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Introduction
Network science has already established itself as an interdisciplinary field, with tools 
that have been applied in a myriad of fields (Costa et  al. 2011). Ecological systems 
(Provata et al. 2008), social groups (Vega-Redondo 2007), and software (Decan et al. 
2019), are only a few examples of applications. Its use for spatial characterization 
(Barthélemy 2011) comprises a sub-field that provides methodologies for analyzing 
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We present an urban science framework to characterize phone users’ exposure to 
different street context types based on network science, geographical information sys-
tems (GIS), daily individual trajectories, and street imagery. We consider street context 
as the inferred usage of the street, based on its buildings and construction, categorized 
in nine possible labels. The labels define whether the street is residential, commercial or 
downtown, throughway or not, and other special categories. We apply the analysis to 
the City of Boston, considering daily trajectories synthetically generated with a model 
based on call detail records (CDR) and images from Google Street View. Images are 
categorized both manually and using artificial intelligence (AI). We focus on the city’s 
four main racial/ethnic demographic groups (White, Black, Hispanic and Asian), aiming 
to characterize the differences in what these groups of people see during their daily 
activities. Based on daily trajectories, we reconstruct most common paths over the 
street network. We use street demand (number of times a street is included in a trajec-
tory) to detect each group’s most relevant streets and regions. Based on their street 
demand, we measure the street context distribution for each group. The inclusion of 
images allows us to quantitatively measure the prevalence of each context and points 
to qualitative differences on where that context takes place. Other AI methodolo-
gies can further exploit these differences. This approach presents the building blocks 
to further studies that relate mobile devices’ dynamic records with the differences in 
urban exposure by demographic groups. The addition of AI-based image analysis to 
street demand can power up the capabilities of urban planning methodologies, com-
pare multiple cities under a unified framework, and reduce the crudeness of GIS-only 
mobility analysis. Shortening the gap between big data-driven analysis and traditional 
human classification analysis can help build smarter and more equal cities while reduc-
ing the efforts necessary to study a city’s characteristics.
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urban areas (Jiang and Claramunt 2004; Cheng et  al. 2013). One of the most used 
representations is the street network, where nodes play the role of street intersections 
and edges the role of streets. This representation has been fruitful [see section B1 in 
Barthélemy (2011) for a detailed review], allowing to characterize a city’s possibili-
ties in terms of potential mobility. Incorporating human mobility information (Jiang 
et al. 2013) (for example in the form of Call Detail Records, CDR) can help contrast 
the potential view given by the street network with actual traveling. Estimating travel 
demand (Toole et  al. 2015), measuring congestion during peak hour traffic (Çolak 
et al. 2016), and road demand in connection with departing car sources (Wang et al. 
2012) are some examples. Combining the best of both views can help to understand 
the relevance of streets (Toole et al. 2015; Wang et al. 2012), both in terms of the pos-
sibilities they offer, and the demand they receive.

Understanding the street user’s view of the street network improves with the addi-
tion of mobility information, as it makes possible to weight each street based on the 
use each street receives. Still, multiple dimensions regarding the perception of the 
places and the opportunities they provide fall behind this type of data. New technol-
ogies provide solutions to this type of characterizations using street imagery-based 
analysis (Gebru et al. 2017; Naik et al. 2014). Methodologies based on street imagery 
allow researchers to detect land use (Cao et al. 2018), street context (Alhasoun and 
González 2019), measure income of a neighborhood (Gebru et  al. 2017), perceived 
safety (Naik et al. 2014), or even detect car accident risk (Kita and Kidziński 2019). 
While manual image classification is costly, artificial intelligence (AI) can help to 
massively classify them, making the procedures scalable to multiple orders of magni-
tude without extra effort.

The topic of racial segregation in U.S. cities has a long history (Iceland and Sharp 2013; 
Iceland and Weinberg 2002), and has been deeply studied by multiple authors. Segre-
gated regions of the town consist of areas where mainly only one racial/ethnic group 
inhabits. The process in which these segregated regions arise is not trivial, but the result 
of multiple factors regarding work opportunities, social connections, and the city’s 
building (Sherman 2014; Sanchez et al. 2003; Fox 2017; Galster 1988). The possibilities 
offered by big data and machine learning methodologies can help to detect on greater 
scale aspects of the urban life in which racial inequalities in the opportunities and segre-
gation manifest (Benthall and Haynes 2019; Gebru et al. 2017; Naik et al. 2014; Candipan 
et al. 2021; Hofstra and de Schipper 2018; Zhou et al. 2020).

