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Introduction
A legal entity is a juridic term that designates an individual, company, or organiza-
tion that has legal rights and obligations. In the standard terminology, legal entities are 
usually divided into individuals or corporations (e.g companies). The economic entity 
principle, stating that financial transactions must be assigned to a specific business, is 
considered as one of the fundamental principles of accounting: each entity must have 
separate accounting records, except for its subsidiaries. This principle implies that the 
nature and clarity of the information describing legal entities is important for com-
pliance standards. Several types of interactions can exist between these entities, for 
instance payments or capitalistic property, defining different network structures. Such 
networks have already been studied, namely the interbank market (Boss et  al. 2004) 
and interbank payment flows (Soramäki et  al. 2007). A study on systemic risk in the 
interbank network, where payment interactions are treated as a complex network was 
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described in Lenzu and Tedeschi (2012). Recent work attempted to describe the actual 
topologies observed in the financial system (Inaoka et al. 2004).

In this work, we propose a methodology built on recent developments in network sci-
ence, to analyze a worldwide capitalistic ownership graph, and provide results on indus-
trial data (described in Dijk (2018)). After an initial analysis using centrality measures, we 
propose an influence maximization (IM) algorithm in order to target specific nodes that 
have high importance in the ownership graph. This work significantly extends an earlier 
and preliminary analysis in Khalife et al. (2019). Specifically, this article contributes:

•	 a development and application of influence maximization explanation to the study of 
capitalistic graphs

•	 an extensive empirical evaluation comparing recent methodologies and techniques 
from network science to this area

•	 extraction and analysis of patterns relating to capitalistic ownership
•	 an in-depth discussion of the results, and
•	 a number of recommendations for future work.

Ownership network and influence maximization
Network model

We denote a capitalistic graph G = (V ,E) . A vertex i ∈ V  represents a legal entity, an 
oriented edge eij with weight wij represents capitalistic property: an edge from i to j 
means that i owns capital of j in proportion wij . N+

i  and N−
i  are respectively the out-

neighbors and in-neighbors of vertex i (i.e., set of nodes connected to and from the ver-
tex). |I| is the cardinality of a finite set I. For mathematical convenience, we impose the 
following constraints:

In Sect. 3.1, we describe how to ensure Eq. (1). Following standard juridic terms, there 
are two types of entities in the graph:

•	 Natural person: individual human being
•	 Legal person: incorporated organizations including corporations, government agen-

cies; or non-governmental organizations. A legal person is composed of natural per-
sons, but has a distinct juridic identity.

We suppose there does not exist inner links between the subgraph of natural people, 
even though natural person can have influence over others (we suppose this link is not 
explicit so it is not considered as an edge in the graph). We are interested in studying the 
influence of legal entities, so the distinction between natural entities and organizations 
raises an important discussion for the evaluation of such influence.

In view of the instance at our disposal, and in particular the fact that the data is poor 
with regard to personal attributes, we decided to consider the first situation, that is to 
say to keep only the links between organizations. Furthermore, unlike market payment 

(1)
∀e ∈ E, we ∈ [0, 1]

∀i ∈ V ,
∑

j∈N−
i
wji ≤ 1
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graphs which are very dynamic, the capitalistic graph evolves across a relatively long 
time scale and significant changes do not occur frequently (except rare events, such as 
the onset of an economic crisis). Therefore, we consider the capitalistic graph constant 
for our analysis and do not analyze its dynamic aspect, although this may be considered 
in future work. The data is provided by Bureau Van Dijk (2018), and lists all the physi-
cal and legal entities. Each of these entities has corresponding metadata: Name, location 
(country and continent), and description. They also have a weighted capital property 
over a list of other entities. The original data format is in a non-relational form; software 
development was necessary to parse and load data into a graph. For reasons of confiden-
tiality, the data has been anonymized. Supplementary description is in Sect. 3.

Previous work

Location-sector analysis of the Orbis network has been proposed to identify and locate 
important entities (Nakamoto et al. 2019) and, in a 2015 snapshot, to analyze the loca-
tion and sector of conduit firms likely to be used for treaty shopping (Nakamoto et al. 
2019). In Heemskerk and Takes (2016) take a data-drive approach of community detec-
tion through modularity maximisation. In this work, we consider a different method-
ology in order to measure the capacity of some entities to influence economically the 
network. Differently, we here model an entity and its subsidiaries as separate, making 
the assumption that the influence of an entity is also spread through its subsidiaries in 
the diffusion. The macroeconomic indicators aforementioned will then be revealed using 
adequate centrality measures and influence maximization algorithms. Finally, in com-
parison with those references, we use a more recent version of the network (Orbis 2018). 
We defer a more in-depth discussion of the wider financial-analysis literature to Sect. 4.

