
Geometrical inspired pre‑weighting 
enhances Markov clustering community 
detection in complex networks
Claudio Durán1†  , Alessandro Muscoloni1† and Carlo Vittorio Cannistraci1,2*   

Introduction
Markov clustering (MCL) (van Dongen 2000) is an effective algorithm for data clustering 
in high-dimensional feature space and several studies in physics, computer science and 
bioinformatics (Vlasblom and Wodak 2009; Lancichinetti and Fortunato 2009; Papado-
poulos et al. 2012a; Xie and Szymanski 2013; Jia et al. 2012; Satuluri and Parthasarathy 
2009) tested its performance also for community detection. In network science, commu-
nity detection refers to the well-known task in which complex networks are partitioned 
into communities. A community is an ensemble of nodes that are more likely to be 
interconnected rather than to out-connect to other groups of nodes (Girvan and New-
man 2002). However, the previous studies (Vlasblom and Wodak 2009; Lancichinetti 
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and Fortunato 2009; Papadopoulos et al. 2012a; Xie and Szymanski 2013; Jia et al. 2012; 
Satuluri and Parthasarathy 2009) that applied MCL for community detection obtained 
results far from the ones provided by the state of the art methods (Yang et al. 2016; Hric 
et al. 2014) such as Infomap and Louvain. These preliminary experiments have been fol-
lowed by further attempts to gain performance with MCL, trying to adopt determin-
istic partitions (Xie and Szymanski 2013) and regularization procedures (Satuluri and 
Parthasarathy 2009), with promising but not consistent outcomes. Recently, it was dem-
onstrated that latent geometry inspired (LGI) measures can significantly improve affin-
ity propagation (Cannistraci and Muscoloni 2018)—a clustering algorithm based on a 
message passing procedure—for community detection in undirected and unweighted 
networks with non-overlapping communities. Here we argue that the problem should 
be addressed using a similar strategy, with a pre-weighting of the input MCL adjacency 
matrix. In the next section, after describing the procedure behind MCL, we recall a col-
lection of network science notions, at the interface between network topology and net-
work geometry (Serrano et  al. 2008; Krioukov et  al. 2010; Papadopoulos et  al. 2012b; 
Muscoloni et al. 2017; Muscoloni and Cannistraci 2018a; Jalili and Perc 2017), based on 
which we propose a rationale that can guide to design similarity measures to boost algo-
rithms based on network navigability protocols. Here, our aim is to investigate the extent 
to which LGI measures can be employed to improve also MCL community detection. 
For this reason, we call our proposed methodology: latent geometry inspired MCL (LGI-
MCL). The analyses performed in this study compare the LGI-MCL variants against the 
original MCL and the state of the art methods Infomap and Louvain. After presenting 
the results of wide evaluations both on real networks, real networks with noisy informa-
tion and on a large benchmark of synthetic ‘realistic’ networks, we will finally discuss 
advantages and limitations of the LGI-MCL approach.

Methods
Markov clustering for community detection

MCL is an algorithm for data clustering based on simulations of stochastic flows (ran-
dom walks) in graphs. It takes as input an unweighted or weighted network, where the 
weights are interpreted as similarities, and it works with an iterative process by applying 
in alternation two operators called expansion and inflation, which update a stochastic 
matrix representing the probabilities of random walks. The expansion operator corre-
sponds to the computation of random walks of higher length (many steps), associating 
new probabilities between each pair of nodes. Since it is more frequent to have higher 
length paths within clusters rather than between different clusters, the probabilities 
related with node pairs from the same cluster will in general be larger. The inflation 
operator will then have the effect of increasing intra-cluster probabilities and lowering 
inter-cluster walks (van Dongen 2000). The iteration of expansion and inflation even-
tually leads to the separation of the graph into segments without paths between them, 
which is interpreted as the clustering result. The inflation operator has a parameter, 
which serves to detect clustering patterns on different scales of granularity. In our simu-
lations, given the correct number of communities to detect, we implemented a binary 
search in the range [1.1, 20] in order to choose the inflation parameter value that pro-
duces a number of communities as close as possible to the correct one.
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LGI‑MCL: proposed rationale and relative similarity measures engineering

