larger centrality metric values in both the local 
and global networks could be identified as the bridge nodes. Per this scheme, consider-
ing degree centrality (DC) as the classical centrality metric, the vectors for both nodes 
1 and 5 in Fig. 1 will be (3, 2). Ghalmane et al. (2019b) also proposed to use the fraction 
of intra-community links and inter-community links as weights for the centrality metric 
values computed for a node in respectively the local and global networks to arrive at a 
comprehensive centrality metric (referred to as modular centrality in Ghalmane et  al. 
2019b) value for a node. With nodes 1 and 5 in Fig. 1 having 3 intra-community links and 
2 inter-community links, they will incur identical (scalar) values for the modular central-
ity with respect to DC. When betweenness centrality (BC) is considered as the classical 
centrality metric, the modular centrality vectors for nodes 2, 3, 7 and 8 would be (0, 0) 
each (however, the BC values of these vertices in the original network are each greater 
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than zero), leading to a wrong conclusion that they are not bridge nodes. Note that in 
addition to being a scalar value, the modular centrality metric value is directly depend-
ent on the underlying classical centrality metric used and the ranking of the nodes as 
bridge nodes would vary depending on the classical centrality metric considered. An 
extension of the above work for overlapping communities is available in Ghalmane et al. 
(2019c), wherein the local network for an overlapping node (that is part of more than 
one community) comprises of links to nodes in each of its participating communities 
and the global network for an overlapping node comprises of links to the communities 
that it is not part of.

Community‑unaware approach

The community-unaware approach does not require a community detection algorithm 
to be run a priori. Instead, a community-unaware approach typically quantifies the 
extent of "bridgeness" of a node by considering the extents of "hubness’’ and "between-
ness" of the node. Two notable centrality metrics in the literature that fall in the cat-
egory of community-unaware approach and also include the word "bridge" as part of 
their name are: bridging centrality (BRC) (Hwang et al. 2008) and bridge node central-
ity (BNC) (Liu et al. 2019), both of which consider the betweenness centrality (BC) of 
the node on the (shortest) paths between any two nodes in the network as well as the 
degree of the node. Both BRC (see Eq. 1) and BNC (see Eq. 2) are computationally heavy, 
global and synchronous metrics (i.e., require knowledge about the entire network topol-
ogy in order to be computed for a node as well as cannot be computed for a particular 
node without being computed for every node in the network). On the other hand, our 
proposed NBNC tuple is computationally light, locally computable and asynchronous 
metric (i.e., can be computed for just the node in question by using only the two-hop 
neighborhood information).

The BRC value (Hwang et al. 2008) for a node is the product of its BC and bridging 
coefficient (BCO: computed as the ratio of the resistance of the node and the sum of 
the resistances of its neighbors; see Eq. 1 for the formulations of BCO and BRC). The 
resistance of a node (i) is the inverse of the degree (ki) of the node. Table 2 presents 
the computation of the BRC values of the vertices for the example graph of Fig.  1. 
Due to the incorporation of betweenness centrality and resistance in its formulation, 

Table 2  Computation of the bridging centrality (BRC) values for vertices in the graph of Fig. 1

Node, i Degree, ki 1/ki Neighbors(i)
∑

j∈Neighbors(i) 1/kj BCO(i) BC(i) BRC(i)

0 1 1 5 0.2000 5.0000 0.0000 0.0000

1 5 0.2 2, 3, 4, 5, 6 1.3667 0.1463 9.6667 1.4151

2 4 0.25 1, 3, 4, 6 1.1167 0.2239 1.3333 0.2978

3 4 0.25 1, 2, 4, 8 1.1167 0.2239 4.5000 1.0075

4 3 0.33 1, 2, 3 0.7000 0.4762 0.0000 0.0000

5 5 0.2 0, 1, 6, 7, 9 3.0333 0.0659 18.500 1.2198

6 3 0.33 1, 2, 5 0.6500 0.5128 1.8333 0.9385

7 2 0.5 5, 8 0.7000 0.7143 3.3333 2.3786

8 2 0.5 3, 7 0.7500 0.6667 1.8333 1.2200

9 1 1 5 0.2000 5.0000 0.0000 0.0000
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BRC is likely to highly rank nodes with a lower degree, but connected to larger degree 
neighbors, and a larger betweenness. In this context, we observe the BRC metric to 
take a note of the "bridge: between-clusters" nodes 7 and 8 in the example graph and 
rank them highly as bridge nodes. Nevertheless, we still notice that BRC ranks node 1 
relatively higher than node 5 (which exhibits a larger bridgeness compared to node 1), 
even though node 5 incurs a BC value that is twice of node 1: the reason is that node 
1 has relatively more high-degree neighbors than node 5 and hence incurs a larger 
BCO. The product of BC and BCO results in a scalar value that is an overestimate for 
node 1 and an underestimate for node 5 with regards to their role as bridge nodes, a 
typical weakness of the approaches that aim at formulating a scalar centrality metric 
to quantify the role of a node as bridge node. Instead, we need a tuple that would have 
two or more terms to capture the extents of hubness and betweenness of the nodes.

Liu et al. (2019), the authors proposed the notion of Bridge Node Centrality (BNC) 
to diminish the importance of high-degree nodes and give more importance to nodes 
with larger route betweeness and closeness to the rest of the nodes in the network. 
The BNC (Liu et al. 2019) of a node (see Eq. 2) is computed as the product of its route 
betweenness (RBW) and bridgeness coefficient (BCE) in a normalized scale; the RBW 
for a node is the ratio of the sum of the weights of the paths (between any two nodes 
in the network) that go through the node and the degree of the node; the BCE of a 
node (a measure of closeness of the node) is the inverse of the sum of the lengths (of 
length > 2) of the shortest paths from the node to the rest of the nodes in the network. 
The notations used in Eq. (2) represent the following: R is the total number of shortest 
path routes in the network between any two nodes; ωj = Pj/Lj, where Pj and Lj are the 
probability of information flow through route j and Lj is the length of route j; δj = 1 if 
node i is in route j and is 0 otherwise; ki is the degree of node i; dist(i, j) is the number 
of hops in the shortest path route between nodes i and j (note that only dist(i, j) > 2 
are considered in the computation of the BCE values of a node); RBW (i) and BCE(i) 
respectively represent the normalized RBW and BCE values of node i.

With the BNC metric, nodes with lower degree but a larger RBW (like the bridge: 
between-clusters nodes 7 and 8 in Fig.  1) are likely to have a larger BNC. However, 
nodes with larger degree are likely to suffer from a lower BNC unless they have a very 
high information flow. For example, a predominantly bridge: hub node like node 3 in 
Fig. 1 is likely to incur a lower BNC due to its larger degree and a moderate RBW.

Kleinberg et al. (2008), the authors refer to a bridge node as a structural hole filling 
the gap between two or more nodes that are otherwise not directly connected and 
evaluate the various benefits the structural holes bring to a network from a game-
theoretic perspective. A recent work (Yang and An 2020) quantifies the importance 

(1)BCO(i) =
1/ki

∑

j∈Neighbors(i)

1/kj
BRC(i) = BC(i) ∗ BCO(i)

(2)

RBW (i) =
∑R

j=1

ωjδj

ki
BCE(i) = 1/

∑n

j=1
dist(i, j) BNC(i) = RBW (i) ∗ BCE(i)
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of a node on the basis of a metric called the degree and structural hole count (DSHC) 
that is computed for a node i per the following formula:

wherein Γi, ki and kj are respectively the set of neighbors of node i, degree of node i 
and degree of node j, and Δij indicates the number of structural holes that node i fills 
by connecting node j with the former’s other neighbor nodes. Per the above formula, 
high-degree nodes with high-degree neighbor nodes and a larger value for the num-
ber of structural holes with regards to its neighbors are likely to incur a lower DSHC 
value (highly ranked as a structural hole). While applying the above formula for ver-
tices 1 and 5 in the example graph of Fig. 1, we observe the DSHC scores for vertices 
1 and 5 to be 0.1465 and 0.1625 respectively: implying, node 1 is highly ranked as a 
structural hole compared to node 5, whereas node 5 should be the top-ranked bridge 
node in this graph. The above formula for DSHC suffers from the same weakness that 
we had earlier highlighted for the BRC and BNC metrics. The formulation tries to 
combine node degrees (a measure of the hubness of the node as well as its neighbors) 
with the number of structural holes and comes up with a single quantitative measure 
that could overestimate or underestimate the role of a node as the bridge node.

Berahmand et al. (2019), the authors propose a scalar centrality metric to quantify 
the extent to which a node can serve as an effective spreader of information. With-
out any formal name in Berahmand et al. (2019), the metric is simply referred to as 
DCL in Berahmand et  al. (2019), probably due to its formulation (see Eq.  4 below) 
that involves terms based on the degree centrality, inverse of the clustering coefficient 
and the location information (considered in the form of the degree of the immediate 
neighbors) of a node. In Eq. (4), ki and CCi respectively denote the degree and cluster-
ing coefficient (Meghanathan 2017b) of node i, Γi denotes the set of neighbors of node 
i and |E(Ŵi)| denotes the average of the degrees of the neighbors of node i. The clus-
tering coefficient (Meghanathan 2017b) of a node is the ratio of the actual number 
of links connecting the neighbors of the node and the maximum possible number of 
links between the neighbors of the node. While the first and second terms of Eq. (4) 
respectively incorporate the degree and inverse of the clustering coefficient of a node, 
the third term incorporates the location information of a node on the basis of the 
degrees of the neighbors of the node.