Motivation and justification of the methodology

The notion of influence we consider concerns the capacity of an entity to influence eco-
nomically and socially on the other entities of the network, and will be defined at dif-
ferent scales in our study. Firstly, at the level of legal entities, through the possession 
of capital, and then, using aggregation of attributes detailed in Sect. 2.7, at country and 
sector levels.

The motivations to analyse the knowledge graph under the prism of centrality meas-
ures and entity influence is two-fold. First, the detection of influential communities of 
entities has a natural interpretation in economic and financial terms. Second, the exist-
ence of low time complexity algorithms available for this purpose. Indeed, the consid-
ered network being very large, any non (quasi-) linear time complexity algorithm would 
result in computational time issue. Besides, several possibilities exist in order to model 
the influence of nodes, for instance with the influence interdiction problem (Omer and 
Mucherino 2020). However to the best of our knowledge, other formulations do not 
have linear time algorithm to obtain good approximate solutions efficiently. On the con-
trary, centrality measures (k-cores) and some influence maximization algorithms, which 
are relatively straightforward methods, have linear time complexity have proven to be 
very efficient in the detection of influential communities. In the remainder of this sec-
tion we present the main components of our analysis in order to describe the topology of 
the graph, and to measure influence of entities, specifically:
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•	 Degree distribution and connected components
•	 Centrality measures and K-cores
•	 Rooted influence graph
•	 Aggregation by attribute
•	 Influence maximization

Later, in Sect. 3, we provide the results of the analysis, with respect to location and 
sector.

Degree distribution and connected components

In the following A is the adjacency matrix of the network of the graph G = (V ,E).

The inner-degree and outer-degree of a vertex i are respectively the sum of coefficients 
in column i and row i. The degree distribution is a fundamental and important measure 
in complex networks (especially Internet Siganos et al. 2003), because it allows to clas-
sify graphs according to the type of distribution (e.g power law graphs). In the following, 
we will consider degrees of the non-weighted graph, so that the in and out degrees of 
vertex i are respectively the number of in and out neighbors (i.e number of non-zero 
coefficients on the column and row i of A). A component W ⊆ V  of G is said connected 
if for each i and j in W, there exists a path from i to j.

Degeneracy and centrality measures

A graph is said to be k-degenerate if and only if every subgraph has a vertex of degree 
at most k. The degeneracy of a graph is defined as the smallest value of k for which 
it is k-degenerate. As such, it is a measure of sparsity. In order to enrich this notion, 
let us define the notion of k-core for an undirected graph. A k-core of an undirected 
graph is defined as the maximal subgraph Ck ⊂ G such that each node has degree at 
least k in this subgraph:

If Ck is not empty, then G has degeneracy at least k since there exists a subgraph that 
contains nodes of degree k. Therefore, the degeneracy of G is the largest k for which Ck 
is not empty. The core number of a vertex is the maximum k for which he belongs to Ck . 
The notion of k-core extends to directed graphs, with in and out cores (i.e., Ni becomes 
N

−
i  and N+

i  respectively). There exist linear-time algorithms to compute k-cores (Bat-
agelj and Zaversnik 2003), and memory efficient methods (Cheng et al. 2011). As pre-
sented in Giatsidis et al. (2013), it is possible to extend the definition for directed graphs, 
considering 2-dimensions version ( D-cores), but they are not considered in this work. In 
the scope of this study, the computation of k-cores will yield dense communities of enti-
ties having important intra-ownership when k is close to the degeneracy of the graph.

(2)Aij =

{

wij if e = (i, j) ∈ E
0 otherwise

(3)Ck = {i ∈ V | |Ck ∩Ni| ≥ k}
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Rooted influence graph

For each entity, we define a subgraph, the rooted influence graph (RIG), similarly to 
the rooted citation graph (RCG) in collaboration analysis (Giatsidis et al. 2019). The 
RIG of a vertex i is the subgraph of G induced by the set of vertices that contain i and 
all the vertices which can be reached by a directed path. That is, j ∈ RIG if and only if 
there is a directed path from vertex i to vertex j. The resulting directed acyclic graph 
(DAG) contains all the entities that are directly or implicitly influenced by the entity i.

Based on this definition, it is natural to consider the following quantities in the RIG 
to measure influence of an entity:

•	 (a) out-degree
•	 (b) average degree of the nodes in the RIG
•	 (c) core influence (i.e core number of the considered entity of the undirected RIG)

In Sect. 3, we use the core influence measure since we are interested in the influence 
of communities rather than individuals. Indeed, coreness in the RIG of an entity is a 
measurement of how dense is its neighborhood.

