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Introduction
When dealing with epidemic processes spreading along the edges of networks, central-
ity measures can be used to identify the nodes most important for disease transmission. 
Those nodes can then be targeted with specific measures (vaccination, diagnostic focus 
or reduction in contact) for the purposes of outbreak prevention or mitigation, with an 
expected favourable impact on epidemic outcomes. The study of centrality measures on 
large networks therefore occupies a central place in network theory, with hundreds of 
measures defined for general or specific purposes (Jalili et al. 2015; Lü et al. 2016). Such 
measures have been extended to networks with additional structure, such as modularity 
(Ghalmane et al. 2019) or multiple interconnected layers (so-called mutiplex or multi-
layer networks) (Taylor et al. 2019; Lv et al. 2019; Pedroche et al. 2016; Agryzkov et al. 
2019).

Networks with time-stamped edges (so-called temporal or dynamic networks) have 
an additional level of heterogeneity which makes the study of their role as underlying 
structure for epidemic spread more challenging. Indeed, infections can only spread by 
following time-respecting paths, that is composed of edges with chronologically increas-
ing time-stamps. This renders the use of statically computed centrality measures unable 
to provide useful insights for the control of outbreaks on such networks. Several cen-
trality measures taking this specific structure into account have been defined in past 
years, mostly by generalizing well-studied static quantities (Kim and Anderson 2012; 
Hanke and Foraita 2017; Taylor et al. 2017; Bajardi et al. 2012). However, the additional 
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complexity of temporal networks is reflected by the high computational cost of some of 
these methods, many of which are prohibitively expensive for networks exceeding thou-
sands of nodes, or more than a hundred time-slices.

In this work, our main contribution is to study SIR-type outbreaks on the French cattle 
trade network, in which nodes are cattle holdings, and time-stamped edges correspond 
to the commercial movement of animals between these holdings (Dutta et  al. 2018; 
Natale et al. 2011). We focus on movements in 2014 and 2015, which gives rise to net-
works with over 170,000 vertices and over 2,250,000 time-stamped edges, with a daily 
granularity. Besides classical static measures, we will focus on the TempoRank meas-
ure, as defined in Rocha and Masuda (2014). This is an extension of PageRank centrality, 
defined using time-respecting random walks on the network. We will recall some of its 
properties and present a deterministic (exact) implementation. We will also present an 
extension of the TempoRank which might be more efficient in the context of epidemic 
prevention, by identifying vertices that have high downstream transmission potential. 
However, the matrix-based methods on which this implementation is based fail in the 
context of large networks, because of the absence of sparsity. We show how direct simu-
lation can instead be used to approximate TempoRank computation, which makes this 
measure useful even for very large temporal networks. We show that our stochastic 
method is able to compute TempoRank centrality measures on the large BDNI network, 
and, using a numerical percolation study, that they outperform static centrality measures 
in mitigating outbreak sizes.

The paper is structured as follows: in the “Centrality measures for temporal networks” 
section, we will recall some of the definitions of centrality measures used and show how 
some of them are related to the properties of random walks on the network. Then, in the 
“Random walk centralities: definition and properties” section, we will present two ver-
sions of the TempoRank measure in the same framework, as well as a stochastic approxi-
mation algorithm that enables their computation even for large network sizes or large 
numbers of time-slices. Finally, in the “Centrality measures in cattle trade networks” sec-
tion we will describe how these measures are correlated with the spread of infectious 
disease, using the French cattle trade network as an example.

Centrality measures for temporal networks
In this section, we will describe the framework in which we will define and study central-
ity measures. Since most temporal network centralities are generalizations of static cen-
tralities, we will first review some classical notions of centrality, which will also be used 
later in the numerical percolation study on the French cattle trade network.