Here we propose a data analysis framework based on the ease of managing the infor-
mation layers provided by the network representation and the power of AI to manage 
big amounts of images (Alhasoun and González 2019). We study each racial/ethnic 
group’s street demand of Boston city using a CDR-based model [TimeGeo (Jiang et al. 
2016)]. TimeGeo allows us to represent human mobility through synthetically generated 
daily trajectories based on real CDR data. We use the street network to construct paths 
between different regions of the city. We add an extra information layer to the street net-
work, representing each street’s context, using both human and AI-based labeled street 
imagery. We characterize each group’s street context during its daily activities using the 
algorithm presented in Alhasoun and González (2019). The addition of mobility with 
massively gathered data characterized using AI points the direction of further studies on 
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combining contextual information, like the recorded by mobile devices, with the regions 
through which persons move daily.

Materials and methods
The proposed data analysis framework uses three sources of information: city informa-
tion in GIS, street view imagery, and daily trajectories over the city. City information 
regarding population demographic and housing partition is obtained through the 2010 
Census (2016), and the street network is obtained through OpenStreetMaps (2017). The 
street imagery is obtained through Google Street View (Anguelov et al. 2010; Alhasoun 
and González 2019). The daily trajectories are generated with the CDR-based model 
TimeGeo (Jiang et al. 2016).

Street view imagery

To provide a context for every street in Boston city, we worked with two sets of images, 
downloaded from Google Streets View (Anguelov et al. 2010). The first set H consists of 
23, 927 images, and the second set A consists of 5998 images. We use the street network 
geographic representation to obtain images over the streets based on their latitude–lon-
gitude locations. Downloaded images represent a horizontal view with an ocular open-
ing of 45◦ each. To have a uniform sample over the streets, we sampled a subgroup of the 
GIS points representing the streets and downloaded two images at each of these points. 
This guarantees an equal representation of street images over all the geography repre-
sented by the streets.

To classify the set H, we followed the San Francisco methodology (Newsom 2010), 
which assigns to each image one out of ten contexts: Alley, Downtown Commercial 
(Downtown Comm.), Commercial Throughway (Commercial Trwy.), Highway, Highway 
Ramp (Highway Rmp.), Industrial, Neighborhood Commercial (Neighborhood Comm.), 
Neighborhood Residential (Neighborhood Res.), Park and Residential Throughway (Res-
idential Trwy.).

The classification process can be summarized as follows (Alhasoun and González 
2019):

•	 Side use context is determined based on land use information. This information sep-
arates images on commercial and residential use.

•	 Transportation context is determined based on the characteristics of the street. This 
includes highway, throughway, downtown, and neighborhood.

•	 Special conditions on the street lead to categories like Park, Alley, and Industrial.

The number of images of each type can be found in the Table 1:
The AI-based labeling methodology follows Alhasoun and González (2019) using 

the set A of images. Images in set A were downloaded in pairs corresponding to the 
same latitude–longitude location, each one comprising the half of a 90◦ view. We com-
bine the paired images to cover the complete angle of 90◦ covered by them following 
the procedure indicated in Alhasoun and González (2019). Images in set A have been 
selected in a way that both images in each pair have the same context, as required by 
Alhasoun and González (2019). We split set A into two sets, AT and AP , with sizes 4804 
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and 1194. Images in AT are manually labeled in the same manner explained for set H. 
We use images in set AT to train a convolutional neural network (CNN) (Szegedy et al. 
2016). This CNN identifies patterns in groups of pixels, seeking identifiable objects asso-
ciated with each street context [see Fig.  6 in Alhasoun and González (2019)]. Several 
layers allow the CNN to associate parks with trees, borders of highways with highways, 
big streets, and certain shops with neighborhood commercial zones and other particu-
lar patterns for each category. Finally, we use the resulting CNN to predict the labels of 
images in AP . After manually checking images in AP , we found 97% of correctly assigned 
categories in the label prediction considering all categories together (the fraction 
of correctly assigned images per category in training set AT can be found in Table 2). 
The resulting number of images in each context for sets AT and AP can be found in 
Table 1. The overall result is above 95% and the mean above 97%.