Aggregation by attributes

The ownership graph also contain entity attributes (location (country or region) and 
a description of the activity (sector), cf Sect. 3.1 for a precise description). Here, we 
present a method to analyze the graph of entities by attributes. Let A be the set of 
values for a given attribute of the entities. For (a, b) ∈ A2 , let Ga (resp. Gb ) be the set 
of entities having attribute a (resp. b). We define a new graph GA = (A,EA) between 
attribute values in the following way:

In other words, GA provides a kind of “meta-graph” based on the pairwise relationship 
between the values of A . For example, a graph where A = {a, b} defines two countries, 
will be a graph of two nodes, inheriting the connectivity in the form of an aggregation 
wab on up to two directed edges EA . This definition of Eq. (4) insures the following math-
ematical conveniences, as also in Eq. (1):
∀(a, b) ∈ A2

and

(4)wab =
1

|Gb|

∑

j∈Gb

∑

i∈Ga∩N−(j)

wij

(5)0 ≤ wab

(6)
wab ≤

1

|Gb|

∑

j∈Gb

∑

i∈Ga∩N−(j)

wij

wab ≤ 1
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Moreover, the choice of Eq. (4) is a good candidate for the influence of a attribute a over 
an attribute b (e.g influence of Germany over France), since it corresponds to a quantity 
representing the percentage or total capital owned by a over b. Therefore, The meta-
graph GA allows us to analyze interactions between attributes (i.e countries or sectors). 
However the limitation of this analysis lies in the assumption that entities have the same 
capital: we will come back to this limitation in Sect. 3.

Diffusion models and influence maximization

Influence maximization (IM) in a network is the problem of maximizing influence with 
regards to seed nodes using a diffusion model. It has been extensively studied recently 
due to its potential commercial value. An example of application of influence maximiza-
tion is viral marketing (Domingos and Richardson 2001), where an organization wants to 
spread the adoption of a product from selected adopters. Influence maximization is also 
the corner stone in other important applications such as network monitoring, rumor 
control, and social recommendation. The first question is how to model the information 
diffusion process in a network, which affects the influence spread given a seedset.

In the previous section, we have defined the nature of the complex network we con-
sider. In the following, the object of the spreading in this network is considered of factor 
of economic ownership which has different implications on economic and social influ-
ence. There exist several models for diffusion (Li et al. 2018). The first category of these 
models are called progressive. Activated nodes cannot be deactivated in later steps. Most 
IM algorithms consider the progressive models, and we will limit the discussion our 
study to those. In the next two paragraphs, we present two standard progressive models.

incoming neighbors are active. Each vertex v is associated a threshold τv , and gets acti-
vated if and only if the sum of incoming neighbors (incoming weights if the graph is 
weighted) is higher than τv.

The Independent Cascade (IC) model Independent Cascade (IC) is a classic and well-
studied diffusion model (Goldenberg et al. 2001). A vertex v is activated by each of its 
incoming neighbors independently by introducing an influence probability to each edge. 
Given a seed set S at time step 0, the IC diffusion unfolds in discrete steps. Each active 
user u in step t will activate each of its outgoing neighbor v that is inactive in step t + 1 
with probability puv . The activation process can be considered as flipping a coin with 
head probability puv : if the result is head, then v is activated; otherwise, v stays inactive. 
u has one chance to activate its outgoing neighbors. Then, u stays active and stops the 
activation. The diffusion instance terminates when no more nodes can be activated. The 

(7)

∑

a∈A

wab =
1

|Gb|

∑

j∈Gb

∑

a∈A

∑

i∈Ga∩N−(j)

wij

=
1

|Gb|

∑

j∈Gb

∑

i∈N−(j)

wij

≤
1

|Gb|

∑

j∈Gb

1

∑

a∈A

wab ≤ 1
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influence maximization (IM) problem is theoretically complex in general. More pre-
cisely, it has been proven that there is no polynomial algorithm solving IM unless 
P = NP under most of the diffusion models (Li et  al. 2018). This theoretical result 
implies that it is very challenging to retrieve a solution close to the optimal seed set, and 
to scale to large graphs simultaneously. A naive algorithm exploring all the possible val-

ues for the seed sets of size k in a graph with n vertices yields a 
(

n
k

)

 time-complexity 

(supposing the diffusion is in O(1)).
Influence function The definition of an influence function depends on the funda-

mental assumption that the diffusion model D terminates given any set of nodes S as 
input. In these conditions, σD,G represents the function counting the number of vertices 
affected by the spread at the end of the process using the graph G. It operates on the set 
of subsets of V having k vertices. Given a diffusion model D, a graph G and a seed set 
size k, the IM problem corresponds to the following optimization problem:

D,  G are usually are implicit, so that σD,G usually becomes σ . There exists a literature 
dedicated to IM (for a survey, see for instance Li et al. (2018)). This work is not intended 
as a survey on the topic, so we report some results and methods that we considered in 
order to measure entity influence in the capitalistic graph.