Static PageRank centrality

Static Networks. Let G = (V ,E) be a directed graph with |V | = N  vertices and let 
A = (ai,j) be its adjacency matrix. The aim of centrality measures is to associate to each 
vertex a numerical quantity representing its importance in the graph according to some 
criterion. In this paper, we will mainly consider centrality measures based on random 
walks, such that the most central vertices are the ones visited most often by random 
walkers on the network.
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PageRank. The best-known such measure is PageRank centrality, defined as following. Let 
P be the transition matrix of a simple random walk on V  , defined by pi,j = ai,j/

∑

k �=i ai,k . 
To avoid the possibility of random walkers getting stuck in vertices with no outgoing edges, 
we add a teleportation probability d , which corresponds to a transition from a vertex i to 
any other vertex j , uniformly chosen in V  . The transition matrix of the random walk with 
teleportation is then:

For d ∈ (0, 1] , P̃ is then an irreducible (row-)stochastic matrix, regardless of the con-
nectivity structure of the original network G . Hence, according to the Perron-Frobenius 
theorem, the left eigenspace associated to the dominant eigenvalue 1 is of dimension 1, 
and contains a positive eigenvector v . The PageRank vector vPR is then the normalized 
eigenvector

The latter equality can be interpreted in probabilistic terms. Indeed, vPR defines a proba-
bility distribution on V  , and (2) is simply the stationarity of this distribution with respect 
to the simple random walk with teleportation on G.

Temporal network centralities

Temporal networks. We will consider temporal networks G = (Gt , t ∈ [1,T ]) defined over 
a discrete timespan t ∈ [1,T ] . For each time t , we require Gt to be a network Gt = (V ,Et) 
on a fixed vertex-set V  with cardinal N  . For convenience, we will label the vertices of G and 
assume that V = [1,N ] . By default, the networks we consider are directed, since direction-
ality of trade is of great importance in the main application we have in mind, namely cattle 
trade networks, in which nodes are holdings and edges represent cattle being moved from 
one holding to another.

Representing temporal networks by a sequence of discrete snapshots naturally leads to a 
matrix representation (At , t ∈ [1,T ]) , where At = (at,i,j , i, j ∈ V ) is the adjacency matrix 
of the network Gt . However, it is also possible to embed the snapshots Gt inside a single con-
catenated network Gconc , which has vertex-set [1,T + 1] × V  . In this representation, each 
edge (u, v) ∈ Et is seen as a directed edge from vertex (t,u) to (t + 1, v) . This representation 
is inspired by the application to cattle trade movements, in which an edge (u, v) at time t 
represents the movement of an animal between two holdings, such that that animal is pre-
sent in holding u at time t , then in holding v at time t + 1 . Of course, it would also be pos-
sible to use edges in Et to represent movements from time-slice t − 1 to time-slice t . Using 
our convention however, in matrix form, the concatenated network Gconc has an adjacency 
matrix defined by blocks:

(1)P̃ =

(

ai,j
∑

k �=i ai,k
(1− d)+

d

N
, 1 ≤ i, j ≤ N

)

.

(2)vPR =
v

∑

vi
, such that vPRP̃ = vPR.
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Note that this matrix is of dimension TN × (T + 1)N  . We will also sometimes consider 
the wrapped network Gwrap . This network has vertex-set [1,T ] × V  and edges from ET 
go from layer T  to layer 1. Its matrix representation is then

Optionally, each of these networks can be augmented to include self-loops linking each 
vertex (t, i) to its representation (t + 1, i) in the next time-slice (using the convention that 
T + 1 = 1 in the case of the wrapped network). This will be useful when considering lazy 
random walks, which can stay in a given vertex for some amount of time before moving 
using an outgoing edge.