GIS from census and street network

We used the US 2010 Decennial Census (2016) tracts and their associated information 
regarding the number of self-reported persons in the racial/ethnic groups of White, 
Black, Hispanic, and Asian. We categorized each census tract based on the population 
fraction in each group (fraction of self-reports in each racial/ethnic group). A tract is 
labeled after group g if the biggest population fraction corresponds to g and also that 
fraction is over 0.5. Tracts which do not meet these conditions are left unlabeled. The 
resulting group labels are shown in Fig 1A, while Table 3 presents the amount of tracts 
and city area of each group. The city presents typical segregation patterns (Iceland and 
Weinberg 2002). Whites are majoritarian with more than half of the labeled tracts and 
half the area of the city in their group. Blacks follow, with around 15% of the Boston 

Table 1  Number of images in each street context, in the three sets: H (human-labeled), AT (human-
labeled set used to train AI), and AP (AI-labeled set)

Set Alley Commercial Trwy. Downtown Comm. Highway Highway Rmp.

H 1141 2964 2208 2531 2031

AT 179 535 530 469 421

AP 39 104 136 119 108

Set Industrial Neighborhood 
Comm.

Neighborhood Res. Park Residential 
Trwy.

H 1993 2408 4063 1646 2942

AT 355 352 1115 367 481

AP 79 102 277 109 121

Table 2  Fraction of correctly assigned (F.C.A.) images for each category in the training set AT

Category Alley Commercial Trwy. Downtown Comm. Highway Highway Rmp.

F.C.A. 0.983 0.972 0.989 0.985 0.983

Category Industrial Neighborhood Comm. Neighborhood Res. Park Residential Trwy.

F.C.A 0.975 0.972 0.982 0.997 0.952
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area. Most of the Hispanic group is concentrated in the northern region of the city, while 
Asians are associated with only two tracts in the downtown.

Figure 1B shows the street network of the city. Notice how Hispanic and White tracts 
at the north are heavily dependent on the highways connecting them to the rest of the 
city. To associate street context to the streets, we assign a buffer radius of 10 m to each 
position where an image was sampled, and associate the corresponding image to every 
street intersecting the buffer radius. This buffer was selected to acknowledge the width 
of the various types of streets. This process results on a set of categorized images for 
each street. We define the street context of street e as a vector ue , where component uie 
represents the fraction of images associated with street section e and context i. Figure 1C 
shows the street network after labeling each street using the images in set H. Each street 
is labeled after the context i that maximizes uie , when ue has a maximum value over 0.5. 
Streets in contexts like Highways and Commercial Trwy. connect the city.

Daily mobility and TimeGeo trajectories

TimeGeo (Jiang et al. 2016) is a primarily CDR-based Jiang et al. (2013) mechanistic 
modeling framework that generates urban mobility patterns with a resolution of 10 
min and approximately 400 m. It generates daily trajectories, representing aspects like 
activity stay duration, visited Location Points (LPs) per day, and daily mobility net-
works. TimeGeo divides LPs into three categories: home, work, and other, depending 

Fig. 1  (A) Census tracts of Boston City. Tracts are colored according to their principal demographic group, 
when that group’s population fraction is at least 50%. (B) Street network over the city. (C) Street network 
colored based on their main street context, using set H of manually labeled images

Table 3  Number of tracts and area for Boston and for each group

Boston White Black Hispanic Asian

Tracts 180 88 30 8 2

Area ( km2) 128.4 65.5 18.7 2.3 0.5
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on the activity realized in that LP. Both home and work locations are uniquely defined, 
meaning that each agent has only one associated home LP, and one associated work 
LP. However, they may transit to both of them many times during their daily trajec-
tory. Other-type activities have different behavior. Agents may arrive at multiple dif-
ferent other LPs during the day. The spatial choices of visited locations are modeled 
by a rank-based exploration and preferential return mechanism (Jiang et  al. 2016). 
These locations are originally selected from a grid over the city, with 400-m side cells 
representing the region where the activity occurs.

For this work’s purpose, we do not consider the different types of activities per-
formed by each user. Furthermore, we convert the original trajectories consisting of 
latitude–longitude pairs to sequences of tracts, associating each point to the cen-
sus tract containing it. So a trajectory consists of a sequence representing the tracts 
where the activities are performed. We discard from the trajectories sequential activi-
ties realized on the same tract. Our focus is to consider the effects over the four dif-
ferent groups. Thus we only consider trajectories departing from tracts with a defined 
group label, and label each trajectory associated with that group. Table 4 presents the 
number of considered trajectories per group. Note that TimeGeo generates trajecto-
ries proportionally to the tract population. As tracts are approximately equal in popu-
lation, then the number of trajectories per group is proportional to the number of 
tracts in that group.

