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Introduction
In many areas of applied network science, researchers are interested in studying the out-
comes of particular networked processes: the spread of disease, the development of con-
sensus, the movement of people, etc. When this is the case, domain-specific research 
questions often center around the process rather than the network that it is unfolding 
over (Bockholt and Zweig 2020). In the context of such questions, it can be difficult to 
interpret the results of out-of-the-box network analyses (Borgatti 2005). What we need 
are techniques that keep the focus of analysis on some particular networked process, 
itself  (Lambiotte et al. 2018; Schwarze and Porter 2020; Xu et al. 2016). Here, we take 
a process-driven approach towards analyzing observational data about networked walk 
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processes with the goal of devising an approach that can answer relevant domain-spe-
cific research questions.

We focus on two specific real-world walk processes: a ball passed among players dur-
ing matches within seven professional football competitions and e-money transacted 
among mobile wallets over a single mobile money service. Association football is a 
hugely popular sport and data-rich analytics of sports is of growing interest (Kuper 2011; 
Sarmento et al. 2014). Researchers and analysts might like to know if classic findings in 
sports science—such as how 80% of goals are scored from short possessions—replicate 
using detailed spatio-temporal match data available for recent competitions  (Hughes 
and Franks 2005; Reep and Benjamin 1968; Reep et al. 1971). As predominant styles of 
play have moved away from “long ball” strategies, coaches might like to know the extent 
to which teams benefit from developing complex multi-player tactics (Schoenfeld 2019).

With regards to the second networked process considered in this paper, mobile money 
is a new financial industry that has expanded rapidly across Africa, South Asia, and 
Southeast Asia since 2007 (GSMA Mobile Money 2015b; Suri 2017). Mobile money pro-
viders host e-money accounts and process digital transactions on behalf of users over 
the cellular infrastructure, which is more widely available than traditional banking infra-
structure in many areas. Mobile money providers and proponents of financial inclusion 
are for example interested in understanding how mobile money systems are used (Inter-
national Finance Corporation and Mastercard Foundation 2018; Stuart and Cohen 
2011), to what extent e-money is re-used  (Athique 2019; Kendall et  al. 2011), and for 
how long e-money is saved (Blumenstock et al. 2015; Demombynes and Thegeya 2012).

The data recorded about these processes takes the form of timestamped events in 
both cases (Blumenstock et al. 2016; Economides and Jeziorski 2017; Pappalardo et al. 
2019; Sarmento et al. 2014). These events are football passes and financial transactions, 
respectively. Individual football players (account holders) initiate and receive near-
instantaneous passes (transactions) in continuous time. While we could choose to inter-
pret each event as a link in a temporal network (Aslak et al. 2018; Holme and Saramäki 
2012; Rocha and Masuda 2014; Taylor et al. 2017), it is unclear how this would provide 
answers to the questions posed above. Instead, we propose to consider each event as a 
record of the movement of something tangible: football passes move the ball, financial 
transactions move money.

There are, however, no established techniques for analyzing event data recording steps 
in a real-world walk process, as such. So we first identify three ways that we would want 
our technique to engage with domain knowledge about particular processes. First, the 
method should be interpretable in light of the integrity constraints inherent to walk pro-
cesses. Players cannot kick the ball unless they have it and bookkeeping protocols pro-
hibit accounts from spending money they do not have. Second, we want an approach 
that retains the meaningful sequential information that is implicit in the ordering of 
event data. Players hold onto the ball, and accounts hold onto funds, for some period of 
time between sequential events. Finally, we would like to incorporate contextual knowl-
edge on fouls and throw-ins and deposits and withdrawals and other ways in which real-
world processes are in fact bounded, i.e., there are specific events that begin, end, or 
re-start the process.
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We propose to extract and analyze the trajectories taken by those tangible items whose 
movements are recorded in the event data. Extracting trajectories can be done by trac-
ing the same football (or the same e-money) across sequences of observed events in a 
systematic way. In both cases we must take care to define the bounds according to the 
rules governing the process. Tracing the single football is then relatively straightforward. 
Tracing funds is more involved, in particular because there are no unique identifiers on 
e-money as there are on paper bills. This weighted situation requires also an informed 
choice on how to allocate funds to particular trajectories where this is otherwise ambig-
uous. Once extracted, we can analyze trajectories to answer research questions centered 
around the walk processes itself. In this paper, we propose a systematic approach for 
extracting trajectories from both unweighted and weighted processes.

Our work highlights four benefits of extracting and analyzing trajectories, each of 
which lets us produce a result of relevance to association football or mobile money.

First, trajectories are a particularly useful and interpretable structure because they 
relate directly to concepts that are already well-researched. Since at least the 1960s, 
researchers in sports science have studied possessions in association football; these are 
passing sequences with particular criteria for delineating how they begin and end (Reep 
and Benjamin 1968; Reep et al. 1971). We adapt the definition laid out in Hughes and 
Franks (2005) to trace out trajectories and produce a dataset of possessions from the 
2018 FIFA World Cup that is directly comparable to theirs from the 1990 and 1994 
FIFA World Cups, albeit more data-driven. Using our transparent trajectory extraction 
approach we reproduce their findings that over 80% of goals were made from “short” 
possessions with three or fewer completed passes, and that longer passing sequences 
produced proportionately more shots.

Second, the pattern of event attributes along the sequence of events in a trajectory 
can be contextually meaningful. Trajectory extraction surfaces such sequential patterns 
from the data and these can be used to neatly summarize the observed process. Many 
stand-alone use cases of mobile money involve making more than one transaction in 
sequence, e.g., paying a bill would mean making a cash deposit followed by a digital bill 
payment (Economides and Jeziorski 2017; GSMA Mobile Money 2015b; Mbiti and Weil 
2013). We find that 73% of the e-money moving through this system follows a pattern 
that corresponds to one of several well-defined, stand-alone, use cases. Only 19.7% of 
e-money was re-used within the data collection window. This means that e-money is 
primarily single-use, in practice, even though it could be re-transacted indefinitely with 
little cost (and substantial benefit) to the provider.

Third, trajectories detail the location of tangible items between events. In the con-
text of mobile money, this means that we can quantify the extent to which accounts use 
e-money for saving. “Saving” as we intuitively understand it requires building up a bal-
ance wherein some of the money entering an account remains there, undisturbed, for an 
appreciable length of time. We find that 21.7% of active users of this mobile money sys-
tem succeeded in saving at least 5% of inflows for over 30 days at one point or another. 
A much larger fraction save trivial amounts for substantial periods of time and very few 
save larger amounts.

Finally, extracted trajectories can serve as the input for a suite of existing computa-
tional approaches for trajectory-based network analysis  (LaRock et  al. 2020; Peixoto 
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and Rosvall 2017; Rosvall et al. 2014; Scholtes 2020). It is possible, for instance, to para-
metrize the Markov order of a real-world walk process (Scholtes 2017). In the context 
of association football, “second-order” passing processes correspond to complex multi-
player dynamics where the next pass reliably depends both on who has the ball and from 
whom that player received the ball. We find that only a select group of very successful 
professional club football teams played with consistent second-order passing dynamics 
in the 2017–2018 season. This includes the four top-ranked teams in England’s Premier 
League, the six top-ranked teams in Italy’s Serie A, as well as the champions of the Span-
ish La Liga, the German Bundesliga, and the French Ligue 1.

The remainder of the paper is structured as follows. In the “Theory and related work” 
section, we review related approaches and discuss what we gain by taking a process-
driven approach. This section details the network theory behind how we observe and 
study real-world walk processes on networks. The  “Data” section describes the spe-
cific datasets analyzed in this paper and key ancillary details about the two processes. 
The “Methods” section introduces trajectory extraction and various ways to analyse the 
resulting sets of trajectories. This section details the methodology behind our work in 
the form of the algorithm and its computational complexity. In the  “Results” section, 
we apply our approach to answer four domain-specific research questions. The “Conclu-
sion” section concludes.

Theory and related work
In this section, we first note specific issues that would arise if we were to consider foot-
ball passes or financial transactions as links in a temporal network. We then discuss 
random walks on networks, real-world walk processes, and two distinctions that can be 
made regarding how real-world walk processes are observed. Records of football passes 
and financial transactions let us observe events, or “steps”, in these two real-world walk 
processes as they unfold over networks that we do not observe.

Temporal networks

To analyze observational data on association football or mobile money, it would be 
simple to interpret each pass or transaction as a link in a temporal network. Tempo-
ral network analysis is a well-developed approach with many established techniques and 
available computational tools (Holme and Saramäki 2012, 2019; Lambiotte and Masuda 
2016; Paranjape et al. 2017). In our particular cases, however, the most common tempo-
ral network analysis techniques would involve considerable simplification of the under-
lying data on passes and transactions.