TempoRank centrality. There are at least two extensions of PageRank centrality to 
the temporal networks. Here, we will focus on TempoRank centrality (Rocha and 
Masuda 2014), but we note that a different approach was considered in Rozenshtein 
and Gionis  (2016), also taking advantage of the close relationship between PageRank 
scores and the stationary distributions of random walks on the network. The tempo-
ral PageRank approach of Rozenshtein and Gionis  (2016) defines a time-dependent 
score r(u, t) for each node u and each time-stamp t recorded in the temporal network 
by considering the number of time-respecting random walks reaching u before time 
t . Nodes that can be reached by many time-respecting walks will then have a high 
temporal PageRank score at time t . This approach is particularly useful in the case 
of streaming graphs, and the authors describe an efficient algorithm to update the 
temporal PageRank scores as more interactions are recorded, accurately reflecting ris-
ing and falling influence of a given node as time passes. However, such an approach 
is not well-suited to our context of outbreak mitigation on cattle trade networks, due 
to the periodic nature of such networks. Indeed, there is a strong annual and seasonal 
periodicity in the activity of certain holdings. The corresponding nodes will then have 
low temporal PageRank scores after long periods of inactivity, while being of critical 
importance in epidemic transmission during their activity period.

By contrast, the TempoRank score introduced in Rocha and Masuda (2014) sum-
marizes all temporal information contained in a set of time-stamped edges into a sin-
gle score by averaging over all observation times. TempoRank centrality considers the 
wrapped network Gwrap associated with a given temporal network G . With the appli-
cation to cattle trade networks in mind, we will assume that G , hence also Gwrap are 
directed. Let q ≥ 0 be a laziness parameter and d ≥ 0 be a teleportation parameter. 
The transition matrix for the lazy random walk with teleportation is then defined by:

(3)Aconc =









0 A1 0 · · · 0
0 A2 · · · 0

0
. . . 0

0 0 0 · · · AT









.

(4)Awrap =













0 A1 0 · · · 0
0 A2 · · · 0

0
. . . 0

0 0 0 · · · AT−1

AT 0 0 · · · 0













.
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with the out-degree odegt(i) defined by:

In other words, random walkers stay in place with probability q (note that the authors 
of Rocha and Masuda (2014) used a degree-dependent probability qdegt (i) of staying in 
place). If they decide to move, they teleport to a uniformly chosen vertex with probabil-
ity d , or move along a uniformly chosen outgoing edge with probability 1− d . Note that 
if the current vertex is isolated at time t ( odegi(t) = 0 ), there is no such outgoing edge, 
and they stay in place (this occurs with probability (1− q)(1− d) ). Using the wrapped 
network representation of (4), we then get the following transition matrix on Gwrap:

By definition, Bwrap is a stochastic matrix, and, by the Perron-Frobenius theorem, 
admits a (unique up to a multiplicative constant) left 1-eigenvector � with nonnega-
tive elements. Writing left 1-eigenvectors under the form � = (π1 . . . πT ) ∈ R

TN with 
πi ∈ R

N , we see that they need to satisfy the equations:

which is equivalent to

In other words, the πt are the stationary distributions of the random walks (XmT+t) as 
m → ∞ , where X has one-step transition matrix given by (5). Averaging over time, we 
define:

We will also consider the following version of TempoRank that takes into account the 
existence of outgoing edges in a given time-slice. We will call it out-TempoRank central-
ity. It gives no weight to vertices with no outgoing edges, by contrast with regular Tem-
poRank centrality.

(5)(Bt)i,j =











q + (1− q)d/N + (1− q)(1− d), if odegt(i) = 0, i = j
(1− q)d/N , if odegt(i) = 0, i �= j
q + (1− q)d/N , if odegt(i) > 0, i = j,
(1− q)[d/N + at,i,j(1− d)/odegt(i)], if odegt(i) > 0, i �= j,

(6)odegt(i) =
∑

j �=i

at,i,j .

(7)Bwrap =













0 B1 0 · · · 0
0 B2 · · · 0

0
. . . 0

0 0 0 · · · BT−1

BT 0 0 · · · 0













.

(8)πTBT = π1, π1B1 = π2, . . . ,πT−1BT−1 = πT ,

(9)

πTBTB1 · · ·BT−1 = πT ,

π1B1B2 · · ·BT = π1,

. . .

πT−1BT1BT · · ·BT−2 = πT−1.