Greedy framework The greedy algorithm consists in adding iteratively nodes to S 
(starting from ∅ ), selecting a vertex u if u provides the maximum marginal gain to the 
influence function σD . The algorithm terminates when S = k . The theoretical guarantee 
of the greedy framework depends on the properties of σ (so implicitly on the diffusion 
model D and G). In the diffusion model we are considering (LT and IC), σD is a non-
negative monotone and sub-modular function (for a proof, cf. for instance Mossel and 
Roch (2010)), but this property does not depend on the graph G considered. In these 
conditions, it is possible to estimate the approximation ratio of the greedy framework. If 
S1 is the set of vertices returned by Algorithm 1, then Nemhauser et al. (1978):

Sketch-based methods There is a plethora of methods based on Monte-Carlo simu-
lations in order to obtain approximate solutions of the IM problem. Sketch-based 
approaches are a range of methods that try to conceal theoretical efficiency (not only 

(8)S∗D,G = arg max |S|=kσD,G(S)

(9)σD,G(S
1) ≥ (1− (1−

1

k
)k)σD,G(S

∗)
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practical efficiency) and preserving a constant approximation ratio. The main disadvan-
tage of these methods is that they do not generalize to all diffusion models. However, 
they are compatible with LT and IC (using a generalization through the triggering model 
Kempe et al. (2003)). Specifically, Borgs et al. (2014) avoid the limitation of Greedy and 
propose a drastically different method for influence maximization under the IC model, 
called Reverse Influence Sampling (RIS). We first introduce two concepts:

Reverse reachable (RR) set Let v be a vertex in G, and g be a sub-graph of G obtained 
by removing each edge e in G with 1− we probability ( we ∈ [0, 1] ). The reverse reachable 
(RR) set for v in g is the set of nodes in g that can reach v. (That is, for each node u in the 
RR set, there is a directed path from u to v in g).

Random (RR) set Let G be the distribution of g induced by the randomness in edge 
removals from G. A random RR set is an RR set generated on an instance of g randomly 
sampled from G, for a node selected uniformly at random from g.

Sketch-based methods consider θ sketches of the graph: {G1, . . . ,Gθ } , and σD,G(S) 
is computed as the average number of users reached by S on these sketches: 
σ̂D,G(S) =

1
θ

∑θ
i=1 σD,Gi(S) . Borgs et  al. (2014) showed that it is not necessary to esti-

mate the influence using sketches on the entire graph. 

The average infected seed set over the sketches using LT and IC can be proven to con-
verge in probability to the infected set of the all graph (Kempe et al. 2003). Moreover, the 
quality of the solutions returned by some of the sketch-based methods (e.g IMM Tang 
et al. (2015)) have been proven to hold an approximation ratio of (1− 1

e − ǫ) with high 
probability (Tang et al. 2014).

Results
Description and preprocessing

Orbis is a database composed of about one hundred million entities, developed by a spe-
cialized group based in Bureau Van Dijk’s Brussels office, aggregating several sources of 
data. A detailed description is given in Dijk (2018). The location of an entity is usually a 
country (or else a region such as Hawaï (U.S), La Réunion (Fr.)) that defines where the 
legal entity has its headquarters. Therefore, a subsidiary and a parent company can have 
different locations. See Beddi and Mayrhofer (2010) for in-depth insights into the role 
of location in headquarters-subsidiaries relationships. The sector of a legal entity is a 
description of its activity. The database had some inconsistencies and missing values. In 
some cases entities (and edges) appear multiple times. We merged identical edges into a 
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single edge by taking the maximum weight. About 30% of weights are missing. Accord-
ing to the documentation of Orbis, these links are indirect, i.e they represent owner-
ship through other entities and, since we wish to measure direct ownership, we simply 
removed these edges for our analysis.

Degree distribution and connected components

We used the igraph software implementation (Csardi and Nepusz 2006) to manage the 
graph structure emanating from this database. After pre-processing, the graph of non 
isolated entities (i.e. entities with at least one edge) is composed of 39, 398, 321 nodes 
and 80,  874,  728 edges. Following our discussion in the first section, we consider the 
subgraph of juridical entities (organizations) for our entity influence analysis. The sub-
graph of non-isolated organizations is composed of 6, 516, 332 nodes and 6, 670, 813 
edges, with 1, 429, 853 components; additional numbers are in Table 1. An important 
metric in graph mining is the density, representing the average connectivity (i.e. abun-
dance of edges) of the graph. The density of a directed graph is a real number in [0, 1], 
maximized for cliques and minimized for a graph of isolated nodes. For the graph at 
hand the density is:

which means that the graph is very sparse. The degree distribution is in Fig. 1. We can 
see that the degrees vary importantly in the graph. More specifically there are few enti-
ties with up to more that a million capitalistic relations whereas the vast majority have 
less that one hundred ones.

The distributions of entities by country is displayed in Table 2. We see that the dis-
tribution is not uniform and is not correlated with the sizes of each country. There are 
relatively few entities in the United States (US) compared to some European or South 
American countries. This is because the data source has little knowledge of US entities. 
One possibility for refining the study in relation to this country would be to supplement 
Orbis with data from other sources (outside the scope of this work).