The DCL formulation tends to give preference for nodes with larger degree, but a 
lower clustering coefficient and connected to high degree neighbors. Table  3 illus-
trates the calculation of the DCL metric values for the nodes in Fig. 1. We observe 
node 5 to incur the largest DCL score, justifying its roles as a bridge: hub node and a 
bridge: border node. However, the DCL score (the second largest score) of node 1 is 
greater than the DCL score of node 3 as well as greater than the DCL scores of nodes 

(3)DSHCi =
∑

j∈Ŵi

((

1

ki
+

1

kj

)

∗
1

1+�ij
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,
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7 and 8. Per the DCL metric, if a low degree node with lower clustering coefficient 
fails to have high degree neighbors (like nodes 7 and 8, one of whose neighbors have a 
lower degree), it is difficult to get highly ranked as a bridge node. Like the previously 
discussed metrics, the DCL metric also suffers from the weakness of combining mul-
tiple terms as part of its formulation in order to get computed as a scalar value.

Some of the other related approaches (primarily in the context of identifying the most 
influential nodes for spreading information) that exist in the literature are as follows: 
Ibnoulouafi et al. (2018), the authors propose to quantify the spreading capability of a 
node (referred to as M-Centrality) as a weighted average of the K-shell index number of 
the node (computed as part of K-shell decomposition (Wang et al. 2016)) and the degree 
variation in the neighborhood of the node; the weight for computing the M-Centrality 
metric is determined by applying the entropy technique of He et al. (2016) on the K-shell 
index numbers for the nodes and the extent of variation in node degree compared to 
the degrees of the neighbor nodes. The K-shell decomposition approach is likely to 
assign higher index numbers for nodes that are well-connected within a community (like 
node 4 in Fig. 1) but may not be even connected to nodes in other communities: not 
a favorable characteristic for identifying bridge nodes. On the other hand, the K-shell 
index numbers for lower-degree nodes as well as for higher-degree nodes connected to 
lower-degree nodes are likely to be lower. For example, in Fig. 1, the K-shell index num-
ber for critical bridge nodes like nodes 5, 7 and 8 is 2 each, whereas the K-shell index 
number for nodes 1, 2, 3 and 4 (that are part of a clique: a well-knit community) is 3 
each. The variation in node degree compared to the degrees of the neighbor nodes is 
likely to be larger for nodes (like node 5) with higher degree, but connected to lower 
degree neighbors and lower for nodes (like nodes 7 and 8) with lower degree, but con-
nected to higher-degree neighbors. Thus, from the perspectives of both the K-shell index 
numbers and the extent of variation in node degree compared to the neighbor nodes, the 
M-centrality metric may not be a suitable metric for identifying bridge: between-clusters 
nodes. For the problem of automatic keyword extraction, the authors in Vega-Oliveros 
et  al. (2019) first construct a ranking matrix of the vertices (keywords) in a co-occur-
rence graph of keywords with respect to a suite of nine different centrality metrics (local, 
global and intermediate-level metrics). They then subject this matrix to principal com-
ponent analysis and rank the keywords based on the first principal component. Recently 

Table 3  Computation of the DCL values for vertices in the graph of Fig. 1

Node, i Degree, ki 1/ki CCi Γi
∑

j∈Ŵi
kj |E(Ŵi)| DCLi

0 1 1 1 5 5 5 1.3333

1 5 0.2 0.5 2, 3, 4, 5, 6 19 4.75 10.4472

2 4 0.25 0.67 1, 3, 4, 6 15 3.75 7.5057

3 4 0.25 0.5 1, 2, 4, 8 14 3.5 8.4444

4 3 0.33 1 1, 2, 3 13 4.33 4.6947

5 5 0.2 0.1 0, 1, 6, 7, 9 12 2.4 20.1961

6 3 0.33 0.67 1, 2, 5 14 4.67 5.4691

7 2 0.5 0 5, 8 7 3.5 5.5556

8 2 0.5 0 3, 7 6 3 5.5000

9 1 1 1 5 5 5 1.3333
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(Bucur 2020), a multi-centrality dataset of the nodes (i.e., containing the centrality values 
of the nodes with respect to two or more metrics) was used for training a (binary) classi-
fier to predict whether or not a node with certain values for the centrality metrics will be 
a super spreader.

Overall, we observe the community-unaware bridgeness metrics such as BNC and 
BRC to give preference for nodes (such as the bridge: between-clusters nodes) with lower 
degree and larger information flow/betweenness or metrics such as the DCL give pref-
erence for nodes (bridge: border nodes) with larger degree, but lower clustering coef-
ficient and connected to high-degree neighbors. On the other hand, we observe the 
community-aware bridgeness metrics to give preference for nodes (bridge: hub nodes) 
with larger degree and have one or more inter-community links. A common weakness 
that we noticed for several metrics under both the approaches is the intention to come 
up with a scalar score (typically a weighted average of two or more different measures: 
say, the extent of hubness and betweenness or a weighted average of the entries in a 
tuple that is an amalgamation of the classical centrality metrics). In this section, we have 
highlighted several scenarios wherein such a formulation would either underestimate or 
overestimate the role played by a node as bridge node and cannot comprehensively con-
sider all the three possible topological positions of a bridge node. We need a tuple-based 
formulation that would take a fundamentally new approach to comprehensively capture 
the extent to which a node could serve as a bridge node with respect to all the three 
topological positions.

Neighborhood‑based bridge node centrality (NBNC) tuple
We hypothesize that a node could effectively serve the role of a bridge node with respect 
to all the three topological positions (bridge: hub, bridge: border and bridge: between-
clusters) if it has several (more than a few) neighbors, but the connectivity among the 
neighbors is low. In order to capture such a topological setup and quantify the same, we 
put forward the notion of a "neighborhood graph of a node" that comprises of the neigh-
bors of the node as vertices and the links connecting these neighbors as the edges. We 
seek to determine the number of components in the neighborhood graph (NG) as well 
as the connectivity of the NG spanning these components. The graph-theoretical defini-
tion of a component (Cormen et al. 2009) in a graph is: the subset of the vertices and 
the associated edges such that there is no edge to vertices outside the subset. Note that 
the neighborhood graph of a node is the ego network (Arnaboldi et al. 2016) of a node 
(widely used in social network analysis) minus the ego itself. Accordingly, in the context 
of social network analysis, the vertices comprising the neighborhood graph of a node 
can be referred to as ’alters’ and edges represent the ties among the alters.

Algebraic connectivity

The algebraic connectivity (AC (Fiedler 1973)) of a network is a measure of the connec-
tivity of the nodes in the network. The AC of a graph is computed by conducting spec-
tral analysis (Mieghem 2010) of the Laplacian matrix of the graph. The Laplacian matrix 
(Godsil and Royle 2001) of a graph is a square symmetric matrix whose diagonal entries 
correspond to the degree of the vertex. A non-diagonal entry (i, j) would be -1 if there 
is an edge between vertices i and j in the graph or 0 if there is no edge between i and j. 
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Spectral analysis of an n x n Laplacian matrix would return n eigenvalues (in the sorted 
order, starting from 0) and their corresponding eigenvectors (Mieghem 2010; Godsil 
and Royle 2001). The eigenvalues (Mieghem 2010; Godsil and Royle 2001) of the Lapla-
cian matrix would be either 0 or positive. The number of 0 s among the eigenvalues of 
the Laplacian matrix of a graph would correspond to the number of components in the 
graph (Mieghem 2010; Godsil and Royle 2001). Hence, if the entire graph is connected, 
there will be only one zero among the eigenvalues of its Laplacian matrix. The small-
est non-zero positive eigenvalue of the Laplacian matrix of a graph is a measure of the 
connectivity of the graph and is referred to as the Algebraic connectivity (AC) (Fiedler 
1973). The AC values can range from 4/(n*D) to n, where n is the number of vertices in 
the graph and D is the diameter of the graph (Gross et al. 2013). We refer to the Alge-
braic Connectivity Ratio (ACR) of a graph as the ratio of its algebraic connectivity to the 
number of nodes in the graph. The ACR values of a graph would always be in the range 
[0, …, 1]. Figure 2 presents the Laplacian matrix and the 10 eigenvalues of a 10-vertex 
running example graph used throughout this section and “Related work and motivation” 
section (referred to as the motivating example graph in Fig. 1). We observe the eigenval-
ues output by the spectral analysis program to be in sorted order. There is only one entry 
for a 0 among the eigenvalues, indicating all the 10 vertices exist as a single component. 
The smallest positive eigenvalue (0.6536) is the algebraic connectivity of this graph. The 
ACR value is 0.6536/10 = 0.06536 as it is the ratio of AC and the number of vertices in 
the graph. The lower ACR value can be attributed to the presence of node 5 and edges 
5–9 and 0–5, any of which if removed will disconnect the graph.