Existing temporal network analysis techniques do not reflect the substantive context 
in which this data is generated. Time-aggregation into a static network does not capture 
the fact that players and account holders interact with one another almost instantane-
ously over a continuous period of time. Temporal network techniques that use sequences 
of network snapshots  (Rocha and Masuda 2014; Taylor et al. 2017), or multilayer net-
works  (Aslak et  al. 2018), likewise do not help us make sense of hundreds of football 
passes, or hundreds of millions of financial transactions, happening one at a time. At 
the same time, temporal network analysis techniques that treat each link separately (e.g., 
motif counting, subgraph matching, and reachability analysis: Badie-Modiri et al. 2020; 
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Boekhout et al. 2019; Bogdanov et al. 2011; Jazayeri and Yang 2020; Kovanen et al. 2011; 
Locicero et al. 2021; Paranjape et al. 2017; Petrovic and Scholtes 2019) do not account 
for the inherently sequential dependencies in how passes and transactions come to be.

Players must receive the ball to pass the ball, and accounts must have money to spend 
money. This can make it difficult to interpret the outputs even of basic temporal network 
analysis methods  (as in: Holme and Saramäki 2012). There are many time-respecting 
paths through a temporal network of football passes, but in practice the ball follows only 
a single one. Ambiguity in how paths should be derived from networked processes makes 
it difficult to interpret the outputs of centrality measures and similar methods that are 
based on time-respecting paths (see: Saramäki and Holme 2015). Football matches also 
happen under a very peculiar set of rules—inter-contact times computed on 2018 FIFA 
World Cup match-event data would include water breaks, but only for matches played 
at over 32 ◦C (Earls 2019; Houssein et al. 2016). Such minutiae would then muddle out-
put metrics. As an added complication, financial transactions are weighted in a way that 
one cannot ignore. Transactions raise or lower a node’s account balance by sometimes 
drastically different amounts, so paths through a node , inter-event times at a node, and 
motifs involving a node are also—in some sense—weighted.

Walk processes on networks

Footballs and money are tangible things, and walk processes are networked processes 
that correspond to the movement of tangible things. Random walks have long been used 
as a way to explore and quantify the structure of networks; they are a pillar of network 
science methodology. PageRank was developed to simulate the movement of a “surfer” 
who moves from page to page through a hyperlink network, randomly and with prob-
abilistic re-starts  (Page et  al. 1999). Infomap finds sub-network structure by minimiz-
ing the average number of bits needed to describe one step in a random walk on the 
network (Rosvall and Bergstrom 2008). A set of other commonly-used network analysis 
techniques assume the dynamics of a walk process, more or less explicitly  (Backstrom 
and Leskovec 2010; Fouss et al. 2007; Kloumann et al. 2017; Newman 2005).

Walk processes themselves can be weighted or unweighted, discrete or continuous, 
node-centric or edge-centic, and active or passive according to a taxonomy by Masuda 
et al. (2017). Football passing process and financial transaction processes both operate 
in continuous time; transactions are weighted while passes are not. The authors define 
node-centric processes as those where the dynamics of the process is defined in terms of 
the nodes. Players kick the ball. Accounts spend money. Active walk processes are those 
where “walkers” are agents stepping though the network of their own volition. In our 
case each pass in football is a “step” for the ball, and each financial transaction is a “step” 
for a certain amount of money, but neither footballs nor sums of money have agency 
in any sense. The processes in this study are thus examples of otherwise elusive node-
centric, passive walk processes.

Real‑world walk processes

It remains relatively uncommon to model and simulate real-world walk processes on 
networks. Examples with some presence in the literature include travellers and goods in 
transit (Heath et al. 2008; LaRock et al. 2020; Peixoto and Rosvall 2017; Xu et al. 2016), 
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packets routed over the internet (Ash 1997; Echenique et al. 2004; Fronczak and Fronc-
zak 2009), and users surfing the web (Borges and Levene 2007; Chierichetti et al. 2012; 
Page et al. 1999; Xu et al. 2016). This work establishes two additional real-world exam-
ples: the passing process during football matches and the transaction process among 
financial accounts within a payment system. Here we consider two key features common 
across each of these real-world walk processes.

First, real-world walk processes maintain their integrity in practice and often occur 
within systems that are highly engineered to this end. Process integrity refers to the 
tendency of tangible items to stay where they are placed and not suddenly multiply or 
disappear. This is largely trivial for processes involving passengers, goods, footballs, or 
other physical items. Even so, there may be an authority overseeing the system who is 
able to intervene and fix glitches. Football matches are presided over by a team of refer-
ees who would quickly interrupt the match if a second ball were to come onto the field. 
Many important real-world walk processes rely on digital protocols to keep track of digi-
tal items. Packets are routed over the Internet using TCP/IP and related protocols; these 
have safeguards against packet loss and duplication (Forouzan 2002). Bookkeeping pro-
tocols can be decentralized (cash), centralized (checking), or algorithmic (blockchain). 
Payment system providers have a very strong incentive to ensure their bookkeeping is 
accurate, because they themselves end up on the hook for wayward funds. Exceptions 
to this rule are extraordinary—the president and chief executive of Liberty Bank in 
the United States chose to allow large ATM withdrawals in the aftermath of hurricane 
Katrina, for humanitarian reasons, although its flooded systems were unable to verify 
account balances at the time (Rivlin 2015).

Second, real-world walk processes are rarely, if ever, entirely self-contained. They are 
bounded in a way that is determined entirely by the real-world context. There may be 
complicated rules that begin and end walks, or related processes that create and destroy 
“walkers”. These are conceptually distinct from the walk process itself and often sub-
stantively important. For traffic flow it matters greatly where people live and work. For 
money flow it matters greatly how people deposit and withdraw. Association football has 
very specific rules for when the ball enters and exits play, which are enforced (again) by 
the team of referees.

Observing walk processes on networks

Observational data about walk processes on networks can take many forms. Complete 
data would include information about the network structure underlying the process, the 
dynamics of this particular process, and the actual volumes involved. Most forms of data 
thus convey only partial information about a real-world walk process or do so piecemeal. 
The structure of the data is what determines which aspects of a walk process are directly 
incorporated, and which are left to be found, assumed, or inferred separately.

We systematically categorize different types of observational data about walk pro-
cesses on networks in Table  1. Very often, data collection focuses on the network 
structure over which the process unfolds (Table 1, top row). In some cases, one can 
directly observe the relevant links, like roads  (Hu et  al. 2007; OpenStreetMap con-
tributors 2017; Zhan and Noon 1998) or submarine fiber-optic cables  (TeleGeogra-
phy 2020). Such network data leaves the dynamics of the process implicit, for the 
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researcher to define separately. In other cases one actually defines process dynam-
ics, explicitly, in order to query the network structure. Web crawlers (Thelwall 2002), 
tools such as traceroute  (Cisco 2006), and transit apps  (Kujala et  al. 2018) give 
path data about the network underlying the processes they parrot. In both cases, the 
researcher would need to incorporate empirical data on volumes to get a complete 
view of the process.

Data can also be collected about walk processes themselves (Table 1, bottom row). 
This is often done in the form of timestamped events, such as airline flights (Guimerà 
et  al. 2005) or hyperlink clicks  (Dimitrov et  al. 2017; Joachims 2002). Event data is 
similar to network data in that the dynamics of the walk process—that arriving pas-
sengers either transfer to a later flight or leave the airport—are implicit and would 
need to be handled separately. In some cases, however, it is possible to observe 
individual “walkers” as the process they are a part of unfolds. Passenger itinerar-
ies (LaRock et al. 2020; Xu et al. 2016) and user click-streams (Chierichetti et al. 2012; 
Paranjape et al. 2016; Scholtes 2017) are examples of such trajectory data. Trajectory 
data fully incorporates both the dynamics and the volume of the networked process, 
giving an exceptionally detailed observational account.

Transit processes are worth highlighting because each of the four combinations 
are well represented in the literature: Road networks are readily observable and used 
to study transit by car (Hu et al. 2007; OpenStreetMap contributors 2017; Zhan and 
Noon 1998). It is understood, implicitly, that road networks are used by individual 
cars that behave as tangible objects moving from their origin to their destination. 
Models of traffic flow take this into account, and generally supplement the observed 
network data with origin/destination records or measurements of traffic flow (Toole 
et al. 2015; Iqbal et al. 2014; Çolak et al. 2016). The movement of passengers via pub-
lic transportation can be studied using the schedules of trains and busses. This data 
structure makes explicit the connections that would need to be made by individual 
passengers along each possible path and the associated travel times  (Kujala et  al. 

