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Introduction
Can we predict whether a social media post will attract a large number of reposts or 
responses? Is it possible to predict the structure of the information cascade triggered 
by a specific post? Many models have been proposed to predict the virality of individual 
pieces of information (Weng et  al. 2013; Cheng et  al. 2014; Zhao et  al. 2015; Li et  al. 
2017; Subbian et al. 2017; Kefato et al. 2018). Other approaches have aimed at generating 
ensembles of online conversations, providing population-level insights about how and 
why information spreads (Kumar et al. 2010; Wang et al. 2012; Gómez et al. 2013; Nishi 
et al. 2016; Lumbreras et al. 2017; Aragón et al. 2017b). This manuscript presents work 
that lies at the intersection of these two approaches. We propose a platform-agnostic 
generative model to grow conversation (cascade) trees that focuses on predicting each 
microscopic event (e.g., a comment or a retweet). The model is based on a supervised 
machine learning approach that leverages information about the tree generated up to a 
given point.

We conceptualize the conversation structures in various platforms as trees (Fig.  1). 
For instance, on Reddit, a post may attract comments, and each of these comments may 
induce further threaded conversations. On Twitter, similar conversation trees can be 
constructed from a more diverse set of interactions, such as retweets and replies.
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We propose a generative model for predicting the size and structure of conversation 
trees on social media, which first predicts the final size of the tree and then iteratively 
adds nodes to the tree until it reaches the predicted size. To evaluate our model, at each 
point in a conversation history, we measure the likelihood of correctly predicting which 
post will be replied/shared/commented upon next. We also assess the accuracy of our 
method by measuring the relative deviation in terms of depth, breadth, structural viral-
ity, and size of our simulated trees from those in the ground-truth data.

We test our model on Reddit and Twitter conversation datasets, made available as part 
of a challenge run by the Defense Advanced Research Projects Agency (DARPA). The 
conversation trees in the dataset have diverse sizes and structural features, as illustrated 
in Fig.  2. While our method outperforms a simple baseline and is competitive with a 
state-of-the-art baseline, its accuracy dramatically decreases for longer sequences of 
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Fig. 1  Examples of conversation trees on a Reddit—a post followed by comments, and on b Twitter—a 
tweet followed by retweets, replies, and/or quotes. Link directions represent attention toward previous posts

Fig. 2  A few example conversation trees from a–d Reddit and e–h Twitter. Each node represents a 
comment, retweet, or reply. Node size represents popularity (number of children) and node color represents 
temporal order in the tree sequence, from the root (blue) to the last leaf (red)
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microscopic predictions due to accumulating errors. These results highlight the chal-
lenges of detailed reconstruction of online diffusion networks (Goel et al. 2012).

In the next section we review relevant studies about both the prediction of important 
features of information cascades and the simulation of their evolution. The prediction 
task is defined and discussed in “Problem and models” section, along with our model 
and the baselines adopted for evaluation. “Feature description” and “Datasets” sections 
provide details about the features used by our model and the data used for training and 
testing. The results are presented in “Results” section and discussed in “Discussion” 
section.

Related work
Cascades have been characterized on many platforms (Gómez et  al. 2008; boyd et  al. 
2010; Rossi and Magnani 2012; Dow et al. 2013; Weng et al. 2013, 2014; Weninger 2014; 
Choi et al. 2015; Hui et al. 2018). These studies revealed common properties among pop-
ular/viral conversations, suggesting the possibility of predicting viral content. Despite 
such efforts, the prediction of virality remains elusive, probably due to the intrinsic ran-
domness of popularity (Salganik et al. 2006; Goel et al. 2012).

Some machine learning methods aim to predict macroscopic characteristics of indi-
vidual cascades (mainly the size) from features observable at an early stage. Backstrom 
et al. (2013) identified features that describe novelty, arrival patterns, textual expression, 
and social influence to predict the size of media sharing cascades. Cheng et al. (2014) 
formalized size prediction as a binary classification problem, achieving an accuracy of 
80% at predicting whether the number of shares of a photo on Facebook would dou-
ble. Li et  al. (2017) proposed DeepCAS, an end-to-end deep learning approach that 
leveraged raw data to directly predict logarithmic increments of the size of Twitter cas-
cades and paper citations within finite time windows (1, 3, and 5 days). Using data from 
Twitter and Facebook, Subbian et al. (2017) proposed SansNet, an approach based on 
survival analysis (Klein and Moeschberger 2006) that predicts whether cascades will 
become viral. Their definition of virality is based on percentiles — the largest 0.5% trees 
are considered viral. Beck et al. (2019) applied various machine learning models to mon-
itor cryptocurrency news and predict the number of article mentions given their Twit-
ter activity in the previous day. Other methods leverage node characteristics (Pei et al. 
2014), network structure (Weng et al. 2013), temporal patterns (Pinto et al. 2013), or a 
combination of them (Guo et al. 2015).