Neighborhood graph

The neighborhood graph of a vertex i (denoted NGi) comprises the neighbors of the ver-
tex as the vertices and the edges connecting the neighbors. Note that the neighborhood 
graph of a vertex does not include the vertex and the edges to its neighbors. Figure 2 
presents the neighborhood graphs of vertices 1 and 5 in the running example graph of 
this section. For vertex 1, all its five neighbors are in a single component. For vertex 5, 
the neighborhood has a total of four components: vertices 1 and 6 are in one component 
and vertices 0, 7 and 9 are each in a separate component.

Fig. 2  Examples for neighborhood graph of a vertex, Laplacian matrix and its eigenvalues
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Computation of NBNC tuple

We propose to quantify the extent to which a node i can serve the role of a bridge node 
in the form of a 3-term Neighborhood-based Bridge Node Centrality (NBNC) tuple 
whose entries are in this order: 

(

NG
#comp
i ,NGACR

i , |NGi|

)

 , where NG#comp
i  is the number 

of components in the neighborhood graph NGi of node i, NGACR
i  is the ratio of the alge-

braic connectivity of NGi and the number of nodes in NGi (the latter represented as 
|NGi|, which is also the third term in the tuple). We denote the NBNC tuple of a node i 
as NBNC(i). To compute the NBNC(i), we build the neighborhood graph NGi of node i 
and determine the eigenvalues of the Laplacian matrix of NGi. The number of 0 s among 
the eigenvalues of the Laplacian matrix of NGi denote the number of components 
( NG#comp

i  ) in NGi and is the first term in NBNC(i). The smallest non-zero positive eigen-
value of the Laplacian matrix of NGi denotes the algebraic connectivity ( NGAC

i  ) of NGi; 
the ratio NGAC

i /|NGi| is the algebraic connectivity ratio of NGi (denoted as NGACR
i  ) and 

is the second term of NBNC(i). We use the NGACR
i  ratio (rather than just NGAC

i  ) as part 
of NBNC(i) to compare neighborhoods on the basis of their connectivity vis-a-vis the 
number of nodes that are part of the neighborhood; the use of NGACR

i  also facilitates 
comparing neighborhoods on a uniform scale ranging from 0.0 to 1.0.

For vertex 1 in the example graph of Figs.  1 and 2, we observe its neighbor-
hood graph NG1 to be connected and hence NG#comp

1  = 1. The algebraic connec-
tivity of NG1 is NGAC

1  = 0.5188 (the smallest non-zero positive eigenvalue of the 
Laplacian matrix of NG1) and the algebraic connectivity ratio of NG1 is NGACR

1  = NGAC
1

/|NG1|= 0.5188/5 = 0.1038. The number of vertices in NG1 is |NG1|= 5. Hence, the 
NBNC tuple for vertex 1 is NBNC(1) is (1, 0.1038, 5). Likewise, for vertex 5: we observe 
its neighborhood graph NG5 to have four components (there are four 0  s among the 
eigenvalues of NG5). The smallest non-zero positive eigenvalue of the Laplacian matrix 
of NG5 is 2.0000 and NGACR

5  = 2.0000/5 = 0.4000. Hence, the NBNC tuple for vertex 5 is 
NBNC(5) is (4, 0.4000, 5). The NBNC tuples of the ten vertices in the running example 
graph are presented in Table 4.

NBNC‑based ranking of the vertices

In this sub section, we propose the rules to compare the NBNC tuples of two vertices 
that can be incorporated in any comparison-based sorting algorithm to obtain a ranking 

Table 4  NBNC tuples for the nodes in the example graph of Figs. 1 and 2

Node ID NBNC tuple

0 (1, 0.0, 1)

1 (1, 0.1038, 5)

2 (1, 0.25, 4)

3 (2, 0.75, 4)

4 (1, 1.0, 3)

5 (4, 0.4, 5)

6 (1, 0.3333, 3)

7 (2, 0.0, 2)

8 (2, 0.0, 2)

9 (1, 0.0, 1)
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of the vertices (a sorted order of the node IDs) with respect to the extent to which they 
serve the role of a bridge node in the network. The sorting algorithm is to be designed 
in such a way that vertices which are topologically better qualified to function as bridge 
nodes are ranked higher and appear earlier in the sorted order. In this pursuit, we define 
below the ’>’ operation to compare the NBNC tuples of any two vertices u and v and 
decide the relative ranking of the two vertices. We propose that for any two vertices u 
and v, NBNC(v) be considered > NBNC(u) per the following rules:

(1)	 If ( NG#comp
v  > NG#comp

u  ) then, NBNC(v) > NBNC(u)
(2)	 If ( NG#comp

v  = NG#comp
u  ) and ( NGACR

v  < NGACR
u  ) then, NBNC(v) > NBNC(u)

(3)	 If ( NG#comp
v  = NG#comp

u  ) and ( NGACR
v  = NGACR

u  ) and (|NGv| >|NGu|) then, 
NBNC(v) > NBNC(u)

Among the three terms in the NBNC tuple for a vertex v, we give preference to the 
NG

#comp
v  term: a node whose neighborhood graph has several components is an ideal 

candidate to serve as bridge node. If the NG#comp
v  and NG#comp

u  of two vertices v and u 
are the same, we break the tie in favor of the vertex that has a lower value for the NGACR 
term, a measure of the connectivity of the neighborhood graph vis-a-vis the number of 
vertices in the graph. A lower NGACR

v  value for a vertex v implies that its neighborhood 
graph is sparsely connected among the |NGv| neighbors. If two vertices u and v are still 
tied on the basis of their NG#comp and NGACR values, we break the tie in favor of the 
vertex with the larger number of nodes in the neighborhood graph (the neighborhood 
graph of such a vertex is relatively more disconnected among the vertices that are tied 
on the basis of the first and second terms, and the vertex with a larger degree is more 
qualified to serve as a bridge node).

If two vertices u and v are tied on the basis of all the three terms in their NBNC tuples 
(i.e., when NBNC(u) =  = NBNC(v)), then we let the sorting algorithm to break the tie 
in favor of the vertex with the larger ID and generate a sorted array of the node IDs that 
represents the tentative rankings of the vertices (i.e., the tentative ranking for a vertex 
is the index for the vertex in the sorted array of node IDs). We eventually generate a 
final ranking of the vertices as follows: If the NBNC tuple of a vertex is not tied with any 
vertex, its final ranking is the same as its tentative ranking. For vertices whose NBNC 
tuples are tied, their final ranking is the average of the tentative rankings of these verti-
ces. The above procedure used to rank tied nodes is adapted from the procedure for cal-
culating the Spearman’s rank-based correlation coefficient (the correlation measure used 
in “Uniqueness of the NBNC tuple” section to assess the uniqueness of the proposed 
NBNC tuple) (Strang 2006; Lohninger 2021). Figure  3 presents the tentative rankings 
and final rankings (per the above rules for ranking and tie-breaking procedure) of the 
ten vertices in the example graph of Figs. 1 and 2. We prefer to use Θ(1)-space complex-
ity in-place sorting algorithms like Heap sort (of time complexity Θ(nlogn) to sort n ele-
ments) or Insertion sort (with a best case time complexity of Θ(n) and a worst case time 
complexity of Θ(n2)) rather than sorting algorithms like Merge sort (of time complex-
ity Θ(nlogn), but space complexity Θ(n)) that are not in-place with respect to memory 
requirement, especially when we have to sort the node IDs in networks with a larger 
number of nodes.
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Justification of the Rules for Ranking: The formulation of the proposed NBNC 
tuple incorporates all the three topological positions of a bridge node and a node is 
ranked as a bridge node on the basis of the extent to which it is critical for connec-
tivity among its neighbors and the number of such neighbors that would be other-
wise disconnected without this node. We now justify the order of preference given 
for the three terms in the NBNC tuple. The first term (the number of components in 
the neighborhood graph of a node) of the NBNC tuple takes into account the role of 
a node as both a bridge: hub node and a bridge: border node and quantifies the extent 
to which the neighborhood of a node would otherwise be disconnected without this 
node. Only a node with larger degree and connected to several other clusters (that 
would not be otherwise reachable to each other if the node and its incident edges are 
removed from the graph) is likely to incur a larger value for the number of compo-
nents in its neighborhood graph. The second term (the algebraic connectivity ratio) 
of the NBNC tuple is more likely to be lower or even zero for the neighborhood graph 
of the bridge: between-clusters nodes that typically have a low-moderate degree, but 
a larger betweenness. As degree and betweenness centrality metrics exhibit a mod-
erate-strong positive correlation (Meghanathan 2017c), we anticipate a larger degree 
node with a larger betweenness would get highly ranked as a bridge node on the 
basis of the first term itself (i.e., such a node is expected to have a larger number of 
components in its neighborhood graph, justifying its larger betweenness and larger 
degree). For bridge: hub nodes (like node 5 in our example graph) with larger degree, 
but sparse connectivity (with algebraic connectivity ratio greater than zero) among 
the neighbors, the node could still get ranked higher on the basis of the first term if 
the number of components involving its neighbors is relatively larger than the rest of 
the nodes in the network. If there is a relatively fewer number of components in the 
neighborhood graph of a larger degree node (like node 1), it implies the neighbors are 
reachable to each other without going through the node (such a node could get classi-
fied as a bridge node only based on the second term or the third term: in case of a tie, 
but not the first term).

