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Therefore, identifying individuals with a high potential of spreading the disease and
targeted vaccination of these individuals is of high importance. While various strategies
for identifying such individuals have been proposed in the network epidemiology liter-
ature, the vast majority of them rely solely on the network topology. In contrast, in this
paper, we propose a novel targeted vaccination strategy that considers both the static
network topology and the dynamic states of the network nodes over time. This allows
our strategy to find the individuals with the highest potential to spread the disease at
any given point in time. Extensive evaluation that we conducted over various real-
world network topologies, network sizes, vaccination budgets, and parameters of the
contagion model, demonstrates that the proposed strategy considerably outperforms
existing state-of-the-art targeted vaccination strategies in reducing the spread of the
disease. In particular, the proposed vaccination strategy further reduces the number of
infected nodes by 23-99%, compared to a vaccination strategy based on Betweenness
Centrality.
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Introduction

Judging by the past, infectious diseases pose one of the greatest risks for a global catas-
trophe. Many of these diseases (e.g., Measles, Pertussis, Influenza) have been burdening
us for centuries, while new diseases (e.g., Ebola, Zika, and the recent COVID-19) con-
tinue to emerge (Morens et al. 2004).

Consequently, mathematical contagion models of diseases were developed by epide-
miology researchers as a tool to study the mechanisms by which diseases spread, to pre-
dict the future course of an outbreak, and to evaluate strategies to control an epidemic
(Anderson and May 1992). Traditional models assumed a fully interconnected popula-
tion, in which the interactions and infections can occur between any pair of available
individuals. In contrast, more recent models assume the existence of an underlying net-
work structure that describes the potential interactions (network edges) between indi-
viduals (network nodes).
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Vaccination has become one of the most prominent measures for preventing the
spread of infectious diseases in modern times since it does not only protect the vac-
cinated individuals themselves but also prevents them from infecting their contacts
(Cornforth et al. 2011). However, mass vaccination of the population may not always
be possible, due to high costs, severe side effects, or shortage (Gallos et al. 2007; Vid-
ondo et al. 2012). Therefore, identifying individuals with a high potential of spread-
ing the disease and targeted vaccination of these individuals is of high importance
(Shams 2014; Wang et al. 2016).

Various strategies for identifying such individuals have been proposed in the net-
work epidemiology literature [for more information on vaccination and epidemics in
networks the reader is referred to Wang et al. (2017b)]. The most common approach
is based on vaccinating nodes with high network centrality scores. Vaccinating the
highest degree node is perhaps the most studied strategy (Dezs6 and Barabdsi 2002;
Schneider et al. 2012; Chen et al. 2008; Ma et al. 2013; Mao and Bian 2010; Zanette
and Kuperman 2002; Vidondo et al. 2012; Holme et al. 2002), whereas, vaccinating
nodes with the highest Betweenness Centrality score (Salathé and Jones 2010; Sch-
neider et al. 2012; Hébert-Dufresne et al. 2013; Chen et al. 2008; Holme et al. 2002) is
acknowledged as the most effective strategy (Wang et al. 2016). Several recent stud-
ies suggested targeted vaccination strategies that apply network centrality measures
which are more “community-aware” (Cherifi et al. 2019; Ghalmane et al. 2019; Tulu
et al. 2018). While this approach typically leads to high performance, it requires
global information about the entire network structure, which is not always available.

In order to overcome this issue, several studies suggested a vaccination approach
that requires only local information about the node’s neighborhood by relying on
the friendship paradox (Feld 1991). This paradox suggests that in most cases, the
friends of an individual have more friends than the individual itself. Therefore, as sug-
gested by Cohen et al. (2003) and improved by Gallos et al. (2007), picking a random
neighbor of a random node is more likely to result in a central node than just pick-
ing a random node. Such vaccination strategies are commonly called in the literature
acquaintance strategies. However, since this approach uses less information than the
centrality-based approach, it is typically less effective.

All of the targeted vaccination strategies described above rely solely on the network
topology when choosing the nodes to vaccinate. In contrast, in this paper, we pro-
pose a novel targeted vaccination strategy, Infectious Betweenness (IB) Centrality,
that considers both the static network topology and the dynamic states of the net-
work nodes over time. This allows our strategy to find the individuals with the highest
potential to spread the disease at any given point in time. More specifically, inspired
by Betweenness Centrality, our strategy aims at identifying nodes that serve as bridges
between network components. However, in contrast to Betweenness Centrality, our
strategy focuses on finding bridges between infected nodes and susceptible nodes.

Extensive evaluation that we conducted over real-world networks demonstrates
that the proposed IB Centrality strategy considerably outperforms existing state-of-
the-art strategies. In particular, when compared with Betweenness Centrality (sec-
ond-best strategy), IB Centrality further reduces the number of infected nodes in
23-99%. These results were robust to changes in parameters’ values, including the
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network topology and size, the vaccination budget, the transmission probability, and
the recovery rate.