The proposed rationale states that, in order to favour the simulation of random walks, 
the graph similarities (or dissimilarities) should approximate the closeness (or dis-
tances) on the hidden nonlinear manifold that characterizes the graph geometry (Pap-
adopoulos et al. 2012b; Boguñá et al. 2008). Indeed, in many networks the information 
can efficiently flow according to a greedy routing procedure because their topology is 
emerging from this hidden geometry (Boguñá et al. 2008), whose hyperbolic and tree-
like structure facilitates the greedy propagation (Papadopoulos et al. 2012b; Boguñá 
et al. 2008; Cannistraci et al. 2010, 2013; Muscoloni and Cannistraci 2019). Recently, 
Muscoloni et al. (2017) and Muscoloni and Cannistraci (2018a) proposed two latent 
geometry based pre-weighting techniques (one local and one global) as valuable strat-
egies for approximating the pairwise geometrical distances between connected nodes 
of an unweighted network. In a later study of the same authors, the clustering algo-
rithm affinity propagation was applied to the community detection task adopting two 
related dissimilarity matrices, containing dissimilarity values both for connected and 
disconnected nodes, which proved to simulate a more navigable geometry than other 
kernels previously designed for this purpose (Cannistraci and Muscoloni 2018). Here, 
in accordance with the MCL algorithm requirements, we converted the previous pre-
weighting techniques in similarity measures. They contain and merge two fundamen-
tal properties that characterize the hidden geometry of many real complex networks 
and thus might serve to improve stochastic flow simulations: node similarity (proxim-
ity or homophily), related with the network clustering and the concept of local attrac-
tion between common neighbours, and node popularity (centrality), related with the 
node degree (Papadopoulos et al. 2012b).

The first approach—which is called the repulsion-attraction rule (RA) (Muscoloni 
et  al. 2017; Muscoloni and Cannistraci 2018a)—assigns an edge weight adopting 
only the local information related to its adjacent nodes (neighbourhood topological 
information). The repulsive part behind RA involves that adjacent nodes with a high 
external degree (where the external degree is computed considering the number of 
neighbours not in common) should be geometrically far. Indeed, they represent hubs 
without neighbours in common, which—according to the theory of navigability of 
complex networks presented by Boguñá et al. (2008)—tend to dominate geometrically 
distant regions. On the contrary, the attractive part of RA exploits that adjacent nodes 
sharing a high number of common neighbours should be geometrically close because 
most likely they have many things in common and therefore are similar. Thus, the RA 
(see below for the precise mathematical formula) is a simple and efficient approach 
that quantifies the trade-off between hub repulsion and common-neighbours-based 
attraction (Muscoloni et al. 2017; Muscoloni and Cannistraci 2018a). The algorithm 
to compute the RA similarity for each link (i, j) in the network is the following (note 
that the dissimilarity value is marked with an asterisk):

(a)	 Compute the RA pre-weighting (equivalent to the already published rule) (Mus-
coloni et al. 2017; Muscoloni and Cannistraci 2018a):
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ei is the number of external links of the node i (links that do not connect either to 
common neighbours with j or to j), ej is the same for the node j; cnij is the number 
of common neighbours of the link (i, j).

(b)	 Convert into a similarity value:

Although inspired by the same rationale, the second similarity is global (exploits 
the entire network topology to compute each similarity value between pairs of 
nodes), in fact as a first step it makes a global-information-based pre-weighting of 
the links, using the edge-betweenness-centrality (EBC) to approximate distances 
between nodes and regions of the network (Muscoloni et  al. 2017). EBC is indeed 
a global topological network measure that assigns to each link a value of centrality 
related to its importance in propagating information across different regions of the 
network. The assumption is that central edges are bridges that tend to connect geo-
metrically distant regions of the network, while peripheral edges tend to connect 
nodes in the same neighbourhood. The higher the EBC value of a network link, the 
more information will pass through that link. The algorithm to compute the EBC 
similarity for each link (i, j) in the network is the following:

(a)	 Compute the EBC pre-weighting (Muscoloni et al. 2017):

s,t is any combination of network nodes; σ(s,t) is the number of shortest paths 
between s and t; σ(s,t\eij) is the number of shortest paths between s and t passing 
through the link (i, j).