Thus, the three terms (considered in the order of preference, as explained above) 
of the NBNC tuple unequivocally capture the extent to which a node plays the role 
of a bridge node with respect to the three topological positions (bridge: hub, bridge: 
border and bridge: between-clusters nodes). To the best of our knowledge, we opine 

Fig. 3  NBNC tuple-based tentative and final rankings of vertices in the example graph of Fig. 1 and 2
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that such a comprehensive ranking of the nodes as bridge nodes cannot be obtained 
by coming up with a scalar value that is a weighted linear combination of the three 
terms or an aggregation of the ranking based on the individual terms (Madotto and 
Liu 2016) or by simply putting together discrete values of related classical metrics 
(such as degree, betweenness, etc.) as a tuple and coming up with a preference rule 
for these centrality metrics to rank the nodes on the basis of the extent to which they 
play the role of a bridge node.

Average and worst case time complexity to compute the NBNC tuples

The NBNC tuple can be locally computed (in parallel) for any vertex in a graph. The 
Eigenvalues computation of an n x n Laplacian matrix takes O(n2) time (Fiedler 1973). 
The Laplacian matrix of the neighborhood of a node i would have dimensions ki x ki 
where ki is the degree of the node. Hence, the Eigenvalues computation of a ki x ki matrix 
would take O(k2i  ) time. The average case time complexity to compute the NBNC tuples 
for all the nodes in a network of ’n’ nodes in parallel would be then O(

∑n
i=1 k

2
i /n). At 

the worst-case, the Laplacian matrix of the neighborhood of a node will have dimen-
sions kmax x kmax where kmax is the maximum degree for any node in the network. The 
Eigenvalues computation for a kmax x kmax Laplacian matrix would take O(k2max ) time, 
which is the worst case time complexity for computing the NBNC tuples in parallel for 
all the nodes in a network. In theory, kmax can be as large as n-1 where n is the number 
of nodes in the network; however, in practice, kmax values for real-world networks (even 
if scale-free) are expected to be much less than n-1, especially for larger networks (see 
Table  5 for data on the number of nodes and the maximum degree of a node for the 
real-world networks analyzed in “Analysis of real-world networks” section). In compari-
son, the lowest worst case time complexity for any community detection algorithm is 
O(nlogn) (Lancichinetti and Fortunato 2009), corresponding to the Louvain algorithm 
(Blondel et al. 2008). Several other well-known deterministic community detection algo-
rithms (like Greedy modularity (Chen and Kuzmin 2014), Spectral clustering (Ng et al. 
2001), Girvan–Newman (Newman and Girvan 2004), etc.) are of time complexity O(n2) 
or O(n3) or even larger.

Analysis of real‑world networks
In this section, we illustrate the computational lightness, effectiveness, efficiency/accu-
racy and uniqueness of the proposed NBNC tuple to rank the nodes in a real-world net-
work with respect to the extent to which they function as bridge nodes in the network. 
We consider a suite of 60 real-world networks with diverse degree distributions and 
domains. For studies on effectiveness and uniqueness of the NBNC tuple, we compare 
it with four representative metrics chosen from the category of community-aware met-
rics such as the number of disjoint communities (NDC) (Ghalmane et  al. 2019a), the 
community hub-bridge (CHB) (Ghalmane et  al. 2019a), the modular degree centrality 
(MDC) (Ghalmane et al. 2019b) and the modularity vitality (MVIT) metric (Magelinski 
et  al. 2021) and four representative metrics chosen from the category of community-
unaware metrics such as betweenness centrality (BC) (Freeman 1977), bridging central-
ity (BRC) (Hwang et  al. 2008), bridge node centrality (BNC) (Liu et  al. 2019) and the 
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Table 5  Real-world networks used for the analysis

Net. # Network name Domain # Nodes # Edges kmax λk Modularity References

1 Word Adjacency 
Net

Co-appearance 
Net

112 425 49 1.733 0.271 Newman (2006)

2 Anna Karnenina 
Network

Co-appearance 
Net

138 493 71 2.475 0.371 Knuth (1993)

3 Jazz Band 
Network

Co-appearance 
Net

198 2742 100 1.445 0.444 Geiser and Danon 
(2003)

4 Cat Brain Net-
work

Biological 
Network

65 730 45 1.197 0.271 Scannell et al. 
(1995)

5 C. Elegans 
Neural Net

Biological 
Network

297 2148 134 1.684 0.401 White et al. (1986)

6 C. Elegans Meta-
bolic Net

Biological 
Network

453 2025 237 2.943 0.428 Duch and Arenas 
(2005)

7 Centrality Litera-
ture Net

Literature 
Network

118 613 66 1.859 0.288 Hummon et al. 
(1990)

8 Copperfield 
Network

Co-appearance 
Net

87 406 82 1.831 0.372 Knuth (1993)

9 CS Dept. Aarhus 
Net

Employee 
Network

61 219 60 2.120 0.059 Magnani et al. 
(2013)

10 PhD Theoretical 
CS Net

Researchers Net 1025 1043 46 3.347 0.923 Johnson (1984)

11 Dolphin Net-
work

Social Network 62 159 12 1.403 0.515 Lusseau et al. 
(2003)

12 Dutch Literature 
1976 Net

Literature 
Network

35 80 12 1.488 0.300 Nooy (1999)

13 EU Air Transpor-
tation Net

Infrastructural 
Net

418 1999 145 3.811 0.247 Cadrillo et al. 
(2013)

14 Facebook 
Network

Social Network 324 2218 58 1.811 0.622 Blagus et al. 
(2012)

15 Friendship, Hi-
Tech Firm

Employee 
Network

33 147 16 1.440 0.313 Krackhardt (1999)

16 Flensburg Fjord 
Food Web

Web Network 180 1577 116 1.804 0.318 Zander (2011)

17 FL Food Web 
Carbon Exc

Web Network 128 2106 110 1.222 0.178 Ulanowicz and 
Donald (2005)

18 Flying Teams 
Cadet Net

Social Network 48 170 16 1.210 0.455 Mareno (1960)

19 US Football 
Network

Game Network 115 613 12 1.011 0.604 Girvan and New-
man (2002)

20 College Dorm 
Fraternity

Social Network 58 967 52 1.111 0.060 Bernard et al. 
(1979)

21 GD’96 Network Citation Net-
work

180 229 27 2.375 0.651 Batagelj and 
Mrvar (2006)

22 Hypertext 2009 
Network

Researchers Net 113 2163 97 1.208 0.103 Isella et al. (2011)

23 Infectious Soc. 
Pattern Net

Social Network 309 1924 47 1.688 0.575 Isella et al. (2011)

24 Java Depend-
ency Network

Collaboration 
Net

1538 8032 755 4.254 0.470 Batagelj and 
Mrvar (2006)

25 Karate Club 
Network

Social Network 34 78 17 1.466 0.416 Zachary (1977)

26 Korea Family 
Plan Net

Social Network 35 84 13 1.525 0.448 Rogers and Kin-
caid (1980)

27 Lazega Law Firm 
Network

Employee 
Network

71 205 70 2.632 0.001 Lazega (2001)

28 Les Miserables 
Network

Co-appearance 
Net

77 254 36 1.820 0.553 Knuth (1993)
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Table 5  (continued)

Net. # Network name Domain # Nodes # Edges kmax λk Modularity References

29 Macaque Domi-
nance Net

Biological 
Network

62 1167 55 1.037 0.097 Takahata (1991)

30 Madrid Train 
Bomb. Net

Collaboration 
Net

64 486 29 1.782 0.380 Hayes (2006)

31 Manuf. Comp. 
Emp. Net

Employee 
Network

77 2326 76 1.121 0.211 Cross et al. (2004)

32 Mexican Political 
Network

Political Net-
work

35 117 17 1.225 0.357 Gil-Mendieta and 
Schmidt (1996)

33 ModMath 
Network

Social Network 30 61 11 1.257 0.416 Batagelj and 
Mrvar (2006)

34 US Politics 
Books Net

Co-appearance 
Net

105 441 25 1.421 0.521 Krebs (2003)

35 Prim. School 
Contact Net

Social Network 238 5539 88 1.224 0.360 Gemmetto et al. 
(2014)

36 Prison Friend-
ship Network

Social Network 67 182 11 1.319 0.572 MacRae (1960)

37 Rhesus Cortical 
Network

Biological 
Network

93 2262 92 1.219 0.000 Guimera et al. 
(2003)

38 San Juan Sur 
Family Net

Social Network 75 155 12 1.294 0.595 Loomis et al. 
(1953)

39 Senator Press 
Release Net

Co-appearance 
Net

92 477 41 1.566 0.256 Grimmer (2010)

40 Slovenian Maga-
zine Net

Literature 
Network

124 5972 123 1.048 0.027 Batagelj and 
Mrvar (2006)

41 Soccer World 
Cup’98 Net

Game Network 35 118 19 1.448 0.219 Batagelj and 
Mrvar (2006)

42 Strike Saw Mill 
Network

Employee 
Network

24 38 7 1.222 0.562 Michael (1997)

43 Taro Exchange 
Network

Social Network 22 39 6 1.058 0.447 Schwimmer 
(1973)