Table 1  Examples of observational data used to study walk processes on networks

Listed processes are: travellers in transit, packets routed over the internet, users surfing the web via hyperlinks, football 
players passing a ball, and transactions within a payment system. The examples are organized to reflect how data can be 
collected (about the walk process itself or about the network over which it plays out) and that the structure of the data may 
or may not explicitly incorporate the integrity and bounds of the walk process

Implicit Explicit
Network Network data Path data

Transit network Transit routes

Internet connections traceroute output

Hyperlink network Web crawler output

Football passing network Hypothetical plays

Payment networks Hypothetical flows

Process Event data Trajectory data

Vessel manifests Travel itineraries

Router-based logs Packet-based logs

Hyperlink clicks User click-streams

Football match events Passing sequences

Transaction records Flows of money
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2018). Even so, hypothetical path data must be supplemented with information on 
the actual usage of different routes  (Sánchez-Martínez 2017). Data can also be col-
lected about transit processes themselves, as in the case of passengers travelling by 
air (Guimerà et al. 2005). Flight manifests directly record distinct events in the tran-
sit process. But the fact that some passengers remain where they arrive, some travel 
onward, and none take two departing flights remains implicit within this data struc-
ture. Data in the form of individual travel itineraries sidesteps the issue by making 
process dynamics explicit (LaRock et al. 2020; Xu et al. 2016).

In this section we have presented a systematic categorization of observational data on 
real-world walk processes over networks. In the “Methods” section we present a method 
for extracting trajectory data from event data by leveraging process integrity and sys-
tematically incorporating detailed domain knowledge on process bounds. The resulting 
trajectory data encodes information about the dynamics of the process that were not 
accessible in the original event data.

Data
This paper considers football passing processes during matches played as a part of seven 
professional competitions and transaction processes facilitated by a mobile money pro-
vider. Recall from the “Real-world walk processes” section that these can be interpreted 
as observed walk processes  and that real-world walk processes are bounded. Each 
record corresponds to an event that moved a football or some amount of e-money from 
one player or account to another.

Below, we describe both datasets in detail.

Football passing process

To study football passing processes, we can observe the on-ball events that occur during 
matches. Domain knowledge on the rules and aims of association football lets us specify 
the bounds of the observed passing processes.

Football match‑event records

We analyze recent datasets of spatio-temporal match events from seven competitions 
collected by Wyscout and published in Pappalardo et al. (2019). This data includes all 
games played as a part of five first-tier professional domestic leagues (in 2017–2018) and 
two international competitions (in 2016 and 2018). Records describe match events cor-
responding to standardized  actions that players often take to progress the ball during 
play. Each record contains information on the player, period, elapsed time within period, 
event type, event sub-type, position on the field, and outcome of an in-game action.

Table  2 summarizes the dataset for each competition by event type. The original 
event type schema is available from Wyscout in conjunction with the original data 
(https://​apido​cs.​wysco​ut.​com). We make two appreciable adjustments: introduc-
ing “Kick-off” events as a sub-type of “Free Kick” to mark the first event in each 
period and the first pass after a goal, and treating “Clearance” events as a sub-type of 
“Pass”. We also rename the category “Others on the ball” to that of its main sub-type, 
“Touch” and treat “Offside” events as a sub-type of “Interruption”. Various outcomes 
of events are reported in the data using standardized tags. Each action is deemed to 

https://apidocs.wyscout.com
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have been accurate (e.g., a pass reached its target) or not. Whenever there is a goal, 
this is included as a tagged outcome.

Boundary specification

The bounds of the observed football passing process are determined using the event 
types and tags supplied in the match-event datasets. The passing process is deemed to 
be started, interrupted, and re-started whenever the ball enters, exits, and re-enters 
regulation play. “Kick-off” events begin play at the start of a period and after a goal. 
The other sub-types of “Free Kick” (including also “Goal kick”, “Corner”, “Penalty”, and 
“Throw-in”) mark the re-start of the passing process after any of the various ways it 
can be interrupted (fouls, offsides, bringing the ball outside the field, referee whis-
tle, etc.). Note that passes occurring outside of regulation play, such as during offside 
situations, do not appear in the data. Nor do other events that are not a part of the 
game, such as players handing a ball to a teammate for a throw-in (Pappalardo et al. 
2019, Table 2).

Analysis conventions in sports science provide a second set of bounding criteria for 
passing processes—interruptions by the opposing team. We adapt a definition previ-
ously used for match event data from the 1990 and 1994 FIFA World Cups, which 
considers possessions as passing sequences that end when passes do not reach their 
intended target or are contacted by the opposition (Hughes and Franks 2005, p. 510). 
The data we use includes a more detailed accounting of match events, so we opera-
tionalize this criteria as follows: the passing process re-starts after passes, shots, 
and free kicks that were tagged as “inaccurate”; it also re-starts with passes made, 
shots made, and duels tagged as “won” by the opposing team. Non-passing events 
(shots, save attempts, touches, duels, fouls, and interruptions) unrelated to changes 

Table 2  Football match events

A summary of the competitions, matches, and match events in the association football data. Match events are grouped by 
event type and reported as counts

International Spain Italy England France Germany

Competition World Cup Euro Cup La Liga Serie A Premier 
League

Ligue 1 Bundesliga

Year/Season 2018 2016 2017/2018 2017/2018 2017/2018 2017/2018 2017/2018

Observations

Matches 64 51 380 380 380 380 306

Events 101,683 78,069 628,659 647,372 643,150 632,807 519,407

Event type

Pass 58,081 45,197 327,572 346,771 338,665 328,130 268,797

Free kick 6232 5025 39,858 39,767 38,204 40,696 32,555

Shot 1419 1198 7978 8806 8450 8326 6898

Save attempt 523 458 3410 3561 3349 3436 2811

Touch 7351 3398 37,694 40,939 39,299 40,067 31,659

Duel 25,927 21,101 172,049 167,778 176,687 171,353 144,181

Foul 1766 1328 10,964 9994 8138 10,202 8656

Interruption 384 364 29,134 29,756 30,358 30,597 23,850
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in possession are considered a part of the passing sequence prior; these are ignored 
when they involve players on the team not in possession.

Financial transaction process

To study financial transaction processes, we can observe the transactions that occur 
within digital payment systems. Specifically, we consider transactions within a mobile 
money payment system. Mobile money providers operate primarily in countries 
with underdeveloped banking infrastructure. They host mobile wallets (i.e., e-money 
accounts), process transfers, and service payments for users over the cellular infrastruc-
ture (GSMA Mobile Money 2015b). These digital services are facilitated by a large cadre 
of on-the-ground agents. Mobile money agents create an interface between cash and 
e-money, as would a teller at a bank, often in conjunction with a retail shop (Cull et al. 
2018). The domain-specific logic and language of payment systems lets us specify the 
boundary of the mobile money system within which we observe our financial transac-
tion process.

Mobile money transaction records

We consider a large dataset of e-money transaction records from a mobile money pro-
vider in Asia covering 6  months of activity in 2016 for around 1.5 million users. The 
dataset contains 35 million records, each of which specifies the sender, recipient, date, 
amount, fee, and type of transaction along with a unique identifier.

Table  3 summarizes the dataset by transaction type. Users can deposit money onto 
their account via a mobile money agent (cash-dep) and via the banking system (bank-
dep); users can withdraw money from their accounts via a mobile money agent or 
ATM (cash-wtd) and via the banking system (bank-wtd); users can transfer e-money to 
another user with a digital person-to-person transaction (p2p); users can also use the 
mobile money service to make cash payments to persons (cash-pay) and bill payments to 
utilities (bill-pay); finally, users can purchase pre-paid mobile calling minutes for them-
selves or others (mins-pay).

Mobile airtime purchases are especially numerous and orders of magnitude smaller, 
on average, than other transaction types. These transactions also include a timestamp 

Table 3  Mobile money transaction events

A summary of the transactions in the mobile money data, grouped by event type. The number of transactions and the total 
value is reported as a percentage of all transactions; the average value is reported in US Dollars at Purchasing Power Parity 
(PPP)

Event type Abbreviation Transactions (%) Tot. value (%) Avg. value

Cash deposit cash-dep 13.8 37.0 $237

Bank deposit bank-dep 0.3 0.5 $143

P2P transfer p2p 11.8 25.3 $189

Bill payment bill-pay 4.7 4.9 $92

Cash payment cash-pay 4.0 6.3 $138

Airtime purchase mins-pay 56.8 1.5 $2

Cash withdrawal cash-wtd 8.3 22.4 $238

Bank withdrawal bank-wtd 0.4 2.0 $482
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at sub-second resolution, which we use to impute more precise timestamps for transac-
tions of other types. Transaction counts are reported in Table 3 as a share of the total 
number of transactions for reasons of corporate anonymity. We report amounts in US 
Dollars at Purchasing Power Parity (PPP).