Generative approaches aim at identifying underlying mechanisms that can repro-
duce stylized traits of cascades. Aragón et al. (2017a) published an extensive survey of 
approaches of this kind. Here we mention just a few to highlight their main ingredients, 
beyond what one may expect from a pure branching process à la Galton–Watson (1875). 
Kumar et al. (2010) combined the concept of novelty with preferential attachment. Wang 
et al. (2012) explored reaction times and lifespans of cascades by continuous-time mod-
eling of dynamics. Gómez et al. (2013) added a root bias to popularity and novelty, rec-
ognizing the special role that the original post plays in the spreading process. Aragón 
et  al. (2017b) built upon this model by adding reciprocity among users. They focused 
on how the structural features of conversations are affected by their presentation in a 
platform’s interface. Nishi et  al. (2016) observed that the structural diversity observed 
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among cascades was not described adequately by previous generative models. Such a 
diversity was manifest in the co-existence of deep conversation-like threads, shallow 
star-like trees, and irregular patterns. To reproduce the conversation-like patterns, they 
introduced the concept of segments, long chains of posts with little or no branching 
involved. Lumbreras (2016); Lumbreras et al. (2017) were able to capture different user 
roles in the cascade formation, and to use this information to predict user engagement.

Some deep learning approaches model a cascade by predicting the next action and its 
timestamp. The next action could be one of a given set of events, or one of a given set 
of users. CAS2VEC (Kefato et al. 2018) produces cascades as sequences of event times-
tamps. The methods proposed by Wang et al. (2017) and Islam et al. (2018) predict when 
users in a known social graph would participate in a cascade. Du et al. (2016) applied 
recurrent neural networks and temporal point processes to predict sequences of events 
such as stock-market orders and taxi trips. In these approaches, time is the most impor-
tant component being predicted; the tree structure is not reconstructed.

Point-process models can simulate cascades by fitting parameters to historical data 
(Shen et al. 2014; Gao et al. 2016; Mishra et al. 2016; Cao et al. 2017; Rizoiu et al. 2017). 
These models can be used to predict the entire tree structure, and have been success-
fully applied to the study of Twitter cascades (Kobayashi and Lambiotte 2016) as well 
as conversation threads on Reddit (Medvedev et al. 2019; Krohn and Weninger 2019). 
SEISMIC (Zhao et al. 2015) predicted the final size of a retweet cascade with a 15% rela-
tive error on average after observing the first hour of the cascade. Most point-process 
models cannot work from just the initial post, and so they are not directly comparable to 
ours. An exception is the Cascade Tree Prediction Model (CTPM) proposed by Krohn 
and Weninger (2019), which uses a Hawkes process to predict the full tree structure from 
only the initial post by cleverly inferring the necessary model parameters from similar 
posts in the training data. To our knowledge, CTPM is the only model directly compa-
rable to the one presented here, and therefore we use it as a baseline in our evaluation.

Problem and models
We represent a social media conversation as a tree of messages, with the root node being 
the initial post, and all subsequent comments, replies, or shares being additional nodes 
in the tree. Given some initial condition of a conversation, one goal is to predict its final 
macroscopic state, i.e., the size and structure of its tree. In addition, we aim to predict the 
longitudinal evolution of a cascade tree as a sequence of microscopic states.

We propose a Tree Growth Model (TGM) that starts from a partial tree containing the 
first k nodes, as well as information about the root post such as its textual content. TGM 
breaks the tree prediction problem into two sub-tasks: (1) predicting the final size of the 
tree based on the initial information given (“Size prediction” section); and (2) predict-
ing what node in the tree the next node will attach to (“Node placement” section). TGM 
grows the conversation by attaching nodes (messages) until the tree reaches the pre-
dicted size. For each sub-task, we develop a model and propose a baseline for evaluation.

Size prediction

We use regression to predict the final size of the tree based on features of the initial 
partial tree, which could be as minimal as a single first post (see “Feature description” 
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section). The distribution of tree size is heavy-tailed, as shown in Fig. 3. Since it is dif-
ficult for a regression method to predict a quantity with such a broad distribution, 
we instead predict the size-quantile of the tree and then map that quantile back to a 
size using the empirical size distribution. This approach, similar to quantile regression 
(Koenker and Bassett 1978), allows our method to deal with imbalanced data without 
resampling large trees or excluding small ones.

We evaluated several regression models for the size prediction task, using cross valida-
tion within the training set. We selected Random Forest regression, which provided the 
best performance (see Table 1).