The subgraph of organizations contains a very large component (i.e. a set of entities 
where each pair of nodes is connected via a path) of 1,442,704 nodes and 1,816,874 
edges. The other components are very small, smaller than one thousand nodes. The 
component-size distribution is in Fig. 2, which shows that there are a lot of small com-
ponents (some hundred of nodes), and lots of isolated nodes. Two drawings of smaller 
components (less than a thousand nodes), are depicted in Fig. 3. We do not include a 

D =
|E|

|V |(|V | − 1)
= 1.571e − 07

Table 1  Capitalistic ownership graph instance (Orbis). (1) All edges, (2) Edges 
with unknown weights removed

Subgraph Nodes Edges

(1) (2) (1) (2)

Organizations 81576517 81576517 6818574 4242843

Non isolated organizations 6518718 4789294 6818574 4242843

Total (individuals and organizations) 105426819 105426819 81111480 49777255
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fine-grained classification of the structure of these small components. However, in the 
next subsections we provide the analytics on the largest component of juridical entities 
of 1, 442, 704 nodes following Sect. 2.

Degeneracy and centrality measures

In Sect. 2.5, we define the notion of k-degeneracy and k-cores, named Ck . The maximum 
k-core (defined as the k-core such that Ck is not empty and k is maximal) of the graph 
allows to find an approximation of the densest part of the graph in linear time (Batagelj 
and Zaversnik 2003). On the one hand, in the original graph of entities restricted to 
organizations, the large component of 1,442,704 million nodes has a degeneracy value 

#nodes

de
gr
ee

s

Fig. 1  Degree distribution of organizations (Orbis)

Fig. 2  x-axis: Size of components. y-axis: Number of components. The figure represents the distribution of 
the sizes of connected components of juridical organizations (companies). It contains one large component 
( ∼ 2 millions nodes), and thousands of small components (between ten and a thousand entities)
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equal to 18 composed of 45 entities. C18 is a very dense community of entities, where 
each of them is being owned (resp. owns) the capital of (resp. by) at least 18 other enti-
ties in total. Recall that the other components are much smaller (i.e few hundreds of 
entities) and sparse, so that degeneracy in theses components is not very informative for 
data mining.

On the other hand, the distribution of countries and sectors in {Ck | k ≥ 9} (992 enti-
ties) are displayed in Tables 3 and 4. These tables show that countries and sectors are 
not uniform but shared between a limited amount of countries (Singapore, Australia, 

Table 2  Top 20 most frequent countries in total

Country Number (total)

Brazil 19550646

China 9865149

Italy 4985420

United Kingdom 4030892

France 3740322

Russian Federation 3258544

Germany 2631038

Australia 2554195

Netherlands 2498228

Colombia 1924520

Czech Republic 1803264

Poland 1607002

Sweden 1594381

Japan 1489379

Spain 1163873

India 1139334

Mexico 965197

Bulgaria 898522

Taiwan 863927

Romania 853540

Connected component 1 Connected component 2ba
Fig. 3  2 examples of small components
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Germany, Ukraine, and France), and sectors (Activities of holding companies, Buying 
and selling of own real estate, Other monetary intermediation, Rental and operating of 
own or leased real estate, Activities of head offices). These countries and sectors have a 
more intense interaction for capitalistic property.

Aggregation by attribute

In order to provide an example of location analysis of such network, we consider the 
case of France. We computed the aggregated sites whose capital is most possessed by 
French entities (top 20 countries ranked by edge weight). Conversely, we computed the 
top 20 aggregate locations that own capital of French entities. We reported results in 
Fig.  4. The entities most held by the French entities are those located in their former 
colonies (ie Algeria, Togo, Congo, Côte d’Ivoire, Benin, Chad, Gabon, Senegal, Came-
roon, Comoros, Madagascar, ...). Conversely, the French entities are mostly owned by 
those located in economically strong countries, such as Germany, China, the United 
States, Japan, the United Kingdom, the United Arab Emirates, as well as countries close 
to France geographically or sharing close historical relations (Belgium, Italy, Morocco, 
...). We also reported top-5 neighbors sorted by weight in descending order (Fig. 4d, c). 
Top in weights are much lower that the top out weights, this means that French entities 
have a tendency to own capital of entities in other countries rather to have capital owned 
at the international level.

Figure 5 depicts the densest k-core ( k = 44 ) on the meta-graph of countries, and 
represents the most connected subgraph of countries of capitalistic ownership. We 

Table 3  20 most frequent countries in the 10 top-k cores (992 entities)

Countries Number

Singapore 440

Australia 331

Germany 256

Ukraine 125

France 69

Malaysia 52

New Zealand 52

Bermuda(GB) 33

India 32

Chile 26

Italy 19

Thailand 15

Hong Kong 10

United Kingdom 6

Cayman Islands(GB) 5

China 2

Ireland 2

Netherlands 2

Israel 1

Japan 1

Luxembourg 1

British virgin islands 1
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Table 4  Most frequent sectors in top k-cores (992 entities)