Boundary specification

The bounds of the observed transaction process are determined using the transaction 
types supplied in the e-money transaction dataset. It is understood in the context of 
payment systems that “deposits” add money to, “withdrawals” remove money from, and 
“transfers” circulate money within some particular system. Considering again Table 3, 
the deposit transactions that place e-money into user accounts, cash-dep and bank-dep, 
thus start the mobile money transaction process. The corresponding withdrawal trans-
actions, cash-wtd and bank-wtd, remove e-money from user accounts and this serves to 
end the transaction process. Payments and purchases likewise end the transaction pro-
cess, in our particular case, as the mobile money provider handles the funds used for 
such transactions separately (these are: bill-pay, cash-pay, and mins-pay). P2P transfers 
are the only transaction type that keep funds circulating within the system among ordi-
nary users of the system.

Methods
In this section, we present a two-step, process-driven technique for analyzing event data 
on a real-world walk process. The first step is to use the observed events and domain 
knowledge on process bounds (described for our datasets in the “Data” section) to trace 
out trajectories of tangible items (“Trajectory extraction” section). The second step is to 
conduct relevant analyses on the resulting set of trajectories (“Trajectory analysis” sec-
tion). Finally, the “Experimental setup” section describes the setup used for our applica-
tion of this technique to association football and mobile money, including a discussion 
of implementation choices and runtime.

Trajectory extraction

Below we discuss our proposed trajectory extraction method. This takes a set of events/
steps and a concrete boundary specification as input. The output of the method is a set 
of trajectories.  We define a trajectory extraction algorithm and provide its   computa-
tional complexity. For the interested reader, pseudocode can be found in “Appendix: 
Pseudocode”.

Input: event data and boundary specification

Consider a dataset D consisting of m records of events, or steps, in a real-world walk 
process. An event is represented as a four-tuple di = (ui, vi, ti,wi) . In the ith event 
(with 1 ≤ i ≤ m ), ui and vi are entities (or nodes) within some system, ti is the times-
tamp at which the event occurred and wi is a positive weight. An unweighted process is 
one in which just one tangible item is involved, or each item is individually identified, 
and hence the weight wi is always equal to 1. Events and nodes may carry properties or 
attributes that characterize them. The attribute of a node n is denoted anode(n) and the 
attribute of an event d ∈ D is denoted aevent(d).
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Note that a temporal network G = (V ,E) could be constructed from this event data. 
In this network, V is the set of nodes containing all |V| entities that occur in the set of m 
events that form the network’s edges E = D . Here, for reasons discussed in the “Theory 
and related work” section, we specifically choose not to focus on this temporal network, 
given the limitation of temporal network approaches for our desired process-driven 
understanding of the data. Instead we focus on how we can derive insights about the 
walk process that just so happened to generate this network. In particular, we extract 
and analyze trajectories of the tangible items involved in the process.

Extracting trajectories traces the movement of tangible items through some observed 
real-world system. In practice, this requires as input also a specification of the process 
boundary (Dbegin,Dend) denoting the events that begin and end trajectories, or, equiv-
alently, the events whereby items enter and exit the observed system. Specifying the 
process boundary is done by systematically identifying the events where the observed 
process starts, stops, and/or re-starts. In some situations this boundary can be derived 
directly from the event, whereas in other contexts it is dependent on the nodes involved 
in the event.

In a context where specific sets of event attributes (Abegin,Aend) indicate 
boundary events, we can simply check if event attribute aevent(di) ∈ Abegin or 
aevent(di) ∈ Aend to determine whether di is a boundary event. In this case, boundary 
Dbegin = {di ∈ D | aevent(di) ∈ Abegin} and analogously Dend = {di ∈ D | aend(di) ∈ Aend}.

Alternatively, there may be specific sets of nodes (Vsource,Vsink) that can be 
defined as sources and sinks. This would allow for the systematic specification 
of the process boundary as Dbegin = {di = (ui, vi, ti,wi) ∈ D | ui ∈ Vsource} and 
Dend = {di = (ui, vi, ti,wi) ∈ D | vi ∈ Vsink} . In a similar way as for the event attributes, 
there may be node attributes (Asource,Asink) against which we can check the source node 
attribute anode(ui) ∈ Asource and target node attribute anode(vi) ∈ Asink to determine 
whether we are dealing with a boundary event.

Output: trajectories

A trajectory or flow fj can be defined as a tuple fj = (sj , zj) containing a directed 
sequence of events sj and a positive weight or size zj representing the tangible item(s) 
moved by these events. In the case of an unweighted process the weight zj is always 
equal to 1. The sequence of ℓ ≥ 1 events is of the form sj = (d1j , d

2
j , . . . , d

ℓ
j ) . The set of 

all trajectories is denoted F. Trajectories derived from a set of events satisfy a number of 
properties:

•	 Trajectories cover the complete dataset. Trajectories capture all item-steps in the 
dataset, i.e., with ℓj denoting the number of events in trajectory j, the sum of the 
weights of all steps taken in trajectories 

∑
fj∈F

(zj · ℓj) is equal to the sum of the 

weights of all events 
∑

di∈D
wi in the dataset.

•	 Trajectories are time-respecting: in each trajectory fj , the sequence of events over 
which the item(s) moved happen in that particular order, i.e., it holds that tkj < tk+1

j  
for all 1 ≤ k < ℓ.

•	 Trajectories are weight-respecting, meaning that:
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•	 The weight of a trajectory is always less than or equal to the weight of all events 
that are part of the trajectory, i.e., with wk

j  denoting the weight of event dkj  , it holds 
that zj < wk

j  for all 1 ≤ k ≤ ℓ.
•	 The sum of the weights of all trajectories in which a particular event takes part 

(events can be, and in a weighted process often are, part of multiple trajectories) is 
equal to the total weight of that event, i.e., with F(di) denoting the trajectories in 
which event di occurs, it holds that wi =

∑
fj∈F(di)

zj.

Trajectory extraction algorithm

Trajectory extraction starts with an empty set of trajectories F := ∅ and a set of partial 
trajectories W := ∅ . The tracing procedure processes each event di ∈ D in time-respect-
ing order. For each event di , it is first determined whether di starts and/or ends a trajec-
tory, i.e., whether di ∈ Dbegin and whether di ∈ Dend (as defined in the “Input: event data 
and boundary specification” section). Then, each of the following steps are taken: 

1.	 Begin new trajectories: if di ∈ Dbegin then this event is the first event in a new trajec-
tory fj := (sj , zj) where sj := (di) and zj := wi . This new trajectory fj is added to the 
working set W.

2.	 Extend existing trajectories: if di  ∈ Dbegin then this event extends at least one existing 
trajectory fk = (sk , zk) where the target node vℓk of the last event in the sequence sk 
is the source node ui of the current event di . The set of trajectories to choose from 
is Wi = {fk ∈ W | vℓk = ui} . The weight wi of the current event di is to be amassed 
from the trajectories fk ∈ Wi . Let the vector q denote how this is collected, where 
qk is the weight allocated to di from trajectory fk . Maintaining a proper accounting 
of all item(s), the allocation must satisfy qk ≤ zk for all fk ∈ Wi and wi =

∑
fk∈Wi

qk . 
Finally, each trajectory fk where qk > 0 is extended or partially extended.

•	 Extension: if qk = zk , di is appended to sk.
•	 Partial extension: if 0 < qk < zk , first a new trajectory fj := (sk , zj) is added to set 

W where zj := zk − qk . Then, fk is extended and reduced in size; di is appended to 
sk and zk := qk.

3.	 End completed trajectories: if di ∈ Dend then this event is the last event in each of the 
trajectories of which it has been made a part, denoted W (di) . These trajectories are 
moved from the working set W to the result set F.

Example run: Table 4 gives a toy example. The list of five events and the boundary 
specification are the inputs. The set of three trajectories is the output. Our trajectory 
extraction algorithm proceeds in the following manner when applied to this toy example:

1.	 We begin with empty working and final sets of trajectories; W := ∅ and F := ∅.
2.	 d1 ∈ Dbegin as n1 ∈ Vsource ; this begins a new trajectory f1 where s1 := (d1) and 

z1 := 12 ; f1 is added to W.
3.	 d2  ∈ Dbegin ; the event d2 can extend trajectories in W whose last event ended at 

node n2 ; W2 = {fk ∈ W | vℓk = n2} = {f1} ; trajectory f1 is partially extended such 
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that s1 := (d1, d2) and z1 := 2 ; the remaining weight is placed in a new trajectory f2 
where s2 := (d1) and z2 := 10.

4.	 d2 ∈ Dend as n3 ∈ Vsink ; this ends the set of trajectories of which event d2 is a part; 
W (d2) = {f1} and so trajectory f1 is moved from set W to set F.