To relate the sequences of census tracts with the street network geographic represen-
tation, we use the OSMnx (Boeing 2017) python package which downloads information 
from OpenStreetMaps (2017). We construct the street path between two census tracts 
using the graph representation of the city streets. The network edges represent the street 
segments and the nodes represent the street intersections, so we refer to the edge cor-
responding to street segment e with the same letter. When going from census tract A 
to census tract B, the starting and ending points are selected as the centroids of tract A 
and B, respectively. Then, we identify the geographically nearest street network nodes to 
the centroids using OSMnx, and calculate the shortest path between them in the street 
network’s graph representation. This process converts a travel between tract A and tract 
B into a sequence of edges of the network (with each edge being associated with a street 
segment) used to reach the centroid of A to the centroid of B. This process ultimately 
converts every TimeGeo trajectory in a set of street network edges representing the 
shortest path among the tracts’ centroids in which the trajectory’s activities occur.

While considering that all the trajectories from a tract start from its centroid con-
flates all of them in a unique trajectory, this reduction can still be realistic. The major-
ity of the trajectories are expected to follow the shortest and fastest routes between 
locations. Given that a trajectory departs from a location in tract A to reach another 
site in tract B, we can expect that a significant portion of the route connecting both 
locations will use of the fastest route connecting A and B, which can be seen as the 

Table 4  Number of trajectories considered for each group

White Black Hispanic Asian

218,038 68,945 17,053 4785
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one connecting their centroids. This approximation becomes better as the distance 
between locations becomes greater.

Results
Network weighting by edge demand

We use the sequence of edges constructed from each trajectory to weigh each street net-
work edge based on the number of times that edge appears on the trajectories of each 
group. The weight of an edge e, dge  equals the number of times edge e is included in the 
trajectories departing from tracts in group g. dge  represents the demand over edge e of 
group g. The total demand over edge e is calculated as de =

∑
g d

g
e  . To consider how the 

demand over an edge is shared among the groups, we compute f ge = d
g
e /de , the frac-

tion of the total demand over edge e corresponding to group g. To detect if an edge has 
a particularly high fraction of demand, we compute the total demand of each group 
dg =

∑
e d

g
e  , the total demand d =

∑
dg , and the corresponding fraction of demand 

f g = dg/d . We set a threshold to separate the demand levels into three categories. This 
threshold measures the deviation of the fraction of demand over an edge ( f ge  ) from what 
could be expected by chance ( f g ). We consider that the demand for an edge e is high if 
log2(f

g
e /f

g ) > 0.2 , low if log2(f
g
e /f

g ) < −0.2 and average otherwise.
Figure 2 presents the street network for each racial/ethnic group, with edge width rep-

resenting the square root of group demand dge  , and colors representing demand (high, 

Fig. 2  Each image represents the street network demand for each group, with edges colored based on each 
group fraction of demand and width representing each group’s demand on the edge. Red indicates that 
the fraction of demand is higher than 1.14 times the global demand fraction for the group, blue indicates 
that the fraction of demand is lower than 0.87 times the global demand fraction for the group, and yellow 
indicates the region in between
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average, or low). Notice that while there is a clear correlation with neighborhoods, His-
panic and Asian groups have great demand on the long routes over the city center. Also, 
while groups may have high demand over an edge (compared to the rest of the edges), 
they may not be their principal users (as other groups may have a higher demand over 
them).

Considering edge e, we assign it to group g if f ge > f g only for group g. If f ge > f g for 
more than one group, we consider it as Mixed. The result of this partitioning can be 
found in Fig. 3. What we see for Whites and Blacks can be expected from the neighbor-
hood distribution of Fig. 1A, as their most demanded streets correspond geographically 
with their neighborhoods. Hispanics and Asians show an interesting pattern of disper-
sion from the tracts associated with them to the rest of the city, through the principal 
routes of the city. Hispanics heavily use the highways connecting the north of the city.