We trained a different regression for each initial tree size k (for 1 ≤ k ≤ 10 ), and 
trained each model based on the trees in the training data whose final size is larger than 
k. This performed better than simply using k as an additional feature in the regression.

We also considered an alternative model in which the size is not decided at the outset, 
but a decision whether to stop or continue is made at each step. However, without intro-
ducing strong assumptions and biases, this approach leads to unrealistic, exponentially 
narrow tree size distributions.

Node placement

Once we predict the final size, we iteratively attach additional nodes to the current con-
versation tree. To predict where the next node will be attached, we train an estimator to 
assign a likelihood score to each node in the current tree. We then draw a random node 
with probability proportional to its score. The selected node becomes the parent of the 
newly attached node. The process is illustrated in Fig. 4.

The node classifier takes in a set of features from a given node and the tree, and 
estimates the node’s likelihood of becoming the parent of the next node in the tree. 

Fig. 3  Complementary Cumulative Distributions (CCDF) of cascade size, breadth, depth, and structural 
virality within each dataset

Table 1  Mean Relative Error in the size prediction problem by different regression models 
across our three datasets (cf. “Datasets” section), for k = 2 and k = 10

Classifier model Reddit Twitter

Crypto CVE CVE

k = 2 k = 10 k = 2 k = 10 k = 2 k = 10

Random Forest 0.77 0.46 1.4 0.84 0.22 0.41

Gradient Boosting Trees 0.79 0.43 1.6 0.81 0.25 0.45

KNN Regression 0.84 0.48 1.8 1.0 0.24 0.39

Linear Regression 1.9 0.88 1.9 0.88 0.36 2.4

Elastic Net 0.88 0.46 1.6 0.89 0.16 0.42
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We considered various machine learning models for this task. As shown in Table 2, 
the Gradient Boosting Trees classifier achieved the best accuracy, as measured by the 
Area Under the ROC Curve (AUC) across our three datasets (cf. “Datasets” section). 
AUC captures the trade-off between maximizing the true positive rate and minimiz-
ing the false positive rate.

Based on this analysis, we selected the Gradient Boosting Trees model for the node 
placement task. The classifier outputs a score between 0 and 1, such that if the score 
is closer to 1, the classifier estimates that the node is more likely to receive the next 
reply in the cascade. For details on the features we used and how the training set for 
this classifier was constructed from the empirical tree data, see “Feature description” 
section and Appendix  “Extracting node placement classifier features”.

Treating the raw classifier score as a probability (as is often done) does not yield 
optimal results. Instead, we apply a Bayesian correction to the raw classifier output 
to obtain each node’s likelihood estimate. Specifically, given a node with classifier 
score S, let A be the case where the node receives the next reply, and ¬A the case 
where the node does not receive it. Then we can compute the conditional prob-
ability that the node will receive the next reply given its score using Bayes theorem, 
P(A | S = s) = P(S = s | A)P(A) /P(S = s).

We compute the values on the right hand side of the equation from our training 
data and the classifier scores for the nodes in the training data. We set P(A) = NA/N  , 
where NA is the number of nodes in the training dataset that received the next 
reply and N is the total number of nodes in the training dataset. We compute 
P(S = s) = P(S = s | A)+ P(S = s | ¬A) . Finally, both P(S = s | A) and P(S = s | ¬A) 
are given by Gaussian Kernel Density Estimates produced from the the set of scores 
for nodes in our training data with condition A and ¬A , respectively.

Fig. 4  Diagram illustrating how nodes are added to the tree

Table 2  AUC performance by various classifiers on the node placement problem

Classifier model Reddit Twitter

Crypto CVE CVE

Gradient Boosting Trees 0.91 0.85 0.97

Random Forest 0.88 0.75 0.95

Multilayer Perceptron 0.80 0.53 0.78

KNN Classifier 0.54 0.61 0.92



Page 7 of 21Bollenbacher et al. Appl Netw Sci            (2021) 6:12 	

Baseline models

Let us introduce two baseline models. One is a simple model that follows our approach 
with size prediction and next-node placement sub-tasks. The other baseline is a state-of-
the-art method for predicting the full tree structure. 