5.	 d3  ∈ Dbegin ; W3 = {f2} ; f2 is extended; s2 := (d1, d3) while z2 remains 10.
6.	 d4 ∈ Dbegin as n1 ∈ Vsource ; this begins f3 where s3 := (d4) and z3 := 20.
7.	 d5  ∈ Dbegin ; the event d5 has weight 30 to be collected from the trajectories in 

W5 = {f2, f3} ; the allocation q = (q2, q3) = (10, 20) is valid; f2 and f3 are extended 
such that s2 := (d1, d3, d5) and s3 := (d4, d5).

8.	 d5 ∈ Dend as n3 ∈ Vsink ; this ends the trajectories in W (d5) = {f2, f3} ; f2 and f3 are 
moved from set W to set F.

Observation window: In the case where a dataset D contains an exhaustive record of 
a walk process, trajectory extraction would begin with an empty working set of partial 
trajectories ( W := ∅ ). However, a dataset D collected about a real-world system might 
include only events observed over a finite period. In such a case the working set W ahead 
of event d1 would not necessarily be empty. W must be initialized such that all observed 
events that do not begin new trajectories have existing trajectories to extend. Simi-
larly, there may be partial trajectories left in W after event dm . To maintain a complete 
accounting of items, partial trajectories eventually left in W must be moved to F with a 
suitably defined finalization step.

Ambiguity in allocation: In the case of an unweighted process where just one tan-
gible item is involved there will be a single extensible trajectory Wi = {fj} for each 
di ∈ D . Since zj = wi = 1 , zj is fully allocated to wi , q = (qj) = (1) , and trajectory fj 
is extended. However, a weighted process might allow situations where nodes hold 
multiple extensible trajectories. In our toy example, this occurs in processing event 
d5 where W5 = {f2, f3} . The event weight w5 entirely exhausts the set of trajectories 
to choose from, that is, w5 = 30 = 10+ 20 =

∑
fk∈W5

zk . However, in other cases, an 

Table 4  Representations of a walk process

Five events recording steps in a toy walk process with the specified boundary. This process is also shown represented as a 
weighted, directed, temporal network with node attributes, and as a set of extracted trajectories
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event di may have a smaller weight than does the set of trajectories to choose from Wi . 
That is, wi <

∑
fk∈Wi

zk for some di ∈ D . It would then be ambiguous how to amass 
weight wi from the extensible trajectories fk ∈ Wi in Step 2 of the trajectory extrac-
tion procedure.

Allocation heuristic: An allocation heuristic resolves the aforementioned ambi-
guity by specifying precisely how to construct the allocation vector q for an event 
di ∈ D , given the event weight wi and the set of extensible trajectories Wi . Recall that 
qk denotes the amount of each trajectory fk ∈ Wi allocated to di in a way that main-
tains a proper accounting of all item(s). Specifically, q must satisfy qk ≤ zk for all 
fk ∈ Wi and wi =

∑
fk∈Wi

qk . Two principled options for heuristics are last-in-first-out 
and well-mixed. The last-in-first-out heuristic gives each node a stack to organize the 
items it holds at any given time. Items from incoming events are added to the node’s 
stack on top of any items already held by that node. The items at the top of a node’s 
stack are the first to be allocated to outgoing transactions. The well-mixed heuristic, 
on the other hand, gives each node a pool in which to place its items. Under this for-
mulation, items from incoming transactions mix with existing items and no added 
distinction is made. Items in the sending node’s pool are proportionately allocated to 
outgoing transactions. In either case, the weight-respecting property of trajectories as 
defined in the “Output: trajectories” section is retained.

Computational complexity

The elementary operation of our trajectory extraction algorithm is the extension of 
some trajectory. Based on this, we can infer the time complexity of different variants 
(unweighted, weighted, for different heuristics) of the algorithm. The basic operation 
with respect to the time complexity of the algorithm is also the basic operation that 
affects memory usage: if a trajectory is extended, the extended part should be stored. As 
a result, the space complexity behaves in the same ways.

The computational complexity of trajectory extraction for an unweighted walk pro-
cess, where just one tangible item is involved or each item is individually identified, is 
O(m) (recall that m is the number of events in D). The computation involves a loop over 
all events in D and the operations within this loop include precisely one extension of 
some trajectory. We give evidence that the time complexity of our implementation is 
linear, in practice, in the “Hardware & runtime” section.

In the weighted case, the computational complexity is determined by the cho-
sen allocation heuristic (described in the “Trajectory extraction algorithm” section). 
Last-in-first-out has a complexity of O(m2) , where one trajectory extension operation 
is performed on O(m) partial trajectories for each of the m events in D. In practice, 
the expected number of partial trajectories at any one node is far from m, and as the 
observed process (a) takes place across many nodes and (b) is bounded in that trajecto-
ries typically end (see the “Input: event data and boundary specification” section). Prac-
tical factors are especially key in considering the feasibility of the well-mixed heuristic, 
where the time complexity can reach O(2m/2) . The worst-case is a scenario where a pair 
of transactions is consistently used to transfer the same items to a single new recipi-
ent; each of the m/2 pairs then double the number of partial trajectories held by this 
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recipient. We discuss the empirical runtime and memory usage of our implementation 
in the “Hardware & runtime” section.

Trajectory analysis

Extracted trajectories hold sequential information and details about the dynamics of 
the walk process that were not accessible in the original event data. In this section we 
detail four ways to further analyze and interpret these trajectories, using sequential pat-
terns of attributes, summary statistics, node-level properties, and system-level process 
dynamics.

Sequential patterns of categorical attributes

Trajectories are sequences of events, possibly with an associated weight. With poten-
tially hundreds of thousands up to millions of different entities, direct interpretation of 
the extracted trajectories may be difficult. Therefore, we propose to consider sequential 
patterns of relevant categorical attributes of the nodes or the transactions along these 
trajectories. For example, for trajectory fj with sequence sj = (d1j , d

2
j , d

3
j ) and attribute 

values a(d1j ) = a(d2j ) = x and a(d3j ) = y , we would find the sequential pattern (x, x, y). 
Sequential patterns are “higher level” in that there are much fewer unique patterns along 
trajectories than there are unique trajectories. Moreover, sequential patterns may be 
interpretable in a particular domain-specific context and thus be used to produce mean-
ingful summary statistics.

Summary statistics

Real-world walk processes can be succinctly described using summary statistics of 
trajectories. In addition to sequential patterns, two important attributes for summa-
rizing are trajectory length and duration. We define a length for each trajectory as the 
number of events in the sequence, denoted for the jth trajectory as ℓj . The duration of 
each trajectory can be computed from the timestamps of the first and last events, i.e., 
�tj = tℓj − t1j  . It is thus possible to summarize counts of trajectories with a particu-
lar sequential pattern, length, or duration. More complex summary statistics such as 
weighted counts, averages, and medians are also possible. As in any typical data analysis 
task, computed statistics can be subjected to filtering or grouping. The precise approach 
is context-dependent, as we will see in the “Results” section.

Node‑level properties

In moving along its trajectory, each item passes through a sequence of nodes where it 
remains for a specific duration of time. This allows us to define properties of the nodes. 
We consider two in particular: holding time and turnover. The holding time is defined 
for each node along a trajectory except the first and (if defined) last. The turnover of 
each node is the total weight that passes through it. Together, turnover and holding 
time can be used to summarize node-level process dynamics. It is possible to define the 
(weighted) average holding time for each node as well as the (weighted) median. Simpler 
to compute, and perhaps more interpretable, is the share of a node’s total turnover with 
a holding time greater than some cutoff duration. These values are particularly relevant 
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to our questions about e-money savings in mobile money systems, as we will see in the 
“Building up e-money savings” section.

System‑level process dynamics

There exists a suite of methods based on the notion that a network can be defined spe-
cifically so that a random walk would produce trajectories quantifiably similar to an 
observed set of trajectories (Lambiotte et al. 2018; Xu et al. 2016). Researchers have used 
this technique to find central nodes (Pfitzner et al. 2013; Scholtes et al. 2016) and detect 
communities (Rosvall et al. 2014; Xu et al. 2016) on the networks so revealed by individ-
ually observed trajectories. Note that this prior work will sometimes refer to each such 
observation as a path, a word we deliberately avoid in favor of trajectory according to the 
characterization in the “Observing walk processes on networks” section.

We propose to assess the so-called Markov order of obtained trajectories in order to 
assess the complexity of the process. The Markov order of a networked walk process is 
the number of prior steps that affect the next step a walker takes. Classic random walks 
on weighted, directed networks are first order processes (i.e., they are Markovian). More 
complex dynamics can generate trajectories that deviate systematically from this expec-
tation (i.e., non-Markovian). Second-order walks are where the prior node, as well as 
the current node, together determine the probabilities that model the next step a walker 
takes. Prominent non-Markovian dynamics have been identified in, for instance, air 
travel where higher orders are needed to capture recurring patterns due to return travel 
and regional hubs (LaRock et al. 2020). The optimal Markov order of a real-world walk 
process can be statistically fit from observed trajectory data (Scholtes et al. 2016), and 
hence also from our extracted trajectory data.