(10)TR(x) =
1

T

T
∑

t=1

πt(x)
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Random walk centralities: definition and properties
Stochastic approximation

We will now see how direct stochastic simulations can be used to approximate random-
walk based centrality measures. This makes their computation effectively possible on 
very large networks, for which matrix-based methods are not feasible. Indeed, eigen-
value methods for large matrices are relying on sparsity assumptions that are not satis-
fied here: for d > 0 , the transition matrices Bt are always dense. Even if d = 0 , while the 
individual transition matrices might be sparse, depending on the connectivity structure 
of the underlying network, the cyclical products used in the definition of the Tempo-
Rank will lose sparsity as the number of time-slices increases.

For q ∈ [0, 1) and d ∈ [0, 1] , let then (Xn, n ≥ 0) be a Markov chain on Gwrap with tran-
sition matrix Bwrap (7). There is an obvious projection map π : Gwrap → G such that 
π(t, x) = x, 1 ≤ t ≤ T , x ∈ V  . We are interested in the asymptotic behavior of the visit 
times Vn , as well as the exit times On , defined respectively by:

We can use these quantities to approximate both TempoRank and out-TempoRank cen-
trality. Indeed, if d > 0 , then X is an irreducible Markov chain on V  , and

Hence, we can compute TempoRank and out-TempoRank centrality by simulating time-
respecting random walks on Gwrap and by counting the time spent in each vertex, resp. 
the number of movements exiting a given vertex through an outgoing edge (not through 
teleportation). Both the deterministic (matrix-based) and the stochastic algorithm are 
freely available1. The use of such methods to compute centralities when the size of the 
graph makes matrix-based methods unusable is classical (Avrachenkov et  al. 2007; 
Broder et al. 2006; Bahmani et al. 2010) and has been extensively studied in the context 
of internet search engines.

Convergence of random walks

In order to quantify the effect of the laziness parameter q and the teleportation 
parameter d on the speed of convergence of the quantities described above to their 
deterministic limit, we used the well-known Primary School temporal network 

(11)oTR(x) =
1

T

T
∑

t=1

πt(x)1odegt (x)>0

(12)Vn(x) = |{k ≤ n, π(Xk) = x}|,

(13)On(x) = |{k ≤ n, π(Xk) = x and π(Xk+1) �= x}|.

(14)lim
n→∞

n−1Vn(x) = TR(x),

(15)lim
n→∞

n−1On(x) = (1− q)

[

d
N − 1

N
TR(x)+ (1− d)oTR(x)

]

.

1  https://github.com/phoscheit/DynPageRank
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(Gemmetto et  al. 2014). This network is constituted by face-to-face close interac-
tions between high school students and teachers, as measured in 20-second inter-
vals. We aggregated all contacts occurring in a given hour into a single time-slice, 
which resulted in a temporal network of 242 nodes and 26,603 edges over 19 
time-slices.

We computed the vector of exit times for a random walk with 5× 107 steps, log-
ging interim values at increments of 5× 105 steps, for varying values of d and q . We 
also computed the exact value of the out-TempoRank vector using (11) and com-
pared it to the stochastic approximation at each iteration using Total Absolute Per-
centage Error:

Results (shown in Fig. 1) indicate that, for this network at least, the fastest convergence 
is obtained for small values of q (including 0), which of course reflects the fact that lazi-
ness slows down the random walks. Most importantly, there also exists an optimal value 
of d for which convergence is fastest. For the schools network, this value lies around 
d = 0.3 . Understanding how this optimal parameter choice is related to the geometry of 
the wrapped temporal network could be of great importance in tuning the approxima-
tion algorithm in settings for which deterministic computations are unfeasible.

Centrality measures in cattle trade networks
In this section, we will use the previously defined centrality measures to identify the 
nodes most responsible for the spread of disease in a large network of cattle move-
ments in France. Other than the static and temporal PageRank centralities defined 
above, we also consider Katz and betweenness centrality (definitions can be found in 
Additional file 1: section 1).