Sector Number

Activities of holding companies 314

Buying and selling of own real estate 84

Other monetary intermediation 64

Rental and operating of own or leased real estate 53

Activities of head offices 46

Other activities auxiliary to financial services, except insurance and pension funding 42

Trusts, funds and similar financial entities 37

Unknown 36

Activities of other membership organisations n.e.c. 36

Publishing of directories and mailing lists 35

Other financial service activities, except insurance and pension funding n.e.c. 32

Sea and coastal freight water transport 25

Real estate agencies 16

Business and other management consultancy activities 16

Precious metals production 15

Other business support service activities n.e.c. 14

Other credit granting 13

Mining of coal and lignite 12

Publishing of journals and periodicals 11

Mining of other non-ferrous metal ores 11

Security and commodity contracts brokerage 11

Fund management activities 10

Other professional, scientific and technical activities n.e.c. 10

Retail sale in non-specialised stores with food, beverages or tobacco predominating 10

a France as target b France as source

Country to France Weight in %

Belgium 0.88

Germany 0.77

Netherlands 0.51

Italy 0.50

United Kingdom 0.50

c Top 5 corresponding meta-graph
weights (France as target)

France to Country Weight in %

Cameroon 39.07

Central African republic 33.33

Senegal 33.12

Benin 26.09

Madagascar 25.21

d Top 5 Corresponding meta-graph weights
(France as source)

Fig. 4  France as source and target of capital ownership



Page 14 of 21Khalife et al. Appl Netw Sci            (2021) 6:16 

observe an important proportion of countries in Europe (France, Germany, United 
Kingdom, Italy, Spain, Portugal, ...). Other economically strong countries such as 
United States, China, United Arab Emirates and Republic of Korea are also repre-
sented. These two categories have a dense collaboration in terms of capital owner-
ship. Two important aspects about Fig. 5:

•	 Some “tax havens” are present (Cayman Islands, Malta, Cyprus, ...) despite their 
relative low number of entities.

•	 The United States of America are in the densest k-core of the meta-graph of 
countries, even though under-represented in the dataset (less than 850000 of 
entities, cf. Table 3).

Figure  6 depicts the densest k-core ( k = 218 ) on the meta-graph of sectors (lim-
ited to 15 sectors with highest degree for visibility). It reveals a dense collaboration 
between several economic sectors (Financial activities, real estate, engineering and 
technical consultancy, ...).

Australia

Austria

Belgium

Bermuda Brazil

Bulgaria

Canada

Cayman Islands

Chile

China

Croatia

Cyprus

Czech Republic

Denmark

Estonia

Finland

France

Germany

Greece

Hong Kong

Hungary

India

Ireland

Isral

Italy

Japan

Latvia

Liechtenstein

Lithuania

Luxembourg

Malaysia
Malta

Mexico
Netherlands

New Zealand

Norway

Poland

Portugal

Republic of Korea

Romania

Russian Federation

Serbia

Singapore

Slovakia

Slovenia

South Africa

Spain

Sweden

Switzerland

Taiwan

Thailand

Turkey

Ukraine
United Arab Emirates

United Kingdom

United States

Fig. 5  Densest k-core on the meta-graph of countries ( k = 44)
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Influence analysis

Recall that, in the context of this paper, influence is the capacity to have an effect on the 
development or decisions of an entity. In this subsection we present two different types 
of methods to measure it. Then, we compare the results obtained using the same diffu-
sion model. We used two coreness-based methods to measure influence indirectly. First, 
sorting nodes based on their coreness number in the graph. Second, following Sect. 2.6, 
we compute the coreness of each node in its RIG , and sort them by decreasing value. 
Then, we keep the top-k nodes and consider the distribution of attributes within these. 
The results with k = 10000 are in Table 5 (left side) for location analysis and in Table 6 
for sector analysis.

The problem and method used are described in Sect. 2.8. We use the influence maxi-
mization (IM) paradigm in order to measure entity influence in the capitalistic graph. 
Here, we ran the simulations using influence maximization with martingales, with 
ǫ = 0.1 and a seed set of 10,000 nodes. The output is a seed set of 10,000 nodes which is 
an approximation of the IM solution whose quality will be discussed in Sect. 4. We dis-
play the distributions within this seed set in the right part of Table 5 for location analy-
sis, and Table 7 for sector analysis.