Random baseline	� A random size baseline model draws a random size for each pre-
diction from the empirical distribution of sizes with replacement. 
We then use a simple random choice baseline for node placement, 
in which all nodes are equally likely to receive the next reply. Let 
j be the time-ordered index of existing nodes, and let n be the 
number of existing nodes in the tree. The probability of node xj 
being the parent of the next node is given by P(xj) = 1

n.
CTPM baseline	� The Cascade Tree Prediction Model uses Hawkes processes to 

reconstruct the structure of the cascade tree. While the details 
are found elsewhere (Krohn and Weninger 2019), here we explain 
the intuition behind the approach. Two distributions are fit, one 
for the root node and one for the other nodes, which determine 
branching factors at each node. CTPM infers the parameters of 
these distributions for each test post from similar posts in the 
training set. For each node, the number of children is drawn 
from its distribution, and the tree is constructed in a breadth-first 
way. The size is implicitly determined when the branching pro-
cess stops after leaf nodes draw zero values for their numbers of 
children.

Feature description
Our models use four classes of features: structural, user, content, and temporal fea-
tures. Each of these classes is described next. Table 3 outlines the features in each class. 
Appendix “Extracting node placement classifier features” discusses how the features are 
extracted, while Appendix “Feature importance” analyzes the importance of different 
features.

Structural features

We use two types of structural features for node placement and size regression. First, 
there are features about the current tree, including the initial size of the tree, its depth, 
and statistics about the placement of individual nodes (e.g., how many attached to the 
root node). Second, for the node placement task, there are features about the individual 
node, including its depth, how many children it has, how many siblings it has, and more.

Most of these features have standard definitions and are easily interpreted, but some 
are not. In particular, we introduce a normalized delay steps since parent measure, or 
simply the parent delay. It is an edge attribute capturing the relative difference in steps 
(actions) between a new node and its parent. Let the index of node i be ordered by the 
time of creation of the node. Then the parent delay of node i, di , is given by

(1)di =
(i − π(i))− 1

i − 1
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where π(i) is i’s parent ( i > π(i) ) and di ∈ [0, 1] . The root index is 0, so the parent delay 
of the second node attached to the tree is undefined. That is, di is defined only for the 
second edge (third node) and on. This measure aims to capture the root bias and the 
novelty features in prior work (Gómez et al. 2013; Lumbreras 2016; Aragón et al. 2017a). 
When a node is connected to the root, this edge is the most delayed possible di = 1 . 
Conversely, attaching a node to the most recent node previously added to the tree gives 
the shortest delay di = 0 . Figure 5 shows a conversation tree and the parent delay for 
each edge. We derive several features from this measure, including the mean and median 
delay, and the percentage of edges connecting to the root and to the most recent node.

User features

User features are derived only from the author of the conversation’s initial post, or root. 
Since our approach is generative, incorporating information about other users would 
require the model to also associate users to each new node during the tree growth. We 
focus on the tree structure replication and leave user attribution for future work.

We extract structural properties of the conversations initiated by a user, such as max 
breadth, depth, and size (see Table 3 for the full list). The user features are the median 
and the mean of these properties.

Content features

As with user features, the content features are also limited to the root of the conver-
sation, e.g., a Reddit post title or a Twitter text. Using any intermediate content would 
require the generative model to also produce content along the simulation, a task beyond 
the scope of this work.

We use fastText, a document embedding method developed by Facebook Research 
(Joulin et al. 2017), to represent the content of a conversation’s root post as a 25-compo-
nent feature vector used by the size regression model and the node placement classifier.

Temporal features

We use various temporal features, including the time of day and day of week of the root 
post, and the mean time between replies in a conversation (see Table 3 for the full list). 
Temporal features prove very valuable for the size prediction task. However, we do not 
use temporal features for the node placement task, because this would introduce too 

Fig. 5  Representation of the conversation trees in Fig. 1 with parent delays (see Eq. 1) as edge weights. Each 
node links to its parent. Note the parent delay is undefined for the edge between nodes 0 and 1
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much complexity, requiring our model to generate a time stamp for each new node as it 
is added to the tree.

Datasets
We use three social media cascade datasets that were made available as part of the 
DARPA SocialSim (DARPA 2018) December 2018 Challenge. Two originate from Red-
dit and the third from Twitter. All are anonymized. The Twitter dataset is a collection 
of public tweet cascades that contain Common Vulnerabilities and Exposure (CVE) 
codes and related keywords. Since retweets are always connected to the root tweet in 
the raw data, we use the follower data and timestamps to reconstruct the conversations 

Table 3  Description of  features, grouped by  class, showing if  they were used in  the  size 
prediction regression model, the node placement classifier, or both 

Feature Task Description

Global
Current size Node Number of nodes and its log

Depth Both Conversation depth and its log

Root edges Size Percentage of edges connected to the root

Recent edges Size Percentage of edges connected to the most recent node (the last one) 
at each insertion

Parent delay Size Mean and median parent delay of nodes (cf. “Structural features” sec‑
tion)

Node
Node index Node Time-ordered index of given node

Node depth Node Depth of given node

Node parent delay Node Parent delay of given node (cf. “Structural features” section)