TAPE =
∑

x∈V

|On(x)− oTR(x)|

oTR(x)
.
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The French BDNI network

The French Base de Données Nationale d’Identification (BDNI) is a national database 
logging all movements of cattle between two holdings in France. For the purpose of this 
work, we extracted all movements occurring in a two-year period between 2014-01-01 
and 2015-12-31. We used these movements to construct a temporal network, with hold-
ings as vertices and cattle movements as edges, with a time-stamp corresponding to the 
day of the movement. We summarized some statistics of the 2014 and 2015 networks in 
Table 1 below. A more detailed statistical analysis of the BDNI networks between 2005 
and 2009 can be found in Dutta et al. (2014).

An important feature of this network and more generally of cattle trade networks is the 
presence of markets and assembly centres, through which a significant part of all trades 
occur. They are the obvious most central vertices in any cattle trade network (Vidondo 
and Voelkl 2018), but they may not be hotspots of disease transmission, in particular for 
pathogens that require prolonged close contact for infection, such as paratuberculosis or 
BVDV (Gates et al. 2014). Indeed, animals remain in these holdings for a single day (or 
up to a week in the case of assembly centres), which might not be long enough for sig-
nificant transmission to occur. To account for such dynamics, we consider two versions 
of the BDNI network: the first (dubbed the complete network), includes all movements 
to and from markets and assembly centres, whereas the second (the reconstructed net-
work) bypasses these vertices by reconstructing movements between farms that involve 
a market or assembly centre as intermediary. More precisely, if an animal moves from a 
farm F1 to a market or assembly centre at a date t1 , then subsequently moves to another 

Table 1  Summary statistics of the French cattle trade networks, aggregated over a year

Complete Reconstructed

2014 2015 2014 2015

Number of vertices 179,518 174,034 169,248 164,171

Number of edges 989,684 980,376 1,401,577 1,371,844

Number of movements 2,318,824 2,268,494 1,552,554 1,522,314

Greatest strongly c.c. 74,044 68,746 52,782 49,445

Average out-degree 5.51 5.63 8.28 8.35

Maximum in-degree 12,426 11,673 2,087 2,108

Maximum out-degree 2,767 2,252 351 389

Exponent of degree distribution 2.12 2.24 5.11 5.29

Average clustering 0.316 0.315 0.033 0.036

Degree assortativity −0.120 −0.123 −0.30 −0.316

F1 F2

M

t1
F1 F2

M
t1 t2

Fig. 2  An example of a sequence of two movements in the complete network summarised by a single 
movement in the reconstructed network
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farm F2 at a later date t2 , we will log a single movement from F1 to F2 at time t1 in the 
reconstructed network (Fig. 2).

As can be seen in Table  1, the most striking difference between the complete and 
reconstructed networks lies in their degree distribution. Assuming a power-law distribu-
tion, we computed its tail exponent, which is such that

for the degree D of a uniformly chosen vertex in the network. While the complete net-
works exhibit so-called scale-free behavior ( 1 < α < 3 ), the reconstructed networks have 
α > 3 , indicating a network without large hubs. The same behavior can be seen with the 
higher average out-degree in the reconstructed networks, caused by the splitting of sin-
gle farm-to-market or farm-to-assembly-centre movements into several farm-to-farm 
movements. As we will see below, the different connectivity structures lead to markedly 
different epidemic behavior and thus, to different hierarchies between centrality meas-
ures used to control the epidemics.

Centrality in cattle trade networks

There have been several studies of centrality in cattle trade networks. Most approaches 
have focused on (temporal) path-counting methods, such as the Disease-Flow centrali-
ties in Natale et  al. (2009), closely related to the outgoing and ingoing contact chains 
described in Nöremark et  al. (2011). Such methods have proved useful in identifying 
epidemiologically important nodes (Büttner et al. 2013; Vidondo and Voelkl 2018) but 
fail for large-scale networks due to combinatorial explosion in the number of nodes or 
the number of time-steps. Other approaches are simulation-based, aiming at identifying 
suitable control strategies by directly simulating outbreaks (using, for instance, generic 
SI-type transmission dynamics) on the temporal networks (Payen et  al. 2019; Bajardi 
et al. 2012).