(b)	 Convert into a similarity value:

Here, we also introduce a novel similarity measure (ER) that merges the previous 
ones (EBC and RA) for each link (i, j) in the network as follows:

(a)	 Compute the pre-weightings RA∗
ij and EBC∗

ij.
(b)	 Convert into a unique similarity value:

RA∗
ij =

1+ ei + ej

1+ cnij

RAij = 1+
1

1+ RA∗
ij

EBC∗
ij =

∑

s,t

σ
(

s, t|eij
)

σ(s, t)

EBCij = 1+
1

1+ EBC∗
ij

ERij = 1+
1

1+ RA∗
ij

+
1

1+ EBC∗
ij
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State of the art community detection methods: Infomap and Louvain

The community detection algorithms Infomap (Rosvall and Bergstrom 2011) and Lou-
vain (Blondel et al. 2008) are two state of the art approaches that have been shown to 
provide high performances on synthetic benchmarks (Lancichinetti and Fortunato 2009; 
Yang et  al. 2016; Orman and Labatut 2009). Recently, they have been tested also on 
small-size and large-size real networks, resulting overall among the best performing on 
recovering ground-truth communities associated to metadata (Hric et al. 2014).

The Infomap algorithm (Rosvall and Bergstrom 2011) finds the community structure 
by minimizing the expected description length of a random walker trajectory using the 
Huffman coding process. It uses the hierarchical map equation, a further development of 
the map equation, to detect community structures on more than one level. The hierar-
chical map equation indicates the theoretical limit of how concisely a network path can 
be specified using a given partition structure. In order to calculate the optimal partition 
(community) structure, this limit can be computed for different partitions and the com-
munity annotation that gives the shortest path length is chosen. We used the C imple-
mentation released by the authors at http://​www.​mapeq​uation.​org/​code.​html.

The Louvain algorithm (Blondel et al. 2008) is separated into two phases, which are 
repeated iteratively. At first every node in the (weighted) network represents a commu-
nity in itself. In the first phase, for each node i, it considers its neighbours j and evalu-
ates the gain in modularity that would take place by removing i from its community and 
placing it in the community of j. The node i is then placed in the community j for which 
this gain is maximum, but only if the gain is positive. If no gain is possible node i stays 
in its original community. This process is applied until no further improvement can be 
achieved. In the second phase the algorithm builds a new network whose nodes are the 
communities found in the first phase, whereas the weights of the links between the new 
nodes are given by the sum of the weight of the links between nodes in the correspond-
ing two communities. Links between nodes of the same community lead to self-loops 
for this community in the new network. Once the new network has been built, the two 
phase process is iterated until there are no more changes and a maximum of modularity 
has been obtained. The number of iterations determines the height of the hierarchy of 
communities detected by the algorithm. We used the R function multilevel.community, 
an implementation of the method available in the igraph package (Csárdi and Nepusz 
2006). For each hierarchical level there is a possible partition to compare to the ground-
truth annotation. In this case, the hierarchical level considered is the one that guarantees 
the best match, therefore the detected partition that gives the highest NMI value. We 
let notice that most of this Methods section is equivalent to an analogous Methods sec-
tion present in other studies of the authors (Cannistraci and Muscoloni 2018; Muscoloni 
et al. 2017).

Community detection evaluation by normalized mutual information

Different similarity measures have been developed for evaluating the matching between 
two partitions (the communities detected by the method and the ground-truth). They 
are mainly based on three categories: pair counting, cluster matching and information 
theory (Fortunato and Hric 2016). Although there is not yet one measure without any 

http://www.mapequation.org/code.html
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drawback, the most adopted in community detection studies is the Normalized Mutual 
Information (NMI) (Danon et al. 2005).

The entropy can be defined as the information contained in a distribution p(x) in the 
following way:

The mutual information is the shared information between two distributions:

To normalize the value between 0 and 1 the following formula can be applied:

If we consider a partition of the nodes in communities as a distribution (probability of 
one node falling into one community), the previous equations allow us to compute the 
matching between the annotations obtained by the community detection algorithm and 
the ground-truth communities of a network. We used the MATLAB implementation 
available at http://​commd​etect.​weebly.​com. As suggested in the code, when NC ≤ 100 , 
where N represents the number of nodes and C the number of communities, the NMI 
should be adjusted in order to correct for chance (Vinh et al. 2010). We let notice that 
most of this Methods section is equivalent to an analogous Methods section present in 
other studies of the authors (Cannistraci and Muscoloni 2018; Muscoloni et al. 2017).