44 UK Faculty 
Friendship Net

Social Network 81 577 41 1.354 0.449 Nepusz et al. 
(2008)

45 US Airports 
1997 Net

Infrastructural 
Net

332 2126 139 3.220 0.327 Batagelj and 
Mrvar (2006)

46 US States Net-
work

Geographical 
Net

49 107 9 1.247 0.578 Meghanathan 
(2017a)

47 Residence Hall 
Friend Net

Social Network 217 1839 56 1.272 0.431 Freeman et al. 
(1998)

48 Western US 
Power Grid

Infrastructural 
Net

4941 6594 19 2.804 0.931 Watts and Stro-
gatz (1998)

49 Wind Surfers 
Beach Net

Social Network 43 336 31 1.160 0.255 Freeman et al. 
(1989)

50 World Trade 
Network

Trade Network 80 875 77 1.377 0.220 Smith and White 
(1992)

51 Facebook Net. 
of Politicians

Social Network 5908 41,706 323 1.424 0.867 Rozemberczki 
et al. (2019)

52 Erdos992 Col-
laboration Net

Collaboration 
Net

5094 7515 61 3.821 0.771 Batagelj and 
Mrvar (2000)

53 Mobile Phone 
Call Network

Social Network 6809 7680 261 6.897 0.872 Eagle and Pent-
land (2006)

54 WHOIS Network Technological 
Net

7476 56,943 1079 2.323 0.580 Mahadevan et al. 
(2006)

55 dmela Protein 
Interac. Net

Biological 
Network

7393 25,569 190 4.756 0.455 Singh et al. (2008)

56 Grid Fruitfly 
Network

Biological 
Network

7274 24,894 176 4.514 0.452 Rossi and Ahmed 
2015)
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degree, clustering coefficient and location-based DCL metric (Berahmand et al. 2019). 
For discussion purposes, the above eight metrics are collectively referred to as "bridge-
ness" metrics, and the NBNC tuple and the bridgeness metrics are collectively referred 
to as "bridgeness" measures.

Computational lightness: The NBNC tuple can be asynchronously computed (i.e., 
just for a particular node without requiring to be computed for all the nodes in the net-
work) as well as in parallel and is hence expected to be computationally light. To illus-
trate the computational lightness of the NBNC tuple, we compare the average and worst 
case time complexities incurred in computing the NBNC tuples in parallel for every 
node in a real-world network with that of the lowest worst case time complexity that 
can be incurred for any community detection algorithm. Effectiveness: To illustrate the 
effectiveness of the NBNC tuple and the bridgeness metrics in identifying and ranking 
bridge nodes on the basis of the extent of their contribution, we determine the small-
est value of the fraction (ρmin) of the top-ranked bridge nodes that need to be removed 
to fragment a real-world network in such a way that the fraction of initial nodes in the 
largest connected component of the resulting network is below a threshold. Efficiency/
accuracy: We anticipate the first term of the NBNC tuple to efficiently (without running 
any clustering/community detection algorithm) and accurately quantify the number of 
different clusters in which the neighbor nodes of a node would be part of. In this pur-
suit, we compute the root mean squared error (RMSE) values for the number of differ-
ent clusters perceived to exist in the neighborhood of a node as per the NBNC tuple 
versus the actual number of different clusters in the neighborhood of a node as per a 
community detection algorithm (we use the well-known Louvain community detection 
algorithm (Blondel et al. 2008)). Uniqueness: To illustrate the uniqueness of the NBNC 
tuple, we compute the Spearman’s rank-based correlation coefficient (Strang 2006) of the 
ranking of the vertices on the basis of the NBNC tuples in each real-world network vis-
a-vis the bridgeness metrics. We anticipate the Spearman’s rank-based correlation coef-
ficient values for NBNC versus a bridgeness metric to be appreciably lower than 1.0 to 
vindicate the uniqueness of the NBNC tuple in ranking nodes on the basis of the extent 
to which they play the role of a bridge node.

Real‑World Networks

Table  5 lists the 60 real-world networks (with a unique identification number 1–60) 
along with their name, domain, number of nodes and edges, the spectral radius ratio for 

Table 5  (continued)

Net. # Network name Domain # Nodes # Edges kmax λk Modularity References

57 Autonomous 
Systems Net

Technological 
Net

6474 13,895 1459 5.083 0.620 Rossi and Ahmed 
(2015)

58 Gnutella Peer-
to-Peer Net

Technological 
Net

6301 20,777 97 3.000 0.448 Rossi and Ahmed 
(2015)

59 High Energy 
Physics Collab

Collaboration 
Net

9877 51,971 65 2.676 0.761 Rossi and Ahmed 
(2015)

60 LastFM Users 
Network

Social Network 7624 27,806 216 5.051 0.814 Rozemberczki 
and Sarkar 
(2020)
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node degree (Meghanathan 2014) as well as the modularity scores (Brandes et al. 2008) 
for these networks (determined using Gephi (2020)), as per the Louvain community 
detection algorithm. The spectral radius ratio for node degree (denoted: λk and λk ≥ 1.0) 
is a measure of the variation in node degree, but unlike standard deviation, the λk val-
ues are not dependent on the number of nodes or edges. The larger the λk value for a 
network, the greater is the variation in its node degree. Scale-free networks (Barabasi 
and Albert 1999) are expected to incur a larger λk value, while random networks (Erdos 
and Renyi 1959) are expected to incur λk values closer to 1.0. The networks analyzed 
are spread over several domains, as listed below (inside the parenthesis: we indicate the 
number of networks analyzed in these domains): Biological networks (7), Citation net-
work (1), Co-appearance networks (7), Collaboration networks (4), Employee networks 
(5), Game networks (2), Geographical network (1), Infrastructural networks (3), Lit-
erature networks (3), Political network (1), Researchers networks (2), Social networks 
(18), Technological networks (3), Trade network (1) and Web networks (2). All the 60 
real-world networks are transformed into undirected graphs. The first 50 real-world 
networks (Net. #s 1 through 50) have less than 5000 nodes for each of which we com-
pute the NBNC tuple and all the eight bridgeness metrics. The last 10 real-world net-
works (Net. #s 51 through 60) have more than 5,000 nodes: we do not compute the three 
computationally heavy betweenness related community-unaware metrics (BC, BRC and 
BNC) for these ten networks, but compute the NBNC tuple and the other five bridge-
ness metrics.

Computational lightness of the NBNC tuple

The NBNC tuple for any node can be determined locally for the specific node and it 
requires only computation of the Eigenvalues of the Laplacian matrix of the neighbor-
hood graph of a node whose size is bounded by the degree of the node. In this sub sec-
tion, we substantiate the computational lightness of the NBNC approach through actual 
run-time measurements conducted on the 60 real-world networks. We measured the 
actual average run-time for the computation of the NBNC tuple per node as well as the 
actual worst case run-time for the computation of the NBNC tuple for any node for each 
of the 60 real-world networks and compared them with the actual average run-time it 
took for the Louvain community detection algorithm to determine the disjoint clusters 
in these networks. All our implementations were done in Java and the code was run on 
a desktop Windows 7 computer (Intel i7-2620M CPU @ 2.70  GHz with 8  GB RAM). 
To account for the NBNC tuple’s potential to be computed in parallel, we measure the 
actual average run-time to compute the NBNC tuple per node in a real-world network 
as the total of the run-times to compute the NBNC tuples of all the nodes in the network 
divided by the number of nodes in the network. The worst case run-time for the compu-
tation of the NBNC tuple for any node in a real-world network is the maximum of the 
run-times measured for the individual nodes in the network. The results presented in 
Table 6 (the run-time values are shown in micro seconds) are average values for 10 exe-
cutions of the NBNC computations (per the procedure described above) and the Lou-
vain algorithm for each of the 60 real-world networks.

For 51 of the 60 real-world networks (i.e., for more than 5/6th of the real-world 
networks) and for 26 of the 60 real-world networks (i.e., for more than 2/5th of the 
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Table 6  Actual average run-time (per node, accounting for parallelization) and worst case run-time 
(for any node) for the computation of the NBNC tuple versus the actual average run-time for the 
Louvain community detection algorithm (all run-times are measured in micro seconds)

The entries for NBNC Average and NBNC Worst case are represented in bold in Table 6 if their computation times are lower 
than the computation time for Louvain Average for the corresponding networks