We computed static and temporal centrality measures for the 2014 and 2015 BDNI 
networks, both in their complete and reconstructed version. Due to the size of the 
network, computation of the TempoRank measures using deterministic methods was 
impossible. We used the stochastic approximations of (14)–(15), with 108 steps for the 
random walks. We compared the centralities at increments of 106 steps to the final state 
to check convergence (Fig. 3). We observe that the laziness parameter has no influence 
on the speed of convergence, whereas for fixed q , the fastest convergence was achieved 
for low values of d.

In order to assess correlations between measures, we computed Spearman (rank) 
coefficients (Fig.  4). This analysis shows the high level of similarity between Katz and 
PageRank centrality, as well as moderate levels of correlation between Katz centrality, 
PageRank centrality and betweenness, as well as out-degree centrality and out-Tempo-
Rank. Broadly speaking, this suggests a rough classification of the six measures con-
sidered here into three categories: those measuring the outgoing centrality of a node 
(outgoing degree and out-TempoRank) and those measuring its ingoing centrality (Tem-
poRank, Katz and PageRank centrality). Betweenness centrality is moderately correlated 
to measures in both groups, since it takes both incoming and outcoming paths into 
account.

P(D = n) ∼n→∞ n−α
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In addition to this analysis, we also compared the rankings of vertices according to the 
different centralities, using rank-biased overlap (RBO) (Webber et al. 2010). This meas-
ure of similarity between two rankings (permutations) σ and τ of [1,N ] is defined by

where σ1:k is the set of the k highest-ranked elements in σ and where p ∈ (0, 1) is a 
parameter quantifying how much weight should be placed on comparisons between the 
highest-ranking elements. In essence, the smaller p , the less importance given to the 
overlap σ1:k ∩ τ1:k with high k . Figure 5 shows the pairwise RBO scores for p = 0.997 , 
chosen so that 95% of weight is given to the top 1000 vertices in the network. There 
is a striking dissimilarity between the complete and the reconstructed network. On the 
complete network, most centrality measures have moderately high overlap, with the 
exception of the TempoRank measure, which has low overlap with all other centralities. 
The latter is probably due to it highly ranking vertices with no or few outgoing edges, 
on which random walkers spend a disproportionate amount of time, thereby increas-
ing their TempoRank score. On the reconstructed network however, almost all pairs of 
centralities have very low overlap, the most similar being TempoRank and Katz central-
ity as well as out-TempoRank and PageRank centrality. This shows that the problem of 
identifying high-centrality nodes is much more difficult on a diffuse network such as 
the reconstructed cattle trade network, whereas on scale-free networks, most measures 
have similar rankings, perhaps with slight differences in the order.

Percolation analysis

Ultimately, we wish to understand how centrality of a node is correlated with the role 
this node plays in epidemic outbreaks and if it can be a good predictor of the spread of 
infection on the temporal network under study. This is a classical problem in network 
analysis (Lü et al. 2016) and is usually studied either by direct simulation (Vidondo and 
Voelkl 2018; Payen et al. 2019) or by computation of a proxy of epidemic spread, such 

RBO(σ , τ ) = (1− p)
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as the size of the largest connected component (Mweu et al. 2013; Büttner et al. 2013) 
or the so-called epidemic threshold (Valdano et al. 2015, 2018). In this section, we will 
use as a metric the mean final outbreak size of simulated SIR processes. We will use the 
tsir package for fast outbreak simulation (Holme  2020). This package simulates epi-
demic outbreaks on temporal networks in the following manner: 

1.	 Choose a node uniformly at random in the network and set its status to “infected” at 
the start of the observation period (2015-01-01 in our case). All other nodes are set 
to “susceptible”.