Real networks datasets

The community detection methods have been tested on 8 real networks, which repre-
sent differing systems: Karate; Opsahl_8; Opsahl_9; Opsahl_10; Opsahl_11; Polbooks; 
Football; Polblogs. The networks have been transformed into undirected, unweighted, 
without self-loops and only the largest connected component has been considered. The 
information of some basic statistics are available in Table 1. N is the number of nodes. E 
is the number of edges. The parameter m refers to half of the average node degree and it 
is also equal to the ratio E/N. Cl is the average clustering coefficient, computed for each 
node as the number of links between its neighbours over the number of possible links 
(Watts and Strogatz 1998). The parameter γ is the exponent of the power-law degree 
distribution, fitted from the observed degree sequence using the maximum likelihood 
procedure developed by Clauset et al. (2009) and released at http://​tuvalu.​santa​fe.​edu/​
~aaronc/​power​laws/. C is the number of ground-truth communities.

The first network is about the Zachary’s Karate Club (Zachary 1977), it represents the 
friendship between the members of a university karate club in US. The communities are 
formed by a split of the club into two parts, each following one trainer.

H(X) =
∑

x∈X
p(x) log p(x)

I(X ,Y ) =
∑

y∈Y

∑

x∈X
p
(

x, y
)

log

(

p
(

x, y
)

p1(x)p2
(

y
)

)

NMI =
I(X ,Y )

√
H(X)H(Y )

http://commdetect.weebly.com
http://tuvalu.santafe.edu/~aaronc/powerlaws/
http://tuvalu.santafe.edu/~aaronc/powerlaws/
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The networks from the second to the fifth are intra-organisational networks from 
Cross and Parker (2004) and can be downloaded at https://​toreo​psahl.​com/​datas​ets/#​
Cross_​Parker. Opsahl_8 and Opsahl_9 come from a consulting company and nodes rep-
resent employees. In Opsahl_8 employees were asked to indicate how often they have 
turned to a co-worker for work-related information in the past, where the answers range 
from: 0—I don’t know that person; 1—Never; 2—Seldom; 3—Sometimes; 4—Often; 5—
Very often. Directions were ignored. The data was turned into an unweighted network 
by setting a link only between employees that have at least asked for information seldom 
(2).

In the Opsahl_9 network, the same employees were asked to indicate how valuable 
the information they gained from their co-worker was. They were asked to show how 
strongly they agree or disagree with the following statement: “In general, this person has 
expertise in areas that are important in the kind of work I do.” The weights in this net-
work are also based on the following scale: 0—Do Not Know This Person; 1—Strongly 
Disagree; 2—Disagree; 3—Neutral; 4—Agree; 5—Strongly Agree. We set a link if there 
was an agreement (4) or strong agreement (5). Directions were ignored.

The Opsahl_10 and Opsahl_11 networks come from the research team of a manu-
facturing company and nodes represent employees. The annotated communities indi-
cate the company locations (Paris, Frankfurt, Warsaw and Geneva). For Opsahl_10 the 
researchers were asked to indicate the extent to which their co-workers provide them 
with information they use to accomplish their work. The answers were on the follow-
ing scale: 0—I do not know this person / I never met this person; 1—Very infrequently; 
2—Infrequently; 3—Somewhat frequently; 4—Frequently; 5—Very frequently. We set an 
undirected link when there was at least a weight of 4.

For Opsahl_11 the employees were asked about their awareness of each other’s knowl-
edge (“I understand this person’s knowledge and skills. This does not necessarily mean 
that I have these skills and am knowledgeable in these domains, but I understand what 
skills this person has and domains they are knowledgeable in.”). The weighting was on 
the scale: 0—I do not know this person / I have never met this person; 1—Strongly disa-
gree; 2—Disagree; 3—Somewhat disagree; 4—Somewhat agree; 5—Agree; 6—Strongly 
agree. We set a link when there was at least a 4, ignoring directions.