Subtree size Node Size of subtree of given node

#Children Node Number of children of given node

#Grandchildren Node Number of grandchildren of given node

#Siblings Node Number of siblings of given node

#Cousins Node Number of cousins of given node

#Uncles Node Number of uncles of given node

User (mean and median over conversations initiated by the user)

Max breadth Node Maximum breadth

Depth Node Conversations depth

1st Breadth Node Number of comments at the first level (depth=1)

Lifetime Node Conversation lifetime in seconds

Size Node Number of nodes in a conversation tree

Root edges Node Percentage of edges connecting to the root

Recent edges Node Percentage of edges connecting to the most recent node (the last one) 
at each insertion

#Posts Node Total number of posts by user

Content
Root text Both Title of the Reddit post or Twitter text embedded in a 25-component 

vector

Temporal
Response time Size Mean and median time between replies

1st Response Time Size Time between root post and first reply

Root time of day Both Time of day of root post

Root day of week Both Day of week of root post
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(Goel et al. 2016; Pacheco 2019). One Reddit dataset was collected using the same CVE 
keywords as the Twitter dataset, while the other Reddit dataset consisted of cascades 
containing keywords related to several cryptocurrencies, including names, aliases, and 
cashtags of the coins.1 Table 4 presents a statistical summary of the datasets.

For each dataset, we held out a number of the most recent cascades as the test set 
and used the rest for training. For the two Reddit datasets, we used 500 cascades for the 
test set. For Twitter, we used 5000 cascades because most cascades were trivial (contain-
ing only one tweet), so we needed a greater number and diversity of cascades to test 
our method’s performance. For the Reddit Crypto and Twitter CVE datasets, we used 
10,000 cascades for the training set. We decided to limit our training set to 10,000 cas-
cades because extracting the features from these cascades during the training process 
was computationally expensive. For Reddit CVE, we were limited to 2911 cascades in the 
training set because the dataset only contains a total of 3411 cascades.

We also considered the use of some publicly available datasets that are often used to 
predict cascades of votes on the Digg news platform (Hogg and Lerman 2012), quote/
phrase memes on the Web (Leskovec et al. 2009), and retweets on Twitter (Hodas and 
Lerman 2014). However, none of these datasets have a minimal set of features used in 
our model. In particular, they do not contain usable cascade tree structures or lack the 
information needed to reconstruct the tree structure of each cascade. Digg cascades are 
all trivial stars because all users in a cascade are voting for the same post, not creating a 
conversation tree. In addition, the Twitter and Digg datasets lack text content.

Evaluation
We evaluated our models for each sub-task, size prediction and next-node placement, as 
well as for the combined task of predicting the size and structure of whole conversation 
trees. In this section we describe our evaluation methods.

Size prediction

Given a partial conversation tree with k initial nodes and information about the initial 
post (post content, time of day, etc.), our model predicts the final size of the tree. We 
adopt the Relative Error as our error measure, calculated as |s−ŝ|

|s|  , where s is the true size 
and ŝ is the estimated size of the tree. We report the Mean Relative Error (MRE) over the 
set of trees in our test data.

Table 4  Statistics about the three cascade datasets

Statistic Reddit Twitter

Crypto CVE CVE

Cascades in training set 10,000 2911 10,000

Cascades in test set 500 500 5000

Median size in training (Test) set 3 (3) 3 (9) 1 (1)

Mean size in training (Test) set 12 (5) 73 (97) 1 (1)

1  A cashtag is a unique identifier of a cryptocurrency, e.g., $BTC for Bitcoin.
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Node placement

We evaluated the model’s ability to predict where to place the next node and com-
pared it to the random choice baseline model for node placement. Specifically, let τ (n) 
be the n-th stage in the construction of tree τ (n is the current size of tree τ ). Each 
node i in τ (n) is assigned a probability p(in) that it will be the parent of the next node. 
If i∗n is the correct next node from the empirical data, we use p(i∗n) as our accuracy 
metric for this task because that is the probability of making the correct choice at step 
n in the evolution of the tree. This probability is averaged across all the steps across all 
the trees within our evaluation dataset.

For the random choice baseline, the probability of placing the next node correctly in 
a tree with n nodes is given by p(i∗n) =

1
n . To compare the models more easily, we plot 

the mean probabilities normalized by the baseline model, and call this metric Relative 
Performance in the next-node placement task.

Whole‑tree simulation

To test the ability of our Tree Growth Model to grow entire conversation trees, we 
start from a partial tree with k initial nodes and information about the initial post 
(content, time of day, etc.), and ask TGM to predict the size and structure of the final 
state of the conversation tree. First, the model predicts the final size of the tree using 
our size prediction model. Second, we add one node at a time to the tree using our 
node placement model, until we reach the predicted size of the tree.