Net. # NBNC 
Average

NBNC Worst 
Case

Louvain 
Average

Net. # NBNC 
Average

NBNC Worst 
Case

Louvain 
Average

1 526.25 17,396.80 5524.08 31 465.83 2595.06 216.78

2 248.77 7391.75 1527.20 32 23.84 53.98 77.24

3 1011.34 13,486.16 2037.22 33 15.55 34.21 117.36

4 461.64 1259.71 299.87 34 37.12 210.58 261.18

5 277.66 17,949.87 2438.87 35 1287.68 5377.89 1304.89

6 458.56 118,169.16 8408.95 36 12.30 53.22 224.16

7 110.82 2554.00 476.21 37 1192.59 7253.01 521.10

8 103.52 3716.40 309.79 38 13.47 38.77 298.17

9 72.60 998.95 132.05 39 65.05 606.67 237.34

10 9.20 150.53 729.25 40 8348.81 20,317.62 1158.03

11 26.11 49.04 276.23 41 24.25 94.65 64.30

12 23.80 39.53 143.81 42 15.51 13.30 144.54

13 265.46 16,574.99 2869.35 43 18.12 13.68 131.71

14 163.00 1903.63 1529.07 44 114.83 830.56 253.71

15 54.76 140.26 211.05 45 422.03 23,666.83 3405.91

16 287.17 10,258.21 1028.03 46 16.14 24.71 201.86

17 626.45 9987.57 739.58 47 152.55 1936.32 1039.97

18 27.46 60.44 124.76 48 29.84 118.60 19,917.89

19 50.42 96.55 527.81 49 103.14 365.67 88.77

20 630.69 1577.49 198.24 50 352.03 3601.61 307.25

21 11.57 125.82 743.12 51 531.26 238,219.14 65,190.28

22 825.26 8313.15 680.94 52 32.85 2158.68 42,756.09

23 70.73 1079.91 1249.50 53 75.88 39,459.92 50,222.32

24 7432.13 8,218,348.54 132,836.96 54 8488.45 22,503,607.50 395,161.64

25 16.62 36.49 80.79 55 62.90 26,729.05 70,350.26

26 19.54 57.78 111.69 56 97.18 184,555.40 555,970.77

27 37.62 778.10 77.62 57 11,770.01 65,022,191.97 2,503,644.01

28 17.84 220.47 108.25 58 35.05 3791.66 32,048.08

29 484.22 1128.95 137.79 59 86.33 4563.68 171,441.53

30 21.86 153.57 87.72 60 144.33 79,320.47 167,157.83

Fig. 4  Impact of spectral radius ratio for node degree on the run-times to compute the NBNC tuples for the 
real-world networks
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real-world networks), we observe the actual average run-time and actual worst case 
run-time for the computation of the NBNC tuples of the nodes to be respectively lower 
than the actual average run-time for the Louvain community detection algorithm (we 
highlight the corresponding cells in Table  6). With regards to the impact of spectral 
radius ratio for node degree on the run-times to compute the NBNC tuple (see Fig. 4, 
wherein we plot the logarithm of the run-times to capture all the data points in a single 
scale), two observations could be made: the actual average run-time per node does not 
show a particular pattern of increase or decrease with increase in the spectral radius 
ratio for node degree; whereas, the actual worst case run-time for any node shows a pat-
tern of increase with increase in the spectral radius ratio for node degree (especially, for 
larger networks) and the latter observation is as expected. The relatively lower values for 
the actual average run-times per node for more than 5/6th of the real-world networks 
(including the larger scale-free networks, #s 51–60) and the absence of any correlation 
between the spectral radius ratio for node degree and the actual average run-time per 
node portend well for the use of the NBNC-approach (local and synchronous) rather 
than a community detection algorithm (global and synchronous) to efficiently decide the 
extent of bridgeness for the majority of the nodes in larger scale-free real-world networks.

Effectiveness of the NBNC tuple

In this sub section, we evaluate the effectiveness of the NBNC tuple vis-a-vis the eight 
bridgeness metrics with respect to meticulously identifying the bridge nodes in a real-
world network. We adapt the fragmentation approach of da Cunha et al. (2015) to evalu-
ate the effectiveness of the bridgeness measures in identifying the bridge nodes in the 
real-world networks of Table  5. Under the original fragmentation approach of Cunha 
et al. (2015): one needs to first run a community detection algorithm and identify the 
nodes that connect two or more communities; sort these nodes in the decreasing order 
of their values with respect to a bridgeness measure and the attack (network fragmenta-
tion) process then begins with the removal of one node at a time, starting from the first 
node in the sorted list. A plot of the fraction ρ of nodes removed versus the fraction σ 
of the original nodes in the largest component of the remaining network of nodes gets 
evolved with each node removal. When all the nodes in the list have been removed, the 
attack process stops. For a chosen value of σ, the bridgeness measure that required the 
lowest value for the fraction ρ of nodes to be removed is considered the most effective.

Since NBNC and the community-unaware metrics do not require a community detec-
tion algorithm to be run a priori, we cannot apply the above-described fragmentation 
approach as it is. Hence, we propose a modified version of the fragmentation approach 
that can be seamlessly applied for all the bridgeness measures. We developed a binary 
search algorithm to determine the lowest value for the fraction ρ of nodes to be removed 
(denoted by ρmin) that would result in the σ value falling below a targeted threshold, 
σthresh (set as 0.05 in this paper) for a real-world network.

With a search space of [0.0, …, 1.0], the binary search algorithm maintains the follow-
ing invariants throughout its execution: (1) For any value of the left index (LI, initial-
ized to 0.0) fraction of nodes removed from the network, the fraction of nodes in the 
largest component of the resulting network is always greater than or equal to σthresh. (2) 
For any value of the right index (RI, initialized to 1.0) fraction of nodes removed from 
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the network, the fraction of nodes in the largest component of the resulting network is 
always less than σthresh. In each iteration of the binary search algorithm, we determine 
the middle index (MI) as the average of the latest values of LI and RI. We remove the MI 
fraction of nodes from the network and determine the fraction of nodes in the largest 
component of the resulting network; if this fraction is less than σthresh, we move the RI 
to the left and set RI = MI; if the fraction is greater than or equal to σthresh, we move the 
LI to the right and set LI = MI. We continue the iterations until the absolute difference 
between the RI and LI is within a threshold (we use a value of 0.01 for the threshold dif-
ference between the RI and LI in the binary search algorithm). The latest value of RI at 
the time of termination of the algorithm is the smallest value of ρ (ρmin) that would lead 
to the σ value falling below σthresh (0.05).

The lower the ρmin value (0.0 ≤ ρmin ≤ 1.0) for a bridgeness measure, the more effective 
is the measure in identifying the bridge nodes in a network. With a search space ranging 
from 0.0 to 1.0 and 0.01 as the threshold difference between the RI and LI for the algo-
rithm to terminate, the number of iterations of the binary search algorithm for any given 
bridgeness measure and real-world network is just log((1.0−0.0)/0.01)

2  ~ 7. We used the 
above binary search algorithm to measure the effectiveness (ρmin) for the NBNC tuple 
and each of the eight bridgeness metrics for real-world networks 1 through 50 as well 
as for the NBNC tuple and the four community-aware bridgeness metrics and the DCL 
community-unaware metric for real-world networks 51 through 60 (see Fig. 5).

There exists one caveat with the use of a threshold value for σ to evaluate the effec-
tiveness of a bridgeness measure. It is possible that the ρ versus σ plot for a bridgeness 
measure on a real-world network could start with a steep drop, but then slowly decrease 
(or almost stay flat) to eventually incur a larger ρmin value before the σ value falls below 
the threshold σthresh. In such cases, the ρmin value determined with the binary search 
approach would only serve as an approximate estimate of the effectiveness of the brid-
geness measure. Nevertheless, the binary search approach proposed here is very time-
efficient (in terms of the number of iterations needed) and is a viable option for larger 
networks and more expensive bridgeness measures, especially the ones that are variants 
of betweenness centrality. More accurate methods exist in the literature (for example, 
the approach used in Magelinski et al. (2021) overcomes the "steep drop, then almost flat 
line" scenarios) to determine effectiveness, but at the cost of computational power and 
time.

It is to be also noted that the binary search approach requires the values for the nodes 
with respect to a bridgeness measure to be computed "a priori" before the beginning of 
the node removals. Such a node removal strategy has been referred to as "simultaneous 
attack on the network" in Cunha et al. (2015) and is considered to reveal the structural 
weaknesses of the network (which is also the focus of our research in this paper). Cunha 
et  al. (2015), the authors observe that the alternate strategy (referred to as sequential 
attack on the network) of recomputing the bridgeness measures for the residual nodes 
(nodes that are not yet removed) in a network is more useful to analyze the dynamical 
properties of complex networks, which is not our focus in this research.

Figure 5 presents the results of the study in the form of a 1 + plot for each of the 
60 real-world networks (the network #s listed in Table  5 are indicated alongside): 
the larger yellow-colored circle represents the effectiveness incurred with the NBNC 
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tuple; the red-colored smaller circles represent the effectiveness incurred with 
the community-aware metrics and the colorless circles represent the effectiveness 
incurred with the community-unaware metrics. In case of a tie (i.e., more than one 
bridgeness measure incurring the same effectiveness value), we pileup the circles 

Fig. 5  Effectiveness of NBNC tuple versus community-aware and community-unaware bridgeness metrics
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corresponding to these measures. We observe the NBNC tuple to incur the lowest 
of the ρmin values for 34 of the 60 real-world networks (i.e., for more than 50% of the 
real-world networks studied). NBNC’s closest competitor is the BC metric (Between-
ness Centrality) that incurs the lowest of the ρmin values for 17 of the first 50 real-
world networks (i.e., for about 1/3rd of the networks). The DCL and MDC metrics 
each incur the lowest of the ρmin values for 16 of the 60 real-world networks. The 
NDC, MVIT and BRC metrics are observed to be least effective in disconnecting net-
works when nodes are removed based on their ranking as bridge nodes with respect 
to these metrics. Relatively, between the community-aware and community-unaware 
metrics, we observe the community-unaware centrality metrics to be more effective 
in identifying the appropriate nodes as bridge nodes in the network. As we claimed 
earlier, each of the eight bridgeness metrics considered only at most two of the three 
topological positions of a bridge node, whereas the proposed NBNC tuple compre-
hensively captures the extent to which a node serves as bridge node in all the three 
topological positions. The results seen in this sub section justify our claim.