Street context

Once we defined each street network edge’s demand, we can include the information 
regarding the different types of street contexts over each street. As mentioned, we 
associate to each street the images from set H within 10 meters distance. We repre-
sent this process’s result with a vector uie , indicating the proportion of images repre-
senting context i and intersecting edge e. We calculate the average fraction of context 
i for group g as Ci

g =
1
dg

∑
e d

g
e u

i
e . Ci

g indicates the average fraction of streets in con-
text i that a group member g meets during their daily activities. To compare with the 
general population, we also compute Ci

=
1
d

∑
e deu

i
e , the average fraction of context 

in the total population considered. The relation Ci
g/C

i is presented in Fig. 4 for each 
group, calculated using the human and AI labeled images. The White group has a dis-
tribution of Ci

g similar to the average, as they are the city’s main group. Non-White 
groups have a low fraction of Park context compared to the average, while White 
group has a slightly greater fraction than the average. The Black group has a high frac-
tion of Residential contexts compared to the average. Both Hispanic and Asian groups 
have a high fraction of Downtown Commercial contexts compared to the average. 
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Fig. 3  Representation of the street network, with edges colored based on their group demand and width 
representing their total demand. If more than a group has a demand higher than expected by chance, it is 
considered as Mixed. Notice that while there is a clear correlation with neighborhoods, most central routes 
have a mixed usage, showing that they are heavily used by multiple groups
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The Hispanic group has a very high context of highways (Highway and Highway 
Ramp) compared to all other groups. Considering the tracts partition into groups, the 
Black group mobility occurs at commercial and residential zones of their group. Asian 
group is concentrated within city’s downtown, with high usage of highways to reach 
other parts of the city. Compared to the rest, the Hispanic group has the highest con-
text of highways as they have to reach the rest of the city from their principal region 
at the north of the city.

An important step is to test AI labeling methods, as this is the first step towards 
extending these types of analysis where street context data is not manually labeled. We 
applied the same analysis used with set H to set AP . To compare the results, we ran-
domly sampled 50 subsets of images from H with equal size to AP , which we call hk , 
with k representing the sampled subset. We calculated mean value and standard devi-
ation of Ci

g/C
i over the 50 hk samples, as presented in Fig.  4. The results are consist-

ent, considering the error bars of the sampled results. White and Black group have the 
highest demand d and the biggest number of tracts, reducing the variation produced by 
the smaller image sample size in their Ci

g/C
i value. As Hispanic and Asian groups have 

lower representation, extreme effects like the Highway Ramp over average context in the 

Fig. 4  Relation between average fraction of street context per group Ci
g and general average fraction of 

street context Ci using set H ( ∼ 24,000 human labeled images). White group has values similar to the average, 
as they are the principal group of the city. Non-White groups have a low fraction of Park context. Blacks 
have a high fraction of Residential contexts. Both Hispanics and Asians have high fraction of Downtown 
Commercial contexts. Hispanics have a very high context of Highways. The result obtained using set AP 
( ∼ 1000 AI labeled images) is similar in average to the one using sub-samples of H (samples of ∼ 1000 
human labeled images), taking into account the error bars
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Hispanic group are difficult to capture. Due to the low sample size and the low represen-
tation of Alley context in the city, the Alley fraction of context is not well captured by 
set AP . Still, the general behavior is maintained at both sample sizes, and it is consistent 
considering the standard deviation. Increasing the sample size can reduce the variation 
by increasing the representation of each context.

The quantitative street context analysis points general differences among the four 
groups, as their context distribution has evident differences. Still, the power of images 
does not stop here. To point further possibilities which can be explored using other 
AI algorithms (Cao et al. 2018; Gebru et al. 2017; Naik et al. 2014; Kita and Kidziński 
2019), we include images from set H from 4 contexts (Commercial Twry., Neighbor-
hood Comm., Neighborhood Res. and Residential Trwy.), one image per group, in Fig. 5. 
These images where selected from each group’s 18 most demanded streets in the par-
ticular context.

Comparing the images from Commercial Trwy., for Whites we see a wide and newly 
made cobblestone street, with a boulevard and publicity in the background. For the 
Blacks we see old fashioned shops, asphalt streets, and a mailbox. For Hispanics we see a 
deteriorated cobblestone street, with big residential buildings and a plaza in the middle. 

Residential Throughway

Hispanic

White Black

AsianHispanic

Neighborhood Residential

White Black

Asian

Hispanic

Neighborhood Commercial

White Black

AsianHispanic

Commercial Throughway

White Black

Asian

 th

Fig. 5  Images exemplifying 4 street context for each group
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For Asians, downtown architecture with modern buildings and a traffic light. Compar-
ing the four, Whites and Asians show many more cars and more modern architecture.

Comparing the Neighborhood Comm., we see local restaurants for each group. Whites 
show a Coffee place, in a region with big buildings. Blacks shows multiple little shops, 
one with Caribbean food. Hispanics have a pedestrian street with a Hispanic restaurant. 
Asians show multiple Asian shops, particularly a big restaurant in a central street. All 
the building styles are different, with Whites and Asians in a central zone, Blacks in a 
more residential zone, and Hispanics in a pedestrian street.