In order to estimate the quality of their respective solutions, we compared the num-
ber of infected nodes using our diffusion model (independant cascades), with entities 
obtained in the top k-cores of the graph. We define the ratio τ as the ratio of the seed 
set size and the number of vertices of the graph. For practical software reasons (NDlib 
library Rossetti et al. 2018), we considered larger seed sets ( τ ∈ {5%, 10%, 15%, 20%} of 

Activities of head offices

Activities of holding companies

Business and other management consultancy activities

Buying and selling of own real estate

Construction of residential and non-residential buildings

Engineering activities and related technical consultancy

Management of real estate on a fee or contract basis

Non-specialised wholesale trade

Other activities auxiliary to financial services except insurance and pension funding

Other business support service activities

Other financial service activities except insurance and pension funding

Other personal service activities

Other professional scientific and technical activities

Rental and operating of own or leased real estate

Trusts funds and similar financial entities

Fig. 6  Densest k-core on the meta-graph of sectors ( k = 218 , limited to 15 highest degree sectors for 
visibility)
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Table 5  Top 20 influential countries using coreness on  the  RIG (left) and  influence 
maximization on the IM on the total network of entities (right)

Country Number Country Number

Italy 1085 Germany 1322

Germany 995 China 1161

Ukraine 880 Australia 1010

France 866 France 642

India 600 Italy 628

Japan 555 United Kingdom 530

Australia 425 Austria 381

Spain 396 Norway 337

United Kingdom 334 Spain 328

Russian Federation 328 Ukraine 296

Norway 298 Japan 255

Portugal 277 Netherlands 220

Austria 258 Belgium 206

China 190 Russian Federation 169

Taiwan 190 Sweden 163

Belgium 187 Singapore 137

Netherlands 178 New Zealand 115

Thailand 163 Portugal 115

Singapore 151 Poland 108

Malaysia 124 India 98

Table 6  Top 20 influential sectors using coreness using RIG

Sector Number 
of entities

Activities of holding companies 1079

Other monetary intermediation 659

Activities of head offices 636

Rental and operating of own or leased real estate 344

Other financial service activities, except insurance and pension funding n.e.c. 312

Other activities auxiliary to financial services, except insurance and pension funding 249

Business and other management consultancy activities 244

Unknown 243

Fund management activities 193

Other business support service activities n.e.c. 185

Trusts, funds and similar financial entities 175

Non-specialized wholesale trade 168

Construction of residential and non-residential buildings 137

Development of building projects 132

Buying and selling of own real estate 114

Retail sale in non-specialized stores with food, beverages or tobacco predominating 107

Security and commodity contracts brokerage 100

Production of electricity 97

Administration of financial markets 85

Insurance, reinsurance and pension funding, except compulsory social security 84

Life insurance 81

Non-life insurance 77
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the considered graph where τ = 5% corresponds to 75,136 nodes). The results are shown 
in Table 8.

Discussion and conclusion
Our analysis based on centrality measures and influence maximization is consistent with 
economic and historical facts such as the existence of tax heavens, and private capital 
ownership over its former colonies (we specifically studied the case of France). This 
therefore allowed us to reveal important locations and sectors communities in the econ-
omy, and potentially target most influential entities. Our method allows us to validate 
these intuitions and to provide indicators of the influence of countries via private capi-
talistic possession.

Initial seeds using k-cores and yield a better influence score for several seed set 
sizes ranging from 5 to 20% using the independent cascade diffusion model. Results 
suggest that several means should be considered (depending on the size of the seed 
set) to measure influence in large networks with similar degree distribution. Our 

Table 7  Top 20 influential sectors using IMM

Sector Number 
of entities

Unknown 1181

Activities of holding companies 520

Rental and operating of own or leased real estate 354

Other business support service activities n.e.c. 298

Activities of head offices 291

Buying and selling of own real estate 214

Business and other management consultancy activities 212

Other activities auxiliary to financial services, except insurance and pension funding 180

Development of building projects 155

Production of electricity 153

Construction of residential and non-residential buildings 133

Real estate agencies 132

Trusts, funds and similar financial entities 130

Engineering activities and related technical consultancy 119

Non-specialised wholesale trade 107

Management of real estate on a fee or contract basis 102

Computer programming activities 100

Other financial service activities, except insurance and pension funding n.e.c. 95

Other professional, scientific and technical activities n.e.c. 89

Other transportation support activities 85

Table 8  Comparison with the IC model for several seed set sizes (50 simulations)

Method σ(S)± std

τ = 5% τ = 10% τ = 15% τ = 20%

Top-k coreness 285250.8± 1304.8 351887.4± 928.8 418440.6± 755.8 474402.2± 454.3

IMM (Tang et al. 2015) 161485.4± 1211.2 298874.9± 774.3 419304.6± 1055.5 521251.7± 1033.4

Top-k RIG coreness 610138.7± 549.8 701871.5± 706.7 799244.1± 661.1 903330.4± 369.1
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main result via k-core analysis on the capital–ownership data of organizations reveals 
a central component. And within, our analysis leveraging the different approaches 
listed in the previous section helped define communities of countries or sectors that 
are influencing the economy of capital ownership.