This paper is organized as follows. In “The Proposed Method” section, we present
the details of the proposed targeted vaccination strategy. Then, in “Experimental set-
ting” section, we describe the experimental setting used throughout our evaluation.
In “Results” section, we report the results of our extensive evaluation. Finally, “Sum-
mary and conclusion” section summarizes this paper and suggests directions for future
research.

The Proposed Method
In this section, we present the Infectious Betweenness (IB) Centrality vaccination strat-
egy. To that end, in “Betweenness Centrality” section, we describe the well-studied
Betweenness Centrality measure, which our method is based on, and in “The SIR Model”
section, we describe the susceptible-infected-recovered (SIR) model which is later used
in our evaluation. Finally, in “Infectious Betweenness Centrality” section, we provide the
details of IB Centrality.

To demonstrate the ideas described in this section, we will use the toy network
depicted in Fig. 1. This network includes 10 nodes connected with 9 undirected edges.

Preliminaries

Betweenness centrality

The Betweenness Centrality score of a given node v is the fraction of shortest paths
between a given pair of nodes that go through v, summed over all possible pairs of nodes
(Freeman 1977). More formally, the Betweenness Centrality score of a node v, denoted
by BC(v), is:

BCO) — o (a,blv)
( ) a,be\%;ébq&v U(a' b) (1)
where Vis the set of all network nodes, o (4, b) is the number of shortest paths that start
at node « and end at node b, and o (a, b|v) is the number of shortest paths that start at
node 4, end at node b and pass through node v.
For example, let’s calculate BC(J) for the network shown in Fig. 1. Overall, we have 36
pairs of nodes that do not include I (i.e., (10 — 1)(10 — 2)/2), and between each such
pair of nodes in our network, we have exactly one shortest path (note that this is not
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Fig. 1 A toy network with 10 nodes and nine undirected edges
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necessarily the case for other networks). 15 of these pairs (i.e., the 14 pairs that include
one node from {A,B,C,D,E,F,G} and one node from {H,J}, and the additional pair
(H, ))) include node I in the (single) shortest path, and therefore each of these pairs con-
tribute 1 to the sum in Eq. 1. All remaining 21 pairs do not include node I in the (single)
shortest path, and therefore each of these pairs contributes O to the sum in Eq. 1. Put
together, BC(J) = 15.

The Betweenness Centrality-based vaccination strategy (i.e., vaccinating the nodes
with the highest Betweenness Centrality scores) is often considered the most effective
targeted vaccination strategy (Wang et al. 2016). This happens since nodes with higher
Betweenness Centrality scores often serve as bridges between components in the net-
work, and their vaccination is likely to break the network into smaller unconnected com-
ponents, thereby preventing the spread of the disease from one component to another.

The SIR model

One of the most well-studied contagion models in the epidemiological literature is the
susceptible—infected—recovered (SIR) model (Kermack and McKendrick 1927). SIR was
originally suggested as a compartmental model, which splits the population into three
compartments: S—susceptible, /—infected, and R—recovered. Transitions between
compartments can happen in two ways: (1) susceptible individuals have a transmission
probability B to become infected, reflecting an “interaction” with infected individuals,
and (2) infected individuals recover from the disease with rate y.

The SIR model was also studied as a network-based model [see for example (Holme
2004; Ventresca and Aleman 2013; Shaw and Schwartz 2010; Ma et al. 2013; Mao and
Bian 2010; Cohen et al. 2003; Zanette and Kuperman 2002; Zuzek et al. 2015]. The con-
tagion process, in this case, is very similar to the one in the compartmental case, but in
this case, infections are restricted by the network topology. More specifically, at each
timestamp, each infected node (i.e., a node with state I) has a single independent oppor-
tunity to infect each of its susceptible neighbors (i.e., neighbor nodes with state S), and
this attempt succeeds with probability B. Similarly, at each timestamp, each infected
node (i.e., node with state I) can recover (i.e., change its state to R) with rate y (or equiva-
lently, recover after % time steps).

Figure 2 demonstrates the contagion process according to the network-based SIR
model. For that purpose, we use the same network topology from Fig. 1, and assume
that 8 = 0.2 and y = 0.5. The figure presents four consecutive snapshots of the conta-
gion process, where susceptible nodes (S) are marked in white, infected nodes (I) are
marked in red, and recovered nodes (R) are marked in green. At time ¢ = 0 (Fig. 2a),
E is the only infected node. E has a single shot to infect its sole susceptible neighbor F,
where the probability of this attempt to succeed is 0.2. Assuming that this attempt suc-
ceeded, at time ¢ = 1 (Fig. 2b) we have two infected nodes E and F. Now, E and F have
the opportunity to infect one or more of their susceptible neighbors C, G, and I (each
with probability 0.2). Assuming that nodes C and G got infected, and that node E recov-
ered (1/0.5 = 2 timestamps have passed since its infection), at time ¢ = 2 (Fig. 2c) we
have three infected nodes C, F and G. Now, C, F, and G have the opportunity to infect
one or more of their susceptible neighbors A, B, D, and I (each with probability 0.2).
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Fig. 2 Four consecutive snapshots of the SIR contagion process over the network from Fig. 1. Susceptible
nodes (S) are marked in white, infected nodes (/) are marked in red, and recovered nodes (R) are marked in
green