Figure 6 presents a plot of the spectral radius ratio for node degree versus the effective-
ness of the NBNC tuple. We observe the NBNC tuple to be relatively more effective for 
networks with larger values for the spectral radius ratio for node degree (a characteristic 
of scale-free networks). For example, we observe the US Airports Networks (λk = 3.21, 
whose degree distribution exhibits a power-law pattern, characteristic of scale-free net-
works) to incur a ρmin value of 0.2813; whereas, the Football Network (λk = 1.01, whose 
degree distribution exhibits a bell-shaped-curve pattern, characteristic of random net-
works) incurs a ρmin value of 0.86. As many large real-world networks show (at least 
approximately) scale-free structure, we opine the trend observed in Fig. 6 augurs well for 
use of the NBNC tuple with larger real-world networks too. The λk versus ρmin values for 
real-world networks 51 through 60 provide credence to our claim.

Efficiency/accuracy of the NBNC tuple

In this sub section, we illustrate the efficiency (i.e., without running any clustering/com-
munity detection algorithm) of the NBNC tuple with respect to accurately quantifying 
the number of non-overlapping or disjoint clusters in which the neighbor nodes of a 
node would be part of. There is currently no direct approach available in the literature to 

Fig. 6  NBNC tuple: spectral radius ratio for node degree versus effectiveness
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determine the number of disjoint clusters in the neighborhood of a node. When posed 
with such a question, the approach one would hitherto take is to run a clustering algo-
rithm to first determine the non-overlapping clusters of a network, identify the cluster 
memberships of the nodes and then determine the number of different clusters that the 
neighbors of a node are part of. On the other hand, the first entry in the NBNC tuple is 
a direct measure of the number of (disjoint) components that could span the neighbor-
hood of a node. Our premise is that if two vertices in the neighborhood graph of a node 
are not reachable to each other, they are more likely to exist in two different clusters/
communities among the clusters/communities identified by any clustering/community 
detection algorithm that is designed to determine non-overlapping clusters/communi-
ties. Accordingly, the number of components in the neighborhood graph of the nodes 
are perceived to be the same as the number of disjoint clusters to which the neighbors of 
the nodes are expected to belong to.

In this sub section, we showcase that the NBNC tuple could be used to efficiently and 
accurately estimate the number of disjoint clusters that the neighbors of a node would 
be part of without running any clustering algorithm. We quantitatively evaluate the 
extent to which the number of different components (perceived to be identified as dif-
ferent clusters that would need to be connected by a node i) according to the NBNC 
tuple of node i would be the same as the actual number of clusters that are observed 
to exist in the neighborhood of node i according to a clustering algorithm. We use the 
well-known Louvain community detection algorithm (computationally light among the 
existing community detection algorithms and is of time complexity O(nlogn) for a net-
work of n nodes) to determine the actual number of clusters for the real-world networks. 
We used Gephi (2020) (that employs the Louvain algorithm as the community detection 
algorithm (Blondel et al. 2008) to determine non-overlapping communities/clusters) to 
determine the clusters in each of the 60 real-world networks and identified the cluster 
IDs of the nodes: using this information, we determined the actual number of clusters 
in which the neighbors of each node are part of. Recent research (Traag et al. 2019) has 
indicated that the Louvain algorithm could potentially identify communities that are 
disconnected within. We verified the communities identified by the Louvain algorithm 
implementation of Gephi for each of the 60 real-world networks and did not observe any 
such disconnectedness in the communities identified for any real-world network.

For each real-world network, we determined the root mean square error (RMSE) in 
the values for the number of components for the NBNC tuple of the nodes (perceived 
as the number of disjoint clusters in the neighborhood of the nodes) and the number of 
disjoint clusters actually observed to exist among the neighbors of a node on the basis of 
the Louvain community detection algorithm. Ideally, we expect these two numbers to be 
identical for a node and thereby the RMSE value for a real-world network is expected to 
be 0. However, for a real-world network, it is difficult to expect the difference between 
the above two numbers to be zero for every node in the network (i.e., the RMSE value 
for a real-world network is likely to be greater than 0). We prefer the RMSE value for 
the number of disjoint clusters perceived (on the basis of the number of components of 
the NBNC tuple) versus the number of disjoint clusters observed to actually exist in the 
neighborhood of the nodes in a real-world network to be as close to 0 as possible.
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Figure 7 presents the computation procedure for the RMSE value for the number of 
disjoint clusters in the neighborhood of the nodes in the example graph of Fig. 1. We 
calculate the sum (4) of the squares for the absolute differences between the number of 
components in the neighborhood graph of a node per the NBNC tuple (perceived as the 
number of disjoint clusters in the neighborhood of a node) and the number of disjoint 
clusters actually observed in the neighborhood of a node. The ratio (mean square error) 
is 4/10 = 0.4, where 10 is the number of nodes in the graph. The square root of the mean 
square error value of 0.4 is 0.63, which is the RMSE value for the perceived versus actu-
ally observed number of disjoint clusters in the neighborhood of a node. Similarly, lower 
RMSE values were observed for the 60 real-world networks (see Fig. 8).

Figure 8 presents the RMSE values observed for the 60 real-world networks, the dis-
tribution of the values for different ranges as well as the distribution of the modularity 
scores of the networks (listed in Table  5) versus the RMSE values. The median of the 
RMSE values is 1.996 and the RMSE value for any real-world network is less than 5.0. 
We notice 32 of the 60 real-world networks to incur RMSE values less than or equal to 

Fig. 7  Louvain clusters for the example graph of Fig. 1 and the Computation of the root mean square error 
(RMSE) value for the number of disjoint clusters in the neighborhood of a node

Real-World Networks: 1-20 Real-World Networks: 21-40 Real-World Networks: 41-60

Distribution of the Real-World Networks with Modularity Scores of the Real-World Networks
respect to the Ranges of the RMSE Values vs. the RMSE Values

Fig. 8  Root mean square error (RMSE) values for # disjoint clusters in the neighborhood of a node: NBNC 
approach versus Louvain community detection algorithm for the real-world networks
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2.0 and 49 of the 60 real-world networks to incur RMSE values less than or equal to 3.0. 
Interestingly, 12 of the 18 social networks incurred RMSE values less than 2.0 and 16 of 
the 18 social networks incurred RMSE values less than 3.0. Thus, the lower RMSE values 
observed for the real-world networks corroborate our claim that the number of disjoint 
components in the neighborhood graph of a node determined as part of the NBNC tuple 
is a reliable estimate for the number of disjoint clusters spanning the neighbors of a node 
that need to be determined using a clustering algorithm. In Fig. 8, we also plot the distri-
bution of the modularity scores of the networks versus the RMSE values incurred. When 
separately viewed (i.e., for Net. #s 1-50 and for Net. #s 51-60), the RMSE values appear 
to exhibit a slight tendency to decrease with increase in the modularity scores of the 
networks in each of the two sets. But, when viewed together (i.e., for Net. #s 1-60), we 
do not see any appreciable correlation between the modularity scores of the networks 
and the RMSE values incurred with the NBNC tuple. Overall, we claim the NBNC tuple 
approach can be efficiently and accurately used (i.e., with lower RMSE values) for both 
modular and non-modular networks.

Uniqueness of the NBNC tuple

In this sub section, we seek to demonstrate the uniqueness of the NBNC tuple vis-a-vis 
the existing bridgeness metrics by analyzing the correlations in their rankings of the ver-
tices. We use the Spearman’s rank-based correlation coefficient measure (Strang 2006) 
to assess the equivalence in the rankings of the nodes based on the NBNC tuple versus 
all the eight bridgeness metrics for real-world networks 1 through 50 as well as for the 
NBNC tuple versus the four community-aware bridgeness metrics and the DCL com-
munity-unaware metric for real-world networks 51 through 60 (see Fig. 10).

For all the eight bridgeness metrics, the larger the metric value for a vertex, the more 
suitable is the vertex for the role of a bridge node. For any real-world network, we first 
obtain a tentative ranking of the vertices with respect to a bridgeness metric, with the 
ties broken in favor of the vertices with the larger ID. For vertices whose bridgeness met-
ric value is different from that of others, their final ranking is the same as their tenta-
tive ranking. For vertices (referred to as tied vertices) that incur identical values for a 
bridgeness metric, their final ranking is the average of the tentative rankings of the cor-
responding tied vertices. Note that one could also adopt any other procedure to break 
the ties among the vertices as long as vertices with identical values for a bridgeness met-
ric are eventually assigned the same rank before computing the rank-based correlation 
coefficient.