The Polbooks network represents frequent co-purchases of books concerning US poli-
tics on amazon.com. Ground-truth communities are given by the political orientation of 

Table 1  Statistics of real networks

N number of nodes, E number of edges, m half of average node degree, Cl clustering coefficient, γ power-law degree 
distribution exponent, C number of communities

N E m Cl γ C

karate 34 78 2.3 0.59 2.1 2

opsahl 8 43 193 4.5 0.61 8.2 7

opsahl 9 44 348 7.9 0.68 5.9 7

opsahl 10 77 518 6.7 0.66 5.1 4

opsahl 11 77 1088 14.1 0.72 4.9 4

polbooks 105 441 4.2 0.49 2.6 3

football 115 613 5.3 0.40 9.1 12

polblogs 1222 16,714 13.7 0.36 2.4 2

https://toreopsahl.com/datasets/#Cross_Parker
https://toreopsahl.com/datasets/#Cross_Parker
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the books as either conservative, neutral or liberal. The network is unpublished but can 
be downloaded at http://​www-​perso​nal.​umich.​edu/​~mejn/​netda​ta/, as well as with the 
Karate, Football and Polblogs networks.

The Football network (Girvan and Newman 2002) presents games between division IA 
colleges during regular season fall 2000. Ground-truth communities are the conferences 
that each team belongs to.

The Polblogs (Adamic and Glance 2005) network consists of links between blogs about 
the politics in the 2004 US presidential election. The ground-truth communities repre-
sent the political opinions of the blogs (right/conservative and left/liberal). We let notice 
that most of this Methods section is equivalent to an analogous Methods section present 
in other studies of the authors (Cannistraci and Muscoloni 2018; Muscoloni et al. 2017).

Synthetic networks generated by the nPSO model

The Popularity-Similarity-Optimization (PSO) model (Papadopoulos et  al. 2012b) is a 
generative network model recently introduced in order to describe how random geomet-
ric graphs grow in the hyperbolic space. In this model the networks evolve optimizing 
a trade-off between node popularity, abstracted by the radial coordinate, and similar-
ity, represented by the angular distance. The PSO model can reproduce many structural 
properties of real networks: clustering, small-worldness (concurrent low characteristic 
path length and high clustering), node degree heterogeneity with power-law degree dis-
tribution and rich-clubness. However, being the nodes uniformly distributed over the 
angular coordinate, the model lacks a non-trivial community structure.

The nonuniform PSO (nPSO) model (Muscoloni and Cannistraci 2018b, c) is a varia-
tion of the PSO model that exploits a nonuniform distribution of nodes over the angular 
coordinate in order to generate networks characterized by communities, with the pos-
sibility to tune their number, size and mixing property. We adopted a Gaussian mixture 
distribution of angular coordinates, with communities that emerge in correspondence of 
the different Gaussians, and the parameter setting suggested in the original study (Mus-
coloni and Cannistraci 2018b, c). Given the number of components C, they have means 
equidistantly arranged over the angular space, µi = 2π

C · (i − 1) , the same standard devi-
ation fixed to 1/6 of the distance between two adjacent means, σi = 1

6 · 2π
C  , and equal 

mixing proportions, ρi = 1
C (i = 1 . . .C) . The community memberships are assigned 

considering for each node the component whose mean is the closest in the angular 
space. The other parameters of the model are the number of nodes N, half of the average 
node degree m, the network temperature T (inversely related to the clustering) and the 
exponent γ of the power-law degree distribution. Given the parameters (N, m, T, γ, C), 
for details on the generative procedure please refer to the original study (Muscoloni and 
Cannistraci 2018b, c).

Results
The first investigation of this study has been carried out on real datasets. In Table 2 we 
report the comparison of MCL in its original form, the three LGI-MCL variants (EBC, 
RA and ER) and the state of the art methods for community detection Infomap and Lou-
vain. In addition, we made two in-silico experiments to test the robustness of the tech-
niques in case of noise injection in the real topologies. In the first case we perturbed the 

http://www-personal.umich.edu/~mejn/netdata/
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network structure by random deletion of 10% of the links. We repeated this procedure 

for 100 realizations, and the average results are reported in Table  3. This experiment 
simulates the behaviour of our algorithms in case of partial (10%) missing topological 
information. In the second case we perturbed the network structure by random addi-
tion of 10% of the links. We repeated this procedure for 100 realizations, and the average 
results are reported in Table  4. This experiment simulates the behaviour of our algo-
rithms in case of partial (10%) addition of wrong topological information.