Comparing Neighborhood Res., for Whites we see a little street with multiple trees 
and a pedestrian cross street to multiple houses with stairs. For Blacks we see a boule-
vard with buildings on one side. For Hispanics we see a varying type of architecture, with 
low and tall buildings, and a wasteland on the street’s corner. For Asians we see bigger 
buildings and the smaller sidewalk of the four groups. While all the images show brick 
houses, Whites and Asians have many more cars parked, and Hispanics show elements 
absent in the others (like the wasteland).

Comparing Residential Trwy., for Whites we see again the newly made cobblestone 
street, from a point of view that shows how the street continues to residential areas. For 
Blacks, we see a similar building style to the one in Neighborhood Comm. and Com-
mercial Trwy., this time in a boulevard without trees and a park-alike zone at the side. 
For Hispanics we see a tinier street than for Whites and Blacks, with a big buildings, lots 
of parked cars and a building in construction. For Asians we see a two ways street with 
lower houses. Notice that only the Hispanic street does not show any signal for bikes, 
and also there is a bigger number of cars parked than in the rest.

Overall, we see that Whites and Asians have a similar downtown-alike context, with 
Asians appearing to be more restricted to the city center. Blacks buildings have an older 
appearance, with most worn colors. Hispanics are located in more suburban places, 
including wastelands and old made brick streets, thinner streets and less signals.

This comparison showed the presence (or absence) of unique elements in the images 
of each group that can be exploited by pattern recognition methodologies specifically 
designed for that purpose. The comparison also shows how even the same context can 
look very different based on the particular elements present for each group. State of the 
cobblestone streets, wastelands, a shop’s name language, bike-friendly indications, build-
ings’ age and cars parked can be used as indicators for further analysis beyond the initial 
categorization.

Conclusions
The presented work points to useful connections between two urban analysis branches: 
street demand, which is already a combination of street information and daily mobility, 
and contextual image analysis. This combination shortens the gap between what people 
actually encounter during their daily activities, and what we are able to capture through 
the data traces their leave behind. Working with massive information regarding mobility 
and its connections to the city’s possibilities has already proven useful, while its crude-
ness leaves out aspects regarding the street user’s perception, aside from what GIS data 
sets could offer (in the form of pre-made labels). The inclusion of images and the AI 
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methodologies to massively characterize them can help to realize comparative studies 
between cities. This framework can power up urban planning and sociological analysis, 
allowing to put in a unified framework information from very different regions. We hope 
these results motivate the use of urban imagery to enrich information and communica-
tion data. This would inform applications that relate to improving ambient exposures 
and urban design considering diverse social groups.

Following the street network demand analysis, we saw long routes connecting different 
parts of the city. These routes are essential to Hispanic and Asian groups, which are con-
centrated in a few tracts but still move through the city. Assigning a group to each street 
results in a street partition similar to the tracts partition, with frontiers represented by 
streets with mixed demand between groups.

Street context analysis in combination with the mobility patterns provides a novel 
manner to explore each group’s daily experiences. The context of each group reflects 
mostly the regions where they live. Whites are similar to the average, as they are the 
city’s most populous group. The non-White group’s exposure to Park context is below 
the Whites’ exposure to Park context. As the Hispanic group is concentrated in the 
north of the city, it is heavily exposed to highways, more than any other group. This type 
of analysis can point out differences in the neighborhood composition and in mobility 
patterns (for example, the use of highways which are not particularly attached to any 
neighborhood), helping urban planners conceive more accessible and equal cities.

IA-labeled and human-labeled images provide consistent results in the studied 
data set. IA-labeling poses a promising methodology, applicable at big scale based on 
machine learning and network science techniques, making the analysis portable and 
automatic worldwide. Overall, the proposed framework points to a useful combination 
of data sets, allowing the quantitative characterization of context-based both in imagery 
and daily activities.

The comparison among groups for four particular contexts shows the images’ useful-
ness as analysis departing material. Direct inspection shows different styles of restau-
rants, building construction and street makeup for each group, even while the street 
context is the same. The presence or absence of some elements (like street construction, 
bike signals and worn paint) suggests new challenges that other AI methodologies can 
further exploit by focusing on aspects like comfort, street makeup or the streets’ safety.

We believe that this type of analysis can power up urban science methodologies based 
on street appearance, indicating where to focus (through demand) and reducing working 
costs (through AI), helping to think more accessible cities and easing the identification 
of inequalities between different demographic groups.
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