2.	 Each infected node remains in that state for an exponentially distributed time with 
parameter γ > 0 , after which it becomes “removed”.

3.	 For each time-stamped edge (t,u, v) such that u is infected and v is susceptible at 
time t , v becomes infected with probability β ∈ (0, 1].

For each centrality measure, we ranked vertices in decreasing order of centrality, the 
measures being computed on the corresponding 2014 movement network. We then 
removed an increasing proportion of vertices in the 2015 network, ranging from 0.1% 
to 5% of all vertices. When removing a vertex, we removed all edges from and to that 
vertex. We then simulated 10,000 iterations of a temporal SIR process on the percolated 
2015 network, with per-contact infection probability β = 0.5 and recovery rate γ = 1 
per day. On the static network aggregating all edges with timestamps in 2015, this cor-
responds to an epidemic with basic reproduction number (Durrett 2007) given by:

where 〈k〉 and 〈k2〉 are the first and second moment of the degree distribution. This would 
give R0 = 28.75 and R0 = 10 on the complete and reconstructed networks, respectively. 
However, when taking temporality into account, contagion dynamics are much less 
explosive since the number of contacts of a given node need only be considered over a 
short time period (Enright and Kao  2018). Exact computation of the epidemic threshold 
for general temporal networks is possible (Valdano et al. 2018) but can be computation-
ally unfeasible for large networks. Interestingly, we found that final outbreak sizes had 
low variance (see Additional file 1: section 2 for more data), perhaps reflecting the fact 
that once a pathogen reaches a node with high connectivity and high activity, outbreaks 
tend to be quite similar.

We calibrated the TempoRank algorithm by computing centrality using differ-
ent values of laziness q and teleportation d and comparing the mean final outcome 
curves (Figs.  6 and  7). Complete results for all examined combinations of q and d 
can be found in Additional file  1: section  6. Interestingly, the laziness parameter 
seemed to have only a very limited impact on final outbreak sizes, with higher lazi-
ness leading to higher outbreak sizes. This effect is only appearing for high fractions 
of removed nodes; it seems that, whatever value of q was chosen for out-TempoRank 
computation, the highest-ranked nodes were identical. A similar effect can be seen 
when comparing disintegration curves for varying levels of teleportation, although 
the differences are much more important. The best outcomes were obtained when 

R0 =
β

γ

(

�k2�

�k�
− 1

)

,
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teleportation was set to the lowest levels ( d = 0.01 ). We then used TempoRank and 
out-TempoRank scores computed with the optimal values q = 0 and d = 0.01 for 
comparison with other centrality measures.

Results of the percolation experiment with all centrality measures taken into 
account are shown in Fig. 8. In the complete graph, the rapid decline in final outbreak 
sizes, even for small numbers of removed nodes, is a well-known feature of scale-free 
networks when nodes are targeted appropriately (not uniformly at random). For most 
centrality measures, the highest-ranked nodes tend to be nodes with high degree, 
and their removal leads to rapid disintegration of the connectivity structure of the 
network. Indeed, in cattle trade networks, markets and assembly centres act as trade 
hubs (Hoscheit et al. 2017; Natale et al. 2009; Bajardi et al. 2011; Salines et al. 2017) 
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and they are highly ranked by most centralities (see Additional file 1: section 3), which 
leads to similar disintegration profiles. Nevertheless, out-TempoRank centrality is 
the best-performing measure by this metric. By contrast, TempoRank centrality per-
forms similarly at first than the static measures we included in our analysis. However, 
the disintegration curves associated to most static measures exhibit a plateau after 
a rapid initial decline, which is not the case for TempoRank centrality. Interestingly, 
comparison of the fraction of markets and assembly centres in the highest-ranked 
nodes (Additional file 1) shows that out-TempoRank manages to identify those nodes 
as influential spreaders. By contrast, there is a smaller fraction of markets and assem-
bly centres in the highly ranked nodes according to TempoRank, yet it still manages 
to effectively prevent epidemic spread at around 3% of removed nodes. The results we 
obtained, in particular the hierarchy of centrality measures, were consistent across 
the parameter space for the epidemic process (Additional file 1).