As a first key result, LGI-MCL outperforms the original MCL in all the three scenar-
ios. Remarkably, LGI-MCL ER displays a higher mean NMI than the other LGI-MCL 
variants in the original topologies and in the random removal experiment, whereas they 
equally perform in the random addition framework. Furthermore, LGI-MCL ER reaches 
a mean NMI close to the state of the art method Louvain and a better mean ranking, 
highlighting the importance of merging the RA and EBC measures in a unique com-
bined similarity. Lastly, Infomap attains overall the best result in the original topologies 

Table 2  Community detection on real networks

The table reports the Normalized Mutual Information (NMI) computed between the ground truth communities and the 
ones detected by every community detection algorithm for 8 real networks. NMI = 1 indicates a perfect match between the 
two partitions of the nodes. The methods are ranked by mean NMI over the dataset. The best result for each network as well 
as the best mean results are marked in bold

Infomap Louvain LGI-MCL ER LGI-MCL RA LGI-MCL EBC MCL

karate 0.55 0.46 0.83 0.83 0.73 0.73

opsahl 8 0.69 0.55 0.59 0.55 0.55 0.55

opsahl 9 0.47 0.41 0.39 0.40 0.40 0.43

opsahl 10 1.00 1.00 1.00 1.00 1.00 1.00
opsahl 11 1.00 0.96 0.96 0.75 0.75 0.68

polbooks 0.52 0.50 0.57 0.57 0.57 0.57
football 0.92 0.93 0.93 0.93 0.93 0.93
polblogs 0.52 0.64 0.00 0.00 0.00 0.00

Mean NMI 0.71 0.68 0.66 0.63 0.62 0.61

Mean ranking 3.06 3.69 3.19 3.56 3.81 3.69

Table 3  Community detection on real networks perturbed with random removal of links

For each real network, 100 perturbed networks have been generated removing at random the 10% of links. The table 
reports the Normalized Mutual Information (NMI) computed between the ground-truth communities and the ones detected 
by every community detection algorithm for the 8 real networks, averaged over the 100 repetitions. NMI = 1 indicates a 
perfect match between the two partitions of the nodes. The methods are ranked by mean NMI over the dataset. The best 
result for each network as well as the best mean results are marked in bold

Infomap Louvain LGI-MCL ER LGI-MCL RA LGI-MCL EBC MCL

karate 0.54 0.49 0.72 0.73 0.72 0.74
opsahl 8 0.55 0.51 0.56 0.56 0.56 0.56
opsahl 9 0.49 0.42 0.38 0.39 0.39 0.41

opsahl 10 1.00 1.00 1.00 1.00 1.00 1.00
opsahl 11 0.96 0.96 0.90 0.82 0.79 0.63

polbooks 0.50 0.49 0.57 0.57 0.57 0.57
football 0.92 0.90 0.92 0.92 0.92 0.92
polblogs 0.51 0.63 0.00 0.00 0.00 0.00

Mean NMI 0.68 0.68 0.63 0.62 0.62 0.60

Mean ranking 3.25 4.00 3.56 3.31 3.63 3.25



Page 10 of 16Durán et al. Appl Netw Sci            (2021) 6:29 

and in case of missing information, however it turns out to be the most unstable when 
spurious links are added, since in two cases (Opsahl_9, Opsahl_11) it detects the whole 
network as a unique community (NMI = 0).