Experimental setup

This study applies trajectory extraction and trajectory analysis to the two datasets 
described in the “Data” section. In this section we detail the setup with which we extract 
possessions from football match events and extract flows of money from mobile money 
transactions. Software and implementation details are noted as well as the specific hard-
ware used and the algotihm runtimes.

Software & implementation

The passing process that plays out during football matches is unweighted; there is only 
one ball in play at any given moment during a match. For unweighted trajectory extrac-
tion (as described in the “Trajectory extraction algorithm” section) as well as for describ-
ing and summarizing the resulting trajectories (as described in the “Sequential patterns 
of categorical attributes”  and  “Summary statistics” sections) we use pandas  (Reback 
et  al. 2020). Neither an allocation heuristic nor an accommodation for a finite obser-
vation window are needed in this case. To compute the optimal Markov order of the 
observed passing dynamics (as in the “System-level process dynamics” section) we use 
pathpy  (Scholtes 2020). Our plots are produced using matplotlib  (Caswell et  al. 
2019). The code required to reproduce our trajectory extraction and analysis is made 
available in Additional file 1.
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The transaction process that plays out within a digital payment system is weighted. We 
use follow-the-money, a computational implementation developed for weighted 
trajectory extraction (as described in the “Trajectory extraction algorithm” section) on 
transaction data from digital payment systems. This software can be found at https://​
github.​com/​carol​inama​ttsson/​follow-​the-​money and is openly available under a GNU 
Affero General Public License version 3  (Mattsson 2020). The two required inputs are 
the transaction data file and a configuration file containing the details required to define 
the payment system boundary. The boundary specification is described in detail in 
the “Financial transaction process” section and the configuration file itself is made avail-
able in Additional file 4.

Given that the process is weighted, we must also select an allocation heuristic. This 
choice affects the extracted trajectories and should be made deliberately. Figure 1 visu-
ally describes the heuristics from the  “Trajectory extraction algorithm” section with 
respect to a financial transaction process. We select the last-in-first-out (LIFO) alloca-
tion heuristic over the well-mixed option for this work as it is the most attractive with 
respect to algorithmic complexity (see: “Computational complexity”) and interpretable 
within our specific context.

The LIFO heuristic has several advantages in the context of payment systems, specifi-
cally. First, it is intuitive. An account that receives a $100 transfer and promptly pays 
rent will generate a straightforward $100 trajectory from whoever sent them the trans-
fer, through their account, and on to their landlord. Moreover, under LIFO this person 
paying their rent creates the same $100 trajectory irrespective of whether they have $10 
in their account or $10,000. Finally, LIFO introduces a stylized representation of savings 
into the system because it parallels a particular way of conceptualizing how people save 
money. This common, colloquial understanding of “savings” is as the funds that accumu-
late at the bottom of an account until the account holder needs to “dip into” them.

Given that the mobile money transaction data was recorded over a 6-month period, 
we must also contend with a finite observation window (as defined in the “Trajectory 
extraction algorithm” section). This we do by handling initial and final balances sepa-
rately, employing the time-window functionality of follow-the-money. Our com-
putation is initialized by inferring the existence of a prior transaction that brings the 
balance of each account up to the level it would need to maintain a positive balance 

Last-in-first-out Well-mixed

Fig. 1  Allocation heuristic. An illustration of the allocation outcomes for a simple series of transactions 
involving a highlighted account. This account is represented by a stack for last-in-first-out allocation, and 
a pool for well-mixed allocation. The account receives two $100 transactions, and later sends $50 to two 
different accounts. The last-in-first-out heuristic uses the most recent incoming transaction to fund the 
outgoing transactions, creating two $50 trajectories. The well-mixed heuristic pulls evenly from both 
incoming transactions, creating four $25 trajectories. Empty arrows are funds that are not yet allocated to an 
outgoing transaction 

https://github.com/carolinamattsson/follow-the-money
https://github.com/carolinamattsson/follow-the-money
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throughout the 6-month period. Similarly, we close out the system by inferring the exist-
ence of a later transaction that brings the balance of each account down to zero. Instead 
of incomplete trajectories, then, follow-the-money produces trajectories that begin 
or end with transactions of type “inferred” and these can be analyzed alongside the com-
plete trajectories.

We also employ the functionality provided in follow-the-money to account for 
the transaction fees charged on some transactions and to avoid continuing to trace tra-
jectories that become smaller than one unit of the local currency for reasons of, e.g., 
floating point arithmetic. The scripts used to run the computations are made available 
in Additional file 3. Summarizing and analyzing the resulting trajectories is done using 
follow-the-money, pandas, and matplotlib.

Finally, note that in running trajectory extraction we make three specific assumptions 
about each of the datasets. The first is completeness; we assume these datasets include 
a record of all events during the observation window. The second is that these datasets 
are correctly ordered in time. And, lastly, we assume no observed events violate process 
integrity as defined in the “Real-world walk processes” section. Passes and transactions 
that are disallowed for reasons of process integrity should not happen, be thus impossi-
ble to observe, and not end up in the data.

Hardware & runtime

Unweighted trajectories were extracted from the football match-event datasets and 
boudary specification  described in the  “Football passing process” section. Trajectory 
extraction was run on a machine with a 2.3 GHz quad-core processor and 16 GB mem-
ory. Table 5 presents the runtime of the algorithm and the resulting number of posses-
sions. For convenience, the number of matches and events are restated from Table  2. 
The runtime increases approximately 29.5 seconds per 100, 000 events (sample standard 
deviation s = 0.77 ), which is linear, precisely as theoretically shown in  the “Computa-
tional complexity” section.

Weighted trajectories were extracted from the mobile money transaction dataset and 
boundary specification  described in the  “Financial transaction process” section. This 
was run on one computing core with a 2.2 GHz processor. This computation utilized 1 h 
9 min and 49 s of CPU time, required 5.89 GB of memory, and resulted in a dataset of 
33 million trajectories. Note that our case is far from the worst-case with respect to the 
time-complexity of the algorithm for a weighted walk process under LIFO as discussed 
in the “Computational complexity” section. There are a large number of active accounts 

Table 5  Possessions extracted from each football match-event dataset and the runtime of this step

International Spain Italy England France Germany

Competition World Cup Euro Cup La Liga Serie A Premier 
League

Ligue 1 Bundesliga

Year/season 2018 2016 2017/2018 201720/18 2017/2018 2017/2018 2017/2018

Matches 64 51 380 380 380 380 306

Events 101,683 78,069 628,659 647,372 643,150 632,807 519,407

Possessions 25,470 20,765 162,583 163,817 169,926 164,651 138,042

Runtime 29 s 24 s 187 s 191 s 189 s 191 s 153 s
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(around 1.5 million) and events that end trajectories (i.e., payments and withdrawals) are 
prominent (see Table 3), two aspects that, as stated in the “Computational complexity” 
section, ensure the number of partial trajectories ending at any one node is a very small 
number compared to m, realizing very feasible running times in practice.

Results
In this section, we share four results obtained using trajectories extracted from the 
match event and transaction data. First, we use trajectories to replicate classic findings 
from sports science on possession lengths in association football. Second, we summarize 
how account holders use mobile money services by grouping trajectories of e-money 
into meaningful categories. Third, we quantify the extent to which account holders build 
up savings in e-money. Lastly, we demonstrate that passing play of a higher Markov 
order distinguishes exceptional club teams in five top association football leagues.

Passing sequences, shots, and goals

Passing sequences or possessions have been used to study association football at the 
professional level since long before the current age of plentiful, detailed, data on games. 
Reep and Benjamin (1968) observed that around 80% of goals are scored from short pos-
sessions, meaning those with three or fewer completed passes, and that it takes around 
10 shots to score one goal (see also: Reep et al. 1971). Hughes and Franks (2005) con-
firm these findings using match data from the FIFA World Cup tournaments in 1990 and 
1994. They contend that so many goals are scored from short passing sequences simply 
because these are more numerous; longer passing sequences are more likely to lead to 
shots and goals.

The aim of our analysis is to establish if these classic findings in sports science can be 
replicated decades later using the kinds of detailed spatio-temporal match data that have 
become available for recent competitions, specifically the 2018 FIFA World Cup. Tracing 
out trajectories lets us delineate possessions using systematic and transparent criteria 
similar to those described in Hughes and Franks (2005) (see the “Football passing pro-
cess” section). This makes our data directly comparable to that used in the earlier work. 
From the 101,683 spatio-temporal match events we extract 25,470 trajectories that each 
correspond to a possession (see Table 5). As described in the “Sequential patterns of cat-
egorical attributes” section, we can compute specific features of these trajectories using 
the attributes of the match events that make them up. Specifically, we designate the 
number of “accurate” passes (including set pieces that are not themselves shots) as the 
possession length and note whether each sequence of events led to a shot and/or a goal.