We evaluate the performance of TGM using macroscopic measures of tree struc-
ture, namely depth, breadth, and structural virality. The latter, also known as the Wie-
ner index, is defined as the average distance between all pairs of nodes in the tree 
(Goel et al. 2016). We measure how these quantities depend on k and the final tree 
size.

Cumulative node placement

To assess the effects of cumulative errors in consecutive node placement decisions, we 
also compute the probability of placing all of the next t nodes correctly, starting from an 
initial tree of size k. For the random choice baseline, the probability of placing t consecu-
tive nodes correctly is 

∏k+t−1

n=k
1

n . Similarly for our TGM model, the probability of placing 
t consecutive nodes correctly is given as 

∏k+t−1

n=k p(i∗n) , i.e., the product of the probabili-
ties of getting each node placement correct for nodes k + 1 to k + t . For CTPM, this cal-
culation is infeasible because the probabilities p(i∗n) would have to be estimated by many 
partial simulations starting from each stage τn of every tree.

We explore how these probabilities depend on the parameters k and t. Because the 
probabilities end up being very small for large values of t, we plot the log-probability 
of each model, and use log-ratios to compare the models.

Results
Size prediction

For the size prediction task, our regression model achieved substantially better Mean 
Relative Error than the random baseline model on all three datasets (see Fig.  6). 
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In both Reddit datasets, the error monotonically decreases as k increases; this is 
expected because as k increases, the regressor has more information about each cas-
cade in the dataset. However, for the Twitter dataset, the error increases with k for 
both models. We attribute this to training data sparsity. As k increases, the number 
of potential targets for new nodes increases while the number of examples decreases: 
there are far fewer Twitter cascades of size 10 than of size 2. Consequently, the regres-
sion model has too few examples to learn from, and the random baseline model fails 
to adapt to the change in initial tree size.

Node placement

We computed the probability of choosing the correct next node, given the true tree up to 
each point. TGM achieves substantially improved performance compared to the random 
choice baseline (see Fig. 7).

Whole‑tree simulation

To asses the ability of the Tree Growth Model to predict the size and macroscopic struc-
ture of whole conversation trees, we grow entire trees and measure their depth, breadth, 
and structural virality. For each dataset, we plot the Mean Relative Error in the predic-
tions of these structural properties against the initial tree size k and the final size of the 
ground truth trees. Here k is a proxy for the amount of initial information given to the 
model about the trees it is supposed to generate.

We observe in Fig. 8 that in general, TGM outperforms the random baseline model for 
all tested values of k on Reddit datasets, but struggles with larger k values for the Twit-
ter dataset. This may be due to data sparsity; only about 1% of the trees in the training 

Fig. 6  Mean Relative Error of size prediction versus number of nodes k in the given initial tree. Shaded areas 
in this and the following plots indicate 95% confidence intervals

Fig. 7  Probability of placing the next node correctly, normalized by the random baseline model. Reddit 
Crypto and Reddit CVE results are binned over k (bin width �k = 5 ) to improve readability and reduce noise
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set have size larger than 5. Similarly, for k = 64 (the largest value tested here), the Red-
dit training sets are also sparse, hence the errors converge to near the random baseline 
model.

The state-of-the-art CTPM baseline typically outperforms TGM for small k values on 
Reddit datasets due to its clever parameter inference method. We also find that CTPM 
performance typically degrades with increasing k, while TGM typically improves with 
k. On the Twitter dataset, there is less of a difference between the performance of TGM 
and CTPM.

Figure 9 plots errors against final tree size. Our model generally outperforms the ran-
dom baseline. Again, it performs best for smaller trees, for which we have more training 
data, and converges to errors near those of the random baseline model for larger trees. 
The CTPM baseline typically outperforms TGM for small trees on Reddit datasets, 
whereas TGM outperforms CTPM for medium and large trees. Performance is compa-
rable on the Twitter dataset.

Cumulative node placement

Having found that our model performs well in reproducing the macroscopic structure 
of conversation trees, let us examine its accuracy in predicting their microscopic evolu-
tion. Since it is infeasible to compare TGM with CTPM on this task (cf. “Cumulative 
node placement” section), we only report on results comparing TGM against the ran-
dom baseline model.