In order to provide additional and more detailed results regarding the behavior of the 
clustering methods, we performed comparative tests on artificial networks produced 
by the nonuniform Popularity-Similarity-Optimization (nPSO) model (Muscoloni and 
Cannistraci 2018b, c). Indeed, the nPSO is an efficient generative model recently pro-
posed to grow realistic complex networks, which not only are clustered, small-word, 
scale-free and rich-club, but also present communities whose number and size can be 
a priory defined. These artificial networks with known community structure offer the 
ground-truth to build a valid benchmark to test the performance of algorithms for com-
munity detection. The results of wide-range simulations (Figs. 1, 2, 3 and 4 and Addi-
tional file  1: Suppl. Figures  1–9)—where synthetic networks were obtained by tuning 
several parameter combinations of the nPSO model—highlight similarities with respect 
to the results on real networks. First, LGI-MCL, compared to MCL, improves signifi-
cantly the community detection performance for small-size networks (N = 100) and high 
clustering (T = 0.1), regardless of γ changes. Instead, for middle-size networks (N = 500), 
this is mainly true when there are more communities (larger C), higher average degree 
(m) and γ = 2. The ranking of performance of the LGI-MCL variants, from the highest 
to lowest, is generally LGI-MCL ER, LGI-MCL RA and LGI-MCL EBC (Fig.  1), simi-
larly to the real networks. Second, the performance of MCL increases and stabilizes with 
increasing network size (N) at γ = 3, independently from changes in temperature (T) and 
number of communities (C), achieving performances close to the state of the art algo-
rithms Louvain and Infomap (Fig.  2). In this parameter setting it can be noticed that 
Infomap attains a slightly higher NMI than Louvain in several cases, but, on the other 
side, it drastically drops to NMI = 0 when the network is too dense (low N and high 
m), as already pointed out by the experiments of random link addition on real topolo-
gies. Third, MCL presents problems to correctly detect the communities in networks 
of middle (N = 500) and large (N = 1000) size at γ = 2, but improves and stabilizes the 

Table 4  Community detection on real networks perturbed with random addition of links

For each real network, 100 perturbed networks have been generated adding at random the 10% of links. The table reports 
the Normalized Mutual Information (NMI) computed between the ground-truth communities and the ones detected by 
every community detection algorithm for the 8 real networks, averaged over the 100 repetitions. NMI = 1 indicates a perfect 
match between the two partitions of the nodes. The methods are ranked by mean NMI over the dataset. The best result for 
each network as well as the best mean results are marked in bold

Louvain LGI-MCL RA LGI-MCL ER LGI-MCL EBC MCL Infomap

karate 0.45 0.76 0.75 0.70 0.68 0.53

opsahl 8 0.51 0.53 0.54 0.54 0.55 0.55
opsahl 9 0.42 0.39 0.38 0.40 0.41 0.00

opsahl 10 0.98 0.98 0.98 0.98 0.98 0.98
opsahl 11 0.96 0.73 0.76 0.69 0.53 0.00

polbooks 0.49 0.57 0.57 0.57 0.57 0.50

football 0.90 0.93 0.93 0.92 0.92 0.92

polblogs 0.41 0.08 0.07 0.19 0.20 0.31

Mean NMI 0.64 0.62 0.62 0.62 0.61 0.47

Mean ranking 3.81 3.19 3.25 3.44 3.19 4.13
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performance for increasing γ (Fig. 3). An exception to this situation is found at very low 
average degree (mostly m = 2) (Fig. 4), where there is a peak of performance for middle 
(N = 500) and large size (N = 1000) networks.

Discussion
The eight considered real networks represent a benchmark with ground-truth annota-
tion generally adopted to test algorithms for non-overlapping community detection on 
real network topologies. However, the results we obtain suggest that this benchmark, 
collecting networks of different size (from tenths to thousands of nodes), seems enough 
complete and diversified to adequately investigate the performance of each method 
here suggested. In fact, LGI-MCL should offer better results than pure MCL, because 
the similarity pre-weighting is derived from dissimilarity measures that approximate a 
network geometry. This theoretical expectation is confirmed not only on the original 
real networks, but also when their topology is perturbed by noise simulated by random 
deletion of links (missing topological information) or random addition of links (spuri-
ous topological information), where the three LGI-MCL variants achieve a greater mean 
NMI than the unweighted MCL, corroborating our rationale on how to design simi-
larity measures that favour the stochastic simulation procedure of MCL. On the other 

Fig. 1  Community detection on nPSO networks (1st setting: T fixed; N, γ, m and C changing). Synthetic 
networks have been generated using the nPSO model with parameters N = [100, 500] (network size) γ = [2, 
3] (power-law degree distribution exponent), m = [2, 4, 6, 8, 10, 12, 14, 16] (half of average degree), T = 0.1 
(temperature, inversely related to the clustering coefficient) and C = [6, 9, 12] (number of communities). 
For each combination of parameters, 10 networks have been generated. For each network the community 
detection methods have been executed and the communities detected have been compared to the 
annotated ones computing the Normalized Mutual Information (NMI). The plots report for each parameter 
combination the mean NMI and standard error over the random repetitions and show that LGI-MCL, 
compared to MCL, significantly improves the performance for small N and low T, regardless of γ changes. 
Instead, for middle-size networks, this is mainly true for large C, large m and low γ 
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hand, when considering the synthetic networks as ground-truth benchmark, LGI-MCL 
clearly improves the performance compared to MCL in certain scenarios, mostly for 
small (N = 100) and medium (N = 500) size networks, whereas for large size networks 
(N = 1000) the improvement is often missing or less notorious.