For a data set of ’n’ elements, the formula for the Spearman’s rank-based correlation 

coefficient is given by: 1−
6∗

∑

n d
2
final
rank

n(n2−1)
 , where d2final

rank

 indicates the squares of the absolute 

difference in the final rankings of the n elements with respect to the two measures con-
sidered for the correlation analysis. The range of possible values for the Spearman’s rank-
based correlation coefficient is − 1 to 1 (Strang 2006). Correlation coefficient values of 
0.8 or higher (or − 0.8 or lower) are typically considered indicators for a strong positive 
(or negative) correlation; correlation coefficient values in the range of [0.6, …, 0.8), [0.4, 
…, 0.6) and (0, …, 0.4) are typically considered indicators for moderate, weak and very 
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weak positive correlation respectively (and likewise, the negative scales for negative cor-
relation) (Strang 2006).

The procedure to compute the Spearman’s rank-based correlation coefficient is 
illustrated in Fig. 9 with regards to the NBNC tuple versus BC-based ranking of the 
vertices for the example graph of “Related work and motivation” section. We observe 
the NBNC-BC rank-based correlation coefficient to be 0.54, indicating a weak corre-
lation between the two of them. Consider node 1 in the graph of Fig. 1: node 1 (with 
the second largest BC value of 9.7) is ranked # 1 with respect to BC in a rank-scale 
ranging from 0 to 9. However, the five neighbors of node 1 will stay connected even if 
node 1 and its associated edges are removed from the graph, implying the existence 
of an appreciable number of edges among these neighbors in order for the neighbor-
hood graph of node 1 to be connected. Such neighbor nodes are likely to be part of 
the same cluster and node 1 is not critical for their connectivity: justifying a relatively 
lower ranking (ranking of 6 in a scale of 0 to 9) for node 1 as a bridge node with 
respect to the NBNC tuple.

Figure 10 displays the Spearman’s rank-based correlation coefficient values obtained 
for the real-world networks with respect to the ranking of the bridge nodes on the 
basis of the NBNC tuple versus each of the four community-aware bridgeness met-
rics (in red colored circles) and the four community-unaware bridgeness metrics (in 
colorless circles). The uniqueness of the NBNC approach is justified by the magni-
tude of the rank-based correlation coefficient values. About 42% of the 450 correla-
tion coefficient values (#1-#50 real-world networks and 8 bridgeness metrics; #51-#60 
real-world networks and 5 bridgeness metrics) fall in the category of very weak cor-
relation, whereas only 12% of the correlation coefficient values fall in the category 
of strong correlation, indicating the correlation between NBNC and the existing 
bridgeness metrics is predominantly very weak rather than strong. Thus, the NBNC 
approach (primarily, to determine the number of components in the neighborhood 
graph of a node and quantify the extent of connectivity of the neighborhood graph of 
a node) is a unique attempt at quantifying the importance of nodes as bridge nodes in 
a complex network.

Relatively, with regards to the community-aware versus community-unaware brid-
geness metrics, NBNC appears to be more positively/strongly correlated with the 
community-unaware metrics. This could be attributed to the formulations of the com-
munity-unaware metrics to consider nodes with a lower degree but a larger between-
ness or lower clustering coefficient (i.e., the role played as bridge: between-clusters 

Fig. 9  Computation of the Spearman’s rank-based correlation coefficient between NBNC and BC for the 
vertices in the example graph of Fig. 1
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nodes in the NBNC parlance) as bridge nodes of the network. A key weakness with 
a majority of the community-aware metrics is that they completely ignore the role 
played as bridge: between-clusters nodes and focus primarily on the role played as 
bridge: hub nodes and bridge: border nodes. On the other hand, the community-una-
ware metrics give more importance to both the bridge: between-clusters nodes and 
bridge: border nodes, but fail to take note of the role as bridge: hub nodes, just simply 
because the latter have a larger degree.

Fig. 10  Spearman’s rank-based correlation coefficient values for the real-world networks: NBNC versus 
community-aware and community-unaware bridgeness metrics
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Conclusions and future work
The high-level contribution of this paper is the proposal of a centrality tuple (instead 
of a scalar centrality metric or a vector of classical centrality metrics that is not con-
verted to a scalar) for the first time in the literature of complex network analysis. The 
proposed centrality tuple referred to as Neighborhood-based Bridge Node Centrality 
(NBNC) tuple can be used to rank nodes on the basis of the extent to which a node could 
function as a bridge node with respect to three different topological positions (bridge: 
hub nodes, bridge: border nodes and bridge: between-clusters nodes) identified in this 
research. We show that the extent of contributions of a node as bridge node in these 
three topological positions cannot be comprehensively captured using the approaches 
(that are categorized as community-aware and community-unaware) taken by the exist-
ing bridgeness centrality metrics.

We propose the notion of the neighborhood graph (NG) of a node (comprising of the 
neighbors of the node as vertices and the links connecting them as edges) and formulate 
the NBNC tuple for a node to be an amalgamation of three terms: the number of disjoint 
components in the NG of the node, the connectivity (measured as algebraic connectivity 
ratio) of the NG of the node and the number of nodes in the NG of the node (essentially, 
the degree of the node). We propose a ranking rule that prefers nodes with a larger num-
ber of disjoint components in their NG to be ranked high as bridge nodes and break any 
ensuing ties in favor of nodes whose NG has lower connectivity (and further break any 
ties in favor of nodes with a larger degree). Though there is no one-to-one correspond-
ence between any term in the NBNC tuple with any of the three topological positions 
for a bridge node, we claim that the above ranking rule applied for a NBNC tuple would 
comprehensively cover the contributions of a node as bridge node with respect to all 
the three topological positions envisioned in this research. The NBNC tuple for a node 
can be asynchronously computed based on the two-hop local neighborhood knowledge 
for a node (hence, it is a computationally light approach); whereas, most of the existing 
bridgeness metrics in the literature need to be computed synchronously and some are 
computationally heavy.

We considered a suite of 60 real-world networks of diverse domains for our analy-
sis and evaluated the computational lightness, effectiveness, efficiency/accuracy and 
uniqueness of the NBNC tuple. Computational lightness: We measured the average of 
the actual run-times of the procedure to compute the NBNC tuple per node in the net-
work as well as the maximum (worst case time complexity) of the actual run-times to 
compute the NBNC tuple for any node in the network. We observed the average of the 
actual run-times and the maximum of the run-times to be lower than the average of the 
run-times to determine the actual clusters in the networks using the Louvain community 
detection algorithm (considered to incur the lowest of the time complexity among the 
community detection algorithms in the literature) for more than 5/6th and 2/5th of the 
60 real-world networks respectively. Effectiveness: We validate our claim (the proposed 
NBNC tuple can effectively identify the bridge nodes in a network compared to the 
existing bridgeness metrics) by computing the smallest value (ρmin) for the fraction of the 
top-ranked bridge nodes that need to be removed to bring down the fraction of nodes in 
the largest component of the resulting network (i.e., the network after the removal of 
the top-ranked bridge nodes) below a lower threshold value (0.05 is the threshold value 
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used for evaluation purposes). We observe the NBNC tuple to outperform the eight dif-
ferent bridgeness metrics (both community-aware and community-unaware metrics) by 
incurring the lowest of the ρmin values for 34 of the 60 real-world networks, while the 
closest competitor betweenness centrality (BC) was observed to incur the lowest of the 
ρmin values for 17 of the first 50 real-world networks. We observe the NBNC tuple to be 
relatively more effective for scale-free networks. Efficiency/accuracy: We demonstrate 
that the first term of the NBNC tuple of a node in a real-world network can be perceived 
as an efficient and accurate measure of the number of disjoint clusters that could exist in 
the neighborhood of the node without running any clustering algorithm and evaluate the 
accuracy of such a perception by computing the root mean square error (RMSE) value 
vis-a-vis the number of disjoint clusters in the neighborhood of a node that are actually 
observed through a community detection algorithm run on the real-world network. The 
RMSE values were not more than 5.0 and were less than 3.0 for 49 of the 60 real-world 
networks analyzed in this research. We observe the RMSE values to be almost independ-
ent of the modularity scores of the real-world networks, indicating the NBNC tuple to 
be equally efficient/accurate for both modular and non-modular networks. Uniqueness: 
We also computed the Spearman’s rank-based correlation coefficient values for the rank-
ing of the vertices based on the NBNC tuple vis-a-vis eight different bridgeness metrics 
proposed in the literature and predominantly observed a very weak correlation rather 
than a strong correlation, justifying the uniqueness in the NBNC tuple approach.

As part of future work, we plan to apply the proposed NBNC tuple to identify and 
employ bridge nodes for various domain-specific problems of complex real-world net-
works, like: vaccination to prevent/reduce infection spread in epidemics/pandemics-
affected community networks (Liu and Hu 2005), enhancement of collaboration among 
diverse researchers in co-authorship networks, friendship suggestion in social networks, 
protein folding in protein–protein interaction networks, cluster head selection and hier-
archical data gathering in wireless sensor networks, and etc. We also plan to evaluate 
the effectiveness of the NBNC tuple to rank bridge nodes in networks with overlapping 
communities by using relevant approaches of Kumar et  al. (2018), Chakraborty et  al. 
(2016) and CSoNet (2016) proposed in the literature. Sciarra et al. (2018), the authors 
had proposed a statistical-estimation based approach to evaluate the importance of 
nodes in a complex network and demonstrate its application to deduce the degree and 
eigenvector centrality metrics. As part of future work, we plan to examine the suitability 
of this approach to deduce the bridgeness centrality metrics and the NBNC tuple as well.
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