Fig. 8  Mean Relative Error of whole-tree metrics (depth, breath, and structural virality) versus initial size k. 
For the Twitter CVE dataset, TGM predicts all trees to have size one when k = 1 , so that the structural virality is 
undefined
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Fig. 9  Mean Relative Error of whole-tree metrics (depth, breath, and structural virality) versus final tree size of 
ground truth

Fig. 10  Log-probability of placing a consecutive sequence of t nodes correctly, starting from an initial partial 
tree with k nodes, for each model and dataset. We also plot the difference in log-probabilities between TGM 
and the random baseline model, where blue regions show our model outperforming the baseline and red 
regions highlight the opposite case. Note that t + k is equal to the tree size, so that tree size is conserved on 
the diagonals of these plots
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Figure 10 shows that our model outperforms the baseline in consecutive node place-
ment on all datasets and all values of t and k; the difference is very small for very small t 
(short prediction sequences). However, the small values of the log-probabilities indicate 
that the model is very rarely capable of correctly reproducing the microscopic evolution 
of the conversation trees, especially for long node placement sequences (large t). Perfor-
mance is better for Twitter cascades, which are easier to predict because they tend to be 
very shallow. We believe that this poor performance is due to the accumulation of errors: 
even if we have a decent chance of selecting the next node correctly, the odds of doing so 
many times in a row drop geometrically.

Discussion
Our model outperforms the random baseline and is competitive with the state-of-the-
art CTPM baseline in predicting macroscopic features such as depth, breadth, and struc-
tural virality of conversation trees. Nevertheless, the present evaluation reveals that our 
microscopic predictions deviate significantly from the empirical conversations. This 
negative result highlights the challenges of the microscopic prediction task for cascade 
trees: we are using a rich feature set and a strong model, and yet still failing.

In particular, our results highlight the effects of error accumulation: the probabilities 
of predicting long sequences of events are extremely small. The accumulation of errors 
could play an important role in limiting the microscopic predictability of many online 
diffusion networks (Goel et  al. 2012). This problem should be investigated further in 
other predictive models of social systems.

How can our model do so poorly at microscopic predictions far into the future, and yet 
do reasonably well in predicting the structure of the final trees? This apparent contradic-
tion reveals a lack of sensitivity of the traditional structural measurements. When a tree 
has many nodes, there are many distinct microscopic configurations leading to almost 
identical macroscopic structural properties such as size, depth, breadth, and structural 
virality. In other words, predicting these structural features is a lot easier than reproduc-
ing the evolving conversations.

Although the data provided by DARPA was gathered using public application pro-
gramming interfaces, filtering public subreddits and public tweets, we cannot share it 
with the research community due to a non-disclosure agreement designed to protect 
the privacy of social media users. The lack of public datasets makes direct comparisons 
between methods difficult, hinders the reproduction of results, and slows down scien-
tific progress in this area (Pasquetto et al. 2020). Unfortunately, it was not possible to 
evaluate TGM on publicly available datasets used in the evaluation of virality predic-
tion models (Hogg and Lerman 2012; Leskovec et  al. 2009; Hodas and Lerman 2014). 
We hope that in the future it will be possible to evaluate the proposed method on more 
standard datasets.

As in most studies of this kind, the present results are somewhat limited by the scope 
of our data, i.e., cryptocurrency and cyber-security. Yet, given the differences between 
these two domains, we expect that our model would perform similarly in other domains. 
Further experiments are necessary to confirm this conjecture. Regarding platforms, we 
detected imbalances between Reddit and Twitter in our results. Although our model is 
designed to be platform-agnostic, further analyses on other social media platforms (e.g., 



Page 16 of 21Bollenbacher et al. Appl Netw Sci            (2021) 6:12 

Facebook and Instagram) are needed to explore the universal applicability of the pro-
posed model. In general, models like the ones presented in this paper are limited by the 
availability of training data, especially a sufficient number of large trees.

Finally, our framework involves extensive computational efforts to calculate the fea-
tures, node-by-node and step-by-step. It does not scale well to simulate large cascades 
beyond tens of thousands of nodes. Future work should be devoted to optimizing the 
method to handle larger-scale cascades.

Conclusions
We proposed a generative model to grow individual conversation trees starting from 
minimal information—as little as just the initial post. Our approach combines two 
machine learning sub-models: a size predictor and a next-node placement model. We 
used three datasets from two social media platforms, Reddit and Twitter, spanning the 
topical domains of cryptocurrency and cyber-security.

A contribution of the proposed machine learning framework is the engineering of fea-
tures useful for the size prediction and node placement tasks. We introduced the parent 
delay edge property to capture the characteristics of deep conversation threads versus 
shallow star-like broadcasts. This property encapsulate structural and (relative) tempo-
ral features of cascades, without requiring the model to estimate inter-arrival times. In 
addition, as an edge-level property, it is more informative about the growth dynamics 
than traditional tree-level properties such as depth and breadth.