Counting the trajectories at each length in each outcome category lets us produce 
Fig. 2 which reproduces key figures from Hughes and Franks (2005, Figures 1-3, and 6 
on pgs. 510–512). The top panels show the length-distribution of possessions and of the 
subset that led to goals. These are strikingly similar to the equivalent plots in the prior 
work, with perhaps more of the very longest possessions and more goals from zero-
length possessions (in our case, these are predominantly direct shots from set pieces 
and goals from rebounds). By our count, 82.2% of goals during the 2018 FIFA World 
Cup resulted from possessions with passing sequences of length three or less. The lower 
panels in Fig. 2 show, as do the prior authors, that longer passing sequences were more 



Page 21 of 31Mattsson and Takes ﻿Appl Netw Sci            (2021) 6:35 	

likely to result in shots; and it still takes around 10 shots to score one goal. What is less 
clear from this more recent data, however, is whether longer passing sequences continue 
to have a higher conversion ratio into goals. This could be due to changes in the game 
over the intervening decades. Regardless, the finding that around 80% of goals are scored 
from short possessions appears to hold in 2018 just as it did 28 years earlier.

Use and circulation of mobile money

Mobile money is relatively new and potentially revolutionary digital financial infra-
structure  (GSMA Mobile Money 2018). Understanding how account holders use 
these systems is of great interest to mobile money providers and proponents of 
financial inclusion  (Almazan and Lynn 2015; Cull et  al. 2018; International Finance 
Corporation and Mastercard Foundation 2018; Stuart and Cohen 2011). However, 
user behavior can be difficult to relate to raw transaction data. For instance, neither 
survey takers nor the users they poll tend to consider deposits and withdrawals as 
separate services  (Intermedia 2016). Account holders wishing to accomplish a par-
ticular task will often need to make more than one transaction to get their money 
where they need it to go. This makes it especially difficult to measure the extent to 
which e-money is being meaningfully re-used, as opposed to trivially re-transacted in 
completing a single task. Consistent re-use of e-money is a precondition for reaching 

a b

c d

Fig. 2  Football passing sequences. The length distribution of a possession sequences during the 2018 FIFA 
World Cup and b possession sequences that ended in a goal. Also the conversion ratio of possessions into c 
shots and d goals at each length. Possession length is the number of “accurate” passes (including free kicks 
that are not themselves shots) during that sequence of events. Penalty shootouts are excluded
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the grandest goals of some mobile money proponents, who envision a world where 
e-money comes to replace cash (Athique 2019; Kendall et al. 2011).

Here, we summarize how account holders use a mobile money service by meaning-
fully grouping the e-money trajectories extracted from the providers’ own transaction 
records. Tracing out weighted trajectories using a relevant boundary specification 
and allocation heuristic (see the  “Financial transaction process” section) lets us fol-
low e-money across multiple sequential transactions, each of which has a particular 
type. Sequential patterns of transaction types are readily interpretable as stand-alone 
use cases of mobile money: the prototypical use case is a digital transfer that involves 
a cash deposit, then a person-to-person digital transaction, and finally a cash with-
drawal  (Mbiti and Weil 2013). Paying a bill or purchasing pre-paid mobile minutes 
(i.e., airtime) would entail making a cash deposit followed by the payment transac-
tion. Where providers offer a formal over-the-counter service, as in our case, e-money 
from a cash deposit can also be used to pay another person in cash (GSMA Mobile 
Money 2015b). Mobile money systems are also used for money storage and savings 
wherein cash is deposited only to be withdrawn again sometime later. Economides 
and Jeziorski (2017) describe this transaction pattern as a means to avoid carrying 
cash while travelling and to avoid keeping cash at home over the short to medium 
term. It would also occur when users are maintaining e-money in their mobile money 
accounts for a longer period of time as a form of savings (Jack and Suri 2011). Person-
to-person transactions that are not subsequently withdrawn are special; they keep 
e-money “circulating” within the mobile money system where they can be meaning-
fully re-used. As described in  the “Summary statistics” section, we can group tra-
jectories by these contextually relevant transaction patterns to produce meaningful 
summary statistics about the use of this mobile money system.

We find that mobile money is primarily single-use. Table 6 presents a detailed sum-
mary of this trajectory data, showing the five stand-alone patterns and the corre-
sponding “circulating” patterns that include at least one meaningful re-use. The 35 

Table 6  Sequential patterns in mobile money use

Trajectories observed when tracing funds using the last-in-first-out heuristic, grouped by their sequential transaction 
patterns. The number and value of trajectories is reported as a percentage of the number and value of all trajectories that 
begin with a deposit made in the first 5 months of data collection. The median duration is weighted by value. Brackets 
denote that consecutive person-to-person transactions have been consolidated. Not shown are sequential transaction 
patterns reflecting niche actions (i.e., below 1% of trajectories) or incomplete trajectories (i.e., money that remains in the 
system at the end of the finite data collection window). For this reason, the percentages do not add up to 100%

Use case Transaction type motif Number (%) Value (%) Duration 
(h)

Storage/savings cash-dep → cash-wtd 5.9 23.1 21

Digital transfer cash-dep → p2p → cash-wtd 5.9 23.5 24

Circ. digital transfer cash-dep → [p2p] → p2p → cash-wtd 3.6 8.8 67

Cash payment cash-dep → cash-pay 4.0 12.5 1.5

Circ. cash payment cash-dep → [p2p] → cash-pay 2.5 4.2 59

Bill payment cash-dep → bill-pay 4.0 8.8 0.1

Circ. bill payment cash-dep → [p2p] → bill-pay 3.3 4.2 77

Airtime purchase cash-dep → mins-pay 40.3 2.4 165

Circ. airtime purchase cash-dep → [p2p] → mins-pay 21.2 1.2 276
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million transactions worth a total of $3.1 billion (PPP) become 33 million trajecto-
ries totaling $1.7 billion (PPP). Considering those trajectories where the e-money was 
deposited within the first 5  months of our data collection window, stand-alone use 
cases amount to 73% of activity. Only 19.7% of e-money was observed “circulating” 
within the system before exiting (7.3% remained in the system at the end of the finite 
data collection window). Across use cases, the median unit of e-money that is re-used 
remains in the system for considerably longer than its single-use counterpart. In a 
relatable anecdote, most of the e-money used for bill payments moves through the 
system in under an hour perhaps because many bills are paid last-minute.

Building up e‑money savings

The possibility that mobile money could promote personal savings in countries with 
under-developed banking sectors has been raised  (Demombynes and Thegeya 2012; 
Jack and Suri 2011) and is often touted by development agencies  (Global Develop-
ment Program 2012). However, the causal effect of mobile money on savings is incon-
clusive  (Blumenstock et  al. 2015; Aker et  al. 2016) and uptake of savings-specific 
services offering a rate of return has been low  (GSMA Mobile Money 2015a; Suri 
2017). This is perhaps not unexpected—the act of saving requires a person to leave 
some amount of money undisturbed for a long period of time and those in precarious 
financial situations face many challenges to building up savings, in general (Banerjee 
and Duflo 2012).

The aim here is to quantify the extent to which mobile money users build up savings 
as e-money in their accounts. Our trajectories note the length of time that e-money 
spends in each visited account, and as explained in the “Software & implementation” 
section our choice of heuristic gives this a direct interpretation in the context of sav-
ing. Money that recently entered an account is used first and only when more recent 
funds are exhausted do older, longer-saved funds get used. As described in the “Node-
level properties” section, we can find the total turnover for each account and the share 
of this that the account holder left undisturbed for longer than a given duration. From 
this we calculate the fraction of accounts that left undisturbed over 20%, 10%, 5% and 
0% of their turnover for longer than some length of time. One might consider 30 days 
as an appropriate cutoff for some balance to have been successfully “saved”.

We find that mobile money is rarely used to build up sizeable savings balances. Fig-
ure 3 shows the percentage of accounts with more than three incoming transactions 
that managed to accumulate a savings balance over a period up to and above 30 days. 
Our count shows that 21.7% of such users succeeded in saving 5% of incoming funds 
for over 30 days at some point during the period that we observed. The majority did 
not save even 1% of incoming funds for that long. Many accounts do maintain small 
balances for long periods of time, as indicated by the slow decline of the curve for any 
non-zero balance. The other curves decline faster as fewer accounts maintained more 
sizeable balances over the same lengths of time.
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Multi‑player tactics in association football

Association football is an intensely competitive environment where teams employ dif-
ferent strategies and tactics in seeking some advantage over an opposing team. Here we 
use trajectories to investigate whether or not teams consistently demonstrate complex 
multi-player tactics. Specifically, the concept of Markov order described in the “System-
level process dynamics” section can be used to quantify the sustained complexity of a 
team’s passing play. First-order passing processes are best described by a network—play-
ers routinely pass the ball to particular teammates. We would expect teams that con-
sistently execute complex multi-player tactics in their play to generate passing dynamics 
with a Markov order greater than one, meaning they go beyond what is captured by a 
simple network model. Whether from ingrained practice of multi-player tactics, less 
interference from the opposing team, or exceptional situational awareness, the players 
would appear to take into account who they received the ball from in who they pass the 
ball to.