In the reconstructed graph, most disintegration profiles are linear, with different slopes 
depending on the centrality measure used to select the removed nodes. This is again as 
expected, because large hubs have been removed and replaced with many farm-to-farm 
edges (as can be seen in the exponent of the degree distribution in Table 1). This makes 
the node removal problem more difficult, since there are potentially many redundant 
paths that can be taken by infections. We see that the temporal centrality measures sig-
nificantly outperform the static measures on the reconstructed network, which shows 
that temporal information plays a major part in the spread of infection on cattle trade 
networks, once its strong connectivity properties have been muted. On this network, 
the regular TempoRank measure outperforms out-TempoRank, suggesting that the re-
weighting of nodes by the fraction of time that they had active outgoing edges is a poor 
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predictor of epidemic spread on this network. The difference with the complete network 
is striking in that regard.

We observed no qualitative difference in the disintegration curves for outbreaks sim-
ulated on the 2015 networks, whether the centralities were computed on the 2014 or 
the 2015 data (see Additional file  1: section  4). This is indicative of high year-to-year 
similarity of the global structure of the networks, even though at the local level, there 
can be significant variation in the choice of trading partners (Valdano et al. 2015). Also, 
since contemporary data is not always available at the time of implementation of control 
measures, this shows that relying on past data can still produce high-quality outbreak 
prevention and mitigation.

Conclusion
In this work, we showed how random-walk-based centrality measures are well-suited for 
large temporal networks, since they can be efficiently computed using stochastic simula-
tions. We demonstrate their suitability for the purpose of epidemic mitigation by tar-
geted removal of nodes, and their improved performance when compared to measures 
computed on the static (time-aggregated) network.

However, there are some limitations inherent to the definition of TempoRank and out-
TempoRank centralities. Indeed, they are defined as time-averaged quantities as can 
be seen from their computation through the stationary distributions of random walks 
on the time-wrapped network Gwrap . This makes them robust to small local changes in 
the network, but fails to take into account heterogeneous behaviour, such as seasonal-
ity (Vidondo and Voelkl 2018) or changes in network dynamics which would make the 
recent past a better predictor of future outbreaks than older temporal patterns. It should 
be possible to account for such ruptures, provided they can be accurately detected (Ran-
shous et al. 2015; Donnat and Holmes  2018; Monnig and Meyer  2018) by appropriately 
reweighting time-slices in the definition of TempoRank centrality (10). Other, so-called 
online centrality measures update the scores as new interactions are added to the dataset 
(Béres et al. 2018; Rozenshtein and Gionis  2016) but fail to identify older, periodically 
active nodes which might have an important role to play in epidemic spread in specific 
timeframes.

An important next step will be the use of centrality measures for targeted control 
measures more subtle than the outright removal procedure studied here. For instance, 
targeted vaccination campaigns or diagnostic strategies are some of the tools available 
for the control of cattle disease, but they need to be weighted against their economic 
impact. Better focused strategies could yield similar epidemiological outcome at lower 
economic cost.

In a similar fashion, the effect of parameters q and d on final epidemic size should be 
explored further. For instance, on temporal networks with different geometries (such as 
sexual contact networks), it would be interesting to understand whether low final out-
break sizes are always associated with low teleportation parameters in the TempoRank 
scores or if this is a specificity of networks that are similar to cattle trade networks.

It will also be important to obtain quantitative results on the speed of convergence of 
the stochastic algorithm to the TempoRank and out-TempoRank centrality vectors. It 
is well-known (Levin and Peres 2017) that mixing times of Markov chains are strongly 
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related, among other things, to the spectral gap of their transition matrices. It is not 
clear how these results carry over to the temporal setting, and we hope that further work 
in that direction will enable fine tuning of the number of steps required to compute good 
approximations of temporal centrality measures when deterministic algorithms are not 
practicable.
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