As with any study of this kind, there are possible limitations. For example, we may 
highlight the limitation of the approximation of different sized entities as having the 
same capital, since we aggregated the weights without taking in account the capi-
tal value. That is to say, the size of capital of entities is not explicitly modeled (enti-
ties are assumed to have the same capital). However, although a direct deterministic 
link cannot be established, there are strong links (Brailsford et al. 2002), in particu-
lar a positive relationship between ownership and capital structure. Therefore from a 
probabilistic point of view, one can argue that our analysis is based on structure with 
the volume of capital ‘marginalized out’. And this appears to be the case in so far as 
that our results and conclusions corroborate those of the literature. This, of course, is 
not to say that a follow up analysis (including capital holdings directly) would yield a 
finer-grained analysis.

The influence measurement following methods of RIG and IMM (Sects. 2.6 and 2.8, 
respectively) revealed significant difference in the distributions of attributes. For all seed 
set sizes, we have obtained better results using RIG coreness than with IMM. Influence 
based on coreness on the initial graph yields better solutions for τ ∈ {5% , 10% , 15%} 
seed set sizes, and IMM performs a bit better than top-k coreness for τ = 20% . This is 
an interesting discovery. In spite of good theoretical guarantees, the IMM algorithm 
of influence maximization suffers on some graph instances and seed set sizes found in 
practice (such as this one). This is also in accordance with experiments of Giatsidis et al. 
(2019) suggesting that coreness can yield excellent influence measurement in our con-
text of interest of this work. We thereby suggest that for large and sparse networks such 
as the one we considered, coreness-based influence measurement should be preferred.

Our results are inline with the literature. For example, Garcia-Bernardo et al. (2017) 
also use a data-driven approach to identify sinks, which included the Netherlands, the 
United Kingdom, Ireland, Singapore, and Switzerland—all identified in the top-44 core 
countries in our analysis, and nearly all (except Switzerland) in the top-20 core. In this 
context, sinks attract and retain foreign capital. An example was given in Garcia-Ber-
nardo et al. (2017) where in three years (2007–2009) Google moved for tax reasons most 
of its profits generated outside the United States (US$12.5 billion) through corporate 
entities in the Netherlands. On the other hand, other countries are attractive as interme-
diate destinations of international investments and transfers. For example our analysis 
uncovered the Cayman Islands. This is covered in discussion it the literature and, e.g., 
Roberts (1995); Fichtner (2016), specifically highlight and cover this case. Authors in 
Vitali et  al. (2011) found that transnational corporations form central structure where 
a large portion of financial control flows to a small tightly-knit core of financial institu-
tions; this also corroborates our results. The centralization we see has been explained 
as a partial results of tightening monetary policy (Brancaccio et al. 2019). It appears—
and this is supported by, e.g., Vitali et al. (2011) who refer to an economic ‘super-entity’, 
that not only an effect of policy but which could have major future policy implications. 
Therefore it is important that ongoing research confirms these structures.
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It may appear as surprising that U.S. entities did not have a relatively more important 
role, though we emphasise that they simply do not appear in this data. Although we have 
limited information on the U.S., other research, e.g., Heemskerk and Takes (2016)—who 
used community detection through modularity maximisation—discusses strong trans-
atlantic connections between Europe and North America as part of a dense network of 
shared directors and control, as opposed to a relatively more separate Asian cluster still 
relatively subservent to the US-Europe center. In other words, traditional core countries 
still form dominant function. On a more detailed level, Glattfelder and Battiston (2009) 
show that although Anglo-Saxon countries have highly concentrated control in the 
hands of a few shareholders, whereas in European countries this concentration is rela-
tively less significant. When we looked at France in particular, we see diversity among 
neighboring countries with outward flow, and inward flow (i.e., greater control) over for-
mer colonies. This provides further insight (and validation) of the functionality of Orbis 
instance Dijk (2018).

We notice that IMM improves over RIG. The influence measurement following meth-
ods of RIG and IMM (Sects.  2.6 and 2.8 respectively) releaveled significant difference 
in the distributions of attributes. For all seed set sizes, we have obtained better results 
using RIG coreness than with IMM. Influence based on coreness on the initial graph 
yields better solutions for τ ∈ {5%, 10%, 15%} seed set sizes, and IMM performs a bit bet-
ter than top-k coreness for τ = 20% . This is an interesting discovery. In spite of good 
theoretical guarantees, the IMM algorithm of influence maximization suffers on some 
graph instances and seed set sizes found in practice (such as this one). This is also in 
accordance with experiments of Giatsidis et al. (2019) suggesting that coreness can yield 
excellent influence measurement in our context of interest of this work. We suggest that 
for large and relatively sparse network, influence measurement with coreness should be 
preferred.

We outlined results that should be treated with caution, due to the sparsity of data, 
particularly respective of some countries, for example—in this dataset—the United 
States. Nevertheless, the overall results provide important insight and information on 
the influence of the entities and are for the most part consistent with the current global 
economic situation. Of course, further enrichment of the capital ownership dataset 
with additional entities and capital information will likely provide an even more precise 
quantitative measure of influence. We could also consider studying the evolution of this 
graph over time (monthly or yearly), but this is out of scope of the current study and we 
leave that line of research for future work.
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