Despite the improvements that LGI measures can bring to MCL, the method is still 
affected by certain types of network topologies, as demonstrated for example in Fig. 3 
where at low γ the MCL performance is dramatically reduced and far from the state of 
the art. This can be explained because with lower γ there is a stronger presence of hubs, 
central nodes with a large degree acting as bridges between different regions of the net-
work, which increases the likelihood for a random walk to move from one cluster to 
another one, and therefore makes more difficult for MCL to correctly infer the bound-
aries of the clusters. Similarly, the peak of MCL performance at low average degree 
(Fig. 4) can be explained because the network topology is very sparse and therefore it is 
less likely for a random walk to reach a hub and later move to another cluster. One goal 
of our wide experiments was indeed to point out the topological configurations affecting 

Fig. 2  Community detection on nPSO networks (2nd setting: γ fixed; N, m, T and C changing). Synthetic 
networks have been generated using the nPSO model with parameters N = [100, 500, 1000] (network size) 
γ = 3 (power-law degree distribution exponent), m = [2, 4, 6, 8, 10, 12, 14, 16] (half of average degree), T = [0.1, 
0.5] (temperature, inversely related to the clustering coefficient) and C = [6, 12] (number of communities). 
For each combination of parameters, 10 networks have been generated. For each network the community 
detection methods have been executed and the communities detected have been compared to the 
annotated ones computing the Normalized Mutual Information (NMI). The plots report for each parameter 
combination the mean NMI and standard error over the random repetitions and show that the MCL 
performance increases and stabilizes with larger network size at γ = 3, independently from changes in T and 
C 
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the MCL inference, so that further studies might investigate how to improve the perfor-
mance in presence of these structural patterns and make the method more robust.

In conclusion, this article introduces a rationale on how to design similarity meas-
ures for MCL, which starting from the pure topology try to approximate the hid-
den geometry of the manifold that generates the network topology. Since the hidden 
geometry of many real complex networks is hyperbolic and tree-like (Papadopoulos 
et  al. 2012b; Muscoloni and Cannistraci 2018a), its congruous approximation can 
favour the stochastic simulation procedure of MCL for community detection. The 
empirical and numerical results provided in this study support the rationale, and the 
derived similarity measures EBC, RA and ER seem to boost MCL both in real and 
synthetic networks. Network geometry was already shown to facilitate greedy routing 
(Cannistraci and Muscoloni 2018; Athanassopoulos et al. 2010) and affinity propaga-
tion (Cannistraci and Muscoloni 2018), and to the best of our knowledge this is the 
first time that is applied to better guide random-walk (stochastic flow) based simu-
lations. These results provide a further confirmation that network geometry can be 
adopted to make information flow processes more efficient, and therefore pave the 

Fig. 3  Community detection on nPSO networks (3rd setting: C fixed; N, γ, m and T changing). Synthetic 
networks have been generated using the nPSO model with parameters N = [500, 1000] (network size) γ = [2, 
2.5, 3] (power-law degree distribution exponent), m = [2, 4, 6, 8, 10, 12, 14, 16] (half of average degree), 
T = [0.1, 0.5] (temperature, inversely related to the clustering coefficient) and C = 9 (number of communities). 
For each combination of parameters, 10 networks have been generated. For each network the community 
detection methods have been executed and the communities detected have been compared to the 
annotated ones computing the Normalized Mutual Information (NMI). The plots report for each parameter 
combination the mean NMI and standard error over the random repetitions and show that MCL improves its 
performance with the increase of γ for middle and large size networks
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way for the generalized understanding of the impact of network geometry on algo-
rithms based on network navigability.
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