In our dataset of five first-division domestic competitions  described in  the  “Foot-
ball passing process” section, we find that a small but exceptionally successful subset 
of teams generated complex passing dynamics over the 2017–2018 season. Each of the 
champions of our five domestic leagues played with second-order passing dynamics. So 
did the next three top-ranked teams in England’s Premier League and the next five top-
ranked teams in Italy’s Serie A. Figure 4 gives the full rankings, where teams generating 
second-order passing dynamics are shown in bold. Of these 23 teams: 17 finished in the 
top 5, 3 more in the top 10, and 3 in the bottom half of their respective leagues. We 
consider this to be evidence of complex multi-player tactics at the top echelon of profes-
sional club teams in association football.

On the other hand, passing play during international competitions consistently corre-
sponds to a first-order process. That passing is Markovian holds for all teams who played 
in the 2018 FIFA World Cup and the 2016 UEFA European Cup. None of the national 
teams that we observe had players engaging in complex multi-player tactics with enough 

Fig. 3  Mobile money savings. The share of accounts that left savings balances undisturbed for longer than a 
period of time up to and above 30 days. The curves denote savings balances that correspond to 0%, 1%, 5%, 
and 20% of the total amount the account received during the first 5 months of data collection. These curves 
decline as fewer accounts maintained such balances over longer periods of time. Funds entering accounts 
before or after the first 5 months of data collection are not included; this ensures we could track all funds for 
at least 31 days. Accounts with fewer than three incoming transactions are excluded from the count
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consistency for a second-order process to better fit the trajectory data. The chance that 
the ball moved from one player to the next aligns better with statistical expectations 
without taking into account multi-player sequential combinations.

Conclusion
This paper has demonstrated a new approach for analyzing networked walk processes. 
We systematically characterized observational data about real-world walk processes on 
networks, noting that event data is common but has properties that prohibit the use of 
standard approaches from temporal network analysis. We then proposed a trajectory 
extraction technique that respects integrity constraints, incorporates domain-specific 
process bounds, and retains inherent sequential information. This method was applied 
to mobile money and association football by considering transactions and passes as 
records of events in the respective real-world walk process.

Regarding football, trajectories let us replicate classic findings on possessions from 
sports science, demonstrating that several findings about the game in 1990 still hold in 
2018. We also demonstrated that passing play is a first order Markovian process among 
most teams, while exceptional league teams show non-Markovian dynamics. Higher-
order passing dynamics let us identify the top teams in the most competitive European 
leagues. In the domain of mobile money, trajectories let us summarize use of a system 
and quantify the extent to which account holders build up e-money savings; both are of 
top concern for the payment industry as they help better understand the system’s clients. 

Spain Italy England France Germany
Rank La Liga Serie A Premier League Ligue 1 Bundesliga

1 Barcelona Juventus Man. City Paris S-G Bayern

2 Atlético Madrid Napoli Man. United Monaco Schalke

3 Real Madrid Roma Tottenham Lyon Hoffenheim

4 Valencia Inter Milan Liverpool Marseille Dortmund

5 Villarreal Lazio Chelsea Rennes Leverkusen

6 Real Betis Milan Arsenal Bordeaux RB Leipzig

7 Sevilla Atalanta Burnley St­Étienne VfB Stuttgart

8 Getafe Fiorentina Everton Nice Eintracht Frankfurt

9 Eibar Torino Leicester City Nantes Mönchengladbach

10 Girona Sampdoria Newcastle Montpellier Hertha

11 Espanyol Sassuolo Crystal Palace Dijon Werder

12 Real Sociedad Genoa Bournemouth Guingamp Augsburg

13 Celta de Vigo Chievo West Ham Amiens SC Hannover 96

14 Alavés Udinese Watford Angers Mainz

15 Levante Bologna Brighton Strasbourg SC Freiburg

16 Athletic Club Cagliari Huddersfield Caen Wolfburg

17 Leganes SPAL Southampton Lille Hamburger SV

18 Deportivo Crotone Swansea Toulouse nlöKCF

19 Las Palmas Verona Stoke City Troyes

20 Málaga Benevento West Brom Metz

Fig. 4  League rankings. The final 2017–2018 season rankings of five professional leagues for association 
football. In bold are the 23 teams that demonstrated second-order passing dynamics during play over the 
course of the season
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Proponents of financial inclusion, and perhaps also regulators, might use these new met-
rics to compare and monitor mobile money systems.

Within both domains this work opens up considerable avenues for further research. 
Regarding football, the question of why many top league teams play with second-order 
dynamics is deserving of study. Event data from other team sports may also benefit 
from analysis as unweighted walk processes with bounds delineated by the rules of the 
game. Regarding mobile money, it is of likely interest whether providers offering differ-
ent services (or operating under different regulatory frameworks) are used similarly. Our 
approach is also applicable to transaction records from other systems including app-
based, intra-bank, and large-value payment systems.

Taking a methodological perspective on potential future work, each of our results is 
an empirical finding that could serve to better parametrize walk-based models of the 
observed network processes. We would like realistic models of real-world walk pro-
cesses to reproduce basic features of empirical trajectories; this is already the logic 
underlying multi-order network representations of complex systems  (Lambiotte et  al. 
2018; Xu et al. 2016). There is every opportunity for future work to incorporate mean-
ingful process bounds, weighted walks, and a notion of continuous time into these types 
of frameworks.

Appendix: Pseudocode
The approach presented in the  “Trajectory extraction algorithm” section outlines the 
generic procedure of trajectory extraction, regardless of the chosen allocation heuristic. 
In Algorithm 1 we present pseudocode that implements this trajectory extraction proce-
dure using the LIFO heuristic, which we also employ in our experiments in the “Results” 
section.

Recall from the  “Input: event data and boundary specification” section that the 
input consists of the event data D and process boundary Dbegin . For readability pur-
poses, we assume here that there are no events containing self-loops, e.g., events 
di = (ui, vi, ti,wi) ∈ D for which ui = vi . For initialization of book-keeping array E, we 
also input the number of nodes n, which is simply the number of unique entities ui or vi 
over all events in D, and generally known. The output is a set of trajectories F made to 
contain all trajectories, both partial and complete. This ensures that we need not include 
Dend as a part of the input nor define a finalization step. In this way, Algorithm 1 outputs 
trajectories that precisely satisfy the completeness, weight-respecting and time-respect-
ing properties outlined in the “Output: trajectories” section. It works as follows. 
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The algorithm starts with initialization of the result set of (partial) trajectories F and 
the node-indexed array of lists E used for storing references to (partial) trajectories end-
ing at that node (lines 1–2). Then, the main loop defined in line 3 of the algorithm iter-
ates over all m = |D| events, which are ordered by timestamp. If an event (based on its 
type, or based on its nodes, as determined in the “Input: event data and boundary speci-
fication” section) is part of the starting boundary, a new trajectory is started (lines 4–7). 
This consists of initializing it based on the current event and its weight (line 5), adding 
it to the set of trajectories (line 6) and storing that the new trajectory ends at the target 
node of the current event (line 7).

If the current event di = (ui, vi, ti,wi) is not in the starting boundary, we loop over the 
(partial) trajectories in E[ui] , containing all the trajectories that currently end in ui and 
could possibly be extended by the current event. Crucially, this is done in reversed order 
of the list E[ui] , to ensure that the LIFO heuristic is implemented. If the current weight wi 
is equal to the weight zj of the trajectory under consideration (line 10), that trajectory is 
extended by the current event di (line 11) and bookkeeping is done to track that this tra-
jectory now ends at vi (line 12). The same lines 10–12 are executed if the current trajec-
tory has a weight zj smaller than the current weight wi . Then, the remaining weight, as set 
later in line 19, ensures that the loop initiated in line 9 continues to look for trajectories 
to which the current event can be appended. Alternatively, if zj > wi , lines 13–17 apply, 
ensuring that the trajectory under consideration is partially extended. A copy of the current 
trajectory is made, given precisely the weight wi left to be distributed, and extended by the 
current event (lines 14–16) while the remaining weight zj − wi is left behind in the current 
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trajectory (line 17). Next, the weight left to be distributed is decremented by the weight of 
the trajectory that was just extended (line 20), and a check is done to see if the procedure 
should be terminated because all the weight has been distributed (lines 21–22). Finally, the 
set of trajectories is returned (line 27) and the algorithm terminates.
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