Extensive validation results were presented to measure the accuracy of the two 
machine learning sub-models as well as the full aggregated generative model. To the best 
of our knowledge, this work presents the first evaluation of models aiming to reproduce 
the microscopic, step-by-step evolution of individual conversations trees.

Our results suggest that while it’s possible to predict with some accuracy the global 
structural features of conversation cascades as well as microscopic dynamics in the 
short-term, predicting the long-term evolution of online conversations at the level of 
individual actions remains out of the reach of generative models.
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Appendix
Extracting node placement classifier features

The node placement classifier’s job is to take a node and a tree in a given state of its 
growth, and determine if that node will receive the next reply in the tree’s growth pro-
cess. So to train the classifier, we need to give it examples of nodes in the context of a tree 
at a particular stage in the tree’s growth. To extract the training data for this classifier 
from the set of trees in our training set, we loop over each tree, each stage of the tree’s 
growth, and every node within the tree at that stage of its growth (see Algorithm 1).

For a tree of size N, this results in 
∑N

n=1 n = N (N + 1)/2 data points. This O(N 2) scal-
ing naturally results in a very large training set for this classifier if we give it large trees. 
To manage this complexity, we set a maximum size of 150 nodes and trim all trees larger 
than that size down to the maximum size. Less than 1% of trees are trimmed, yet this 
choice greatly mitigates the computational complexity.

Feature importance

We computed feature importances using Mean Decrease Impurity (Louppe et al. 2013) 
for both the node classifier and the size regression on the Reddit datasets (Table 5) and 
Twitter dataset (Table 6).

In the size prediction task, we found that by far the most important features were the 
response time features (e.g., mean time between replies). These were strongly predictive 
of tree size for both the Reddit and Twitter datasets. On Twitter, the text content fea-
tures were also significant, as was the time of day of the post; on Reddit, these features 
weren’t very important. Furthermore, we found that the feature importance changes 
significantly with k. Notably, content features become less important with larger k, 
because there is more temporal information for the classifier to use and those signals are 
stronger.

In general, we found the the user features were unimportant in both tasks, espe-
cially for Reddit. Early tests indicated that, contrary to our expectation, including 
user features in the size prediction task led to worse results; they were essentially just 
a source of noise. Therefore in our final model we did not include them. However we 
suspect that in larger datasets, where the signal from user features is more reliable, 
these features could be important for size prediction. We did include user features in 
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the node placement task because they did not seem to harm performance; but they 
did not significantly help either.

In the node placement task, the important features differed significantly between 
Reddit and Twitter. On Reddit, the strongest features were the current size of the 
whole tree, the number of children a node has, the parent delay of the node, and the 
node index. Of these, the number of children is significant because it tells the clas-
sifier how active the conversation stemming from this post/reply is, and the classi-
fier has learned that more active conversations are more likely to receive replies. The 
other three features allow the classifier to pick the root node or the most recent node 
of the tree, which are common choices in conversation trees. On Twitter, the most 
important features were the node index and the node depth. This is likely because on 

Table 5  Feature importance in  the  node placement classifier and  the  size prediction 
regression model at  k  =  2 and  k  =  5, both  for  the Reddit Crypto dataset. Reddit CVE 
feature importance is similar

Feature Node Size (k=2) Size (k=5)

Global
Current size 0.71 – –

Depth – 0 0

Root edges – 0 0

Recent edges – 0 0

Parent delay (mean, median) – 0, 0 0.002, 0

Node
Node index 0.008 – –

Node depth 0.015 – –

Node parent delay 0.14 - –

Subtree size 0.001 – –

#Children 0.10 – –

#Grandchildren 0.003 – –

#Siblings 0.010 – –

#Cousins < 10
−3 – –

#Uncles < 10
−3 – –

User (mean and median over conversations initiated by the user)

Max breadth < 10
−3 , < 10

−3 – –

Depth < 10
−3 , 0 – –

1st Breadth < 10
−3 , < 10

−3 – –

Lifetime 0, 0 – –

Size < 10
−3 , < 10

−3 – –

Root edges 0.001, < 10
−3 – –

Recent edges < 10
−3 , < 10

−3 – –

#Posts 0 – –

Content (25 features, range given)

Root text < 10
−3

< 10
−3

< 10
−3

Temporal
Response time (mean, median) – 0.28, 0.21 0.84, 0.04

1st Response time – 0.50 0.11

Root time of day 0 0 0

Root day of week 0 0 0
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Twitter most conversation trees are stars or near-stars, and these two features allow 
the classifier to choose the root node and its children. Subtree size, number of chil-
dren, and parent delay were also significant, but less important than node index and 
depth.
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