Finally, assuming that nodes B and I got infected, and that node F recovered (1/0.5 = 2
timestamps have passed since its infection), at time ¢ = 3 (Fig. 2d) we have four infected
nodes B, C, G and .

Infectious Betweenness Centrality

As mention above, most of the targeted vaccination strategies proposed in the network
epidemiology literature (including Betweenness Centrality) rely solely on the network
topology. In contrast, we propose a novel targeted vaccination strategy, Infectious
Betweenness (IB) Centrality, that considers both the static network topology and the
dynamic states of the network nodes over time. This allows our strategy to find the indi-
viduals with the highest potential to spread the disease at any given point in time.

More specifically, inspired by Betweenness Centrality, our strategy aims at identify-
ing nodes that serve as bridges between network components. However, in contrast to
Betweenness Centrality, our strategy focuses on finding bridges between infected nodes
and susceptible nodes. In particular, instead of considering all shortest paths in the net-
work, our strategy considers only the shortest paths that start with an infected node
and end with a susceptible node. Formally, the IB Centrality score of a node v in time ¢,
denoted by IBC;(v), is:

o(a,b|v)

BGW = > O )

a€Ss,bely,atb#y

where S; is the set of susceptible nodes at time ¢, I; is the set of infected nodes at time
t, o(a, b) is the number of shortest paths that start at node a and end at node b, and
o (a, b|v) is the number of shortest paths that start at node 4, end at node b and pass
through node v.

Figure 3 demonstrates the idea behind IB Centrality. For that purpose, we use again
the same network from Fig. 1. We assume an SIR contagion model, and that the only
infected node at time £ = 0 is A. The node with the highest IB Centrality score at time
t = 0is node C (marked with a blue outline), having IBC;(C) = 8. All 8 pairs that include
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Fig. 3 A comparison between Infectious Betweenness Centrality and Betweenness Centrality for the
network from Fig. 1 and a single infected node (A). The node with the blue outline (C) has the highest
Infectious Betweenness Centrality score, whereas the node with the purple outline (F) has the highest
Betweenness Centrality score

Table 1 Network topologies used in our simulations

Network name Number of nodes Number of edges Short description
Prison (MacRae 1960) 67 142 Friendship relationships of prison
inmates
Game of Thrones (Beveridge and 407 2637 Network of interactions between
Chemers 2018) characters in the HBO series
“Game of Thrones”
Email (Leskovec and Krevl 2014) 1005 16,706 Email communication in a large
European research institution
Facebook (Leskovec and Krevl 4039 88,234 Friendship relationships surveyed
2014) by a Facebook app
Citation (Leskovec and Krevl 2014) 3,774,768 16,518,948 US Patent citation network
1975-1999

node A (i.e., an infected node) and one node from {B, D, E,F,G,H,1,]} (i.e., susceptible
node which is not C) include node C in the (single) shortest path, and therefore each of
these pairs contribute 1 to the sum in Eq. 2. Clearly, vaccinating node C will stop the
spread of the disease completely, regardless of the values associated with § and y. In con-
trast, the node with the highest Betweenness Centrality score is F (marked with a purple
outline), and vaccinating F cannot prevent the infection of nodes B, C, and D.

Note The proposed IB Centrality measure can be seen as a special case of the
Q-betweenness measure (Flom et al. 2004), where the two considered groups are S; and
I. It can also be seen as a special case of Betweenness Centrality defined with respect to
an overlay network (Puzis et al. 2008), where the adjacency index /4, is defined as:

h _ lLael; A be St
ab = 0, otherwise

Experimental setting

In this section, we describe the experimental setting used throughout our evaluation,
including the network topologies used (“Network topologies” section), the contagion
model considered (“Contagion model” section), the compared vaccination strategies
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(“Vaccination strategies” section), the simulation procedure (“Simulation procedure”
section), and the parameters’ space (“Parameters’ space” section).

Network topologies

Our simulations were executed on various publicly available real-world network topolo-
gies, as detailed in Table 1. Some of the networks were adapted to fit our experimental
framework, either by converting them into undirected networks or by sampling a subset
of nodes.

Contagion model

Similar to the vast majority of papers in the the network epidemiology field dealing with
vaccination strategies (e.g., Ventresca and Aleman 2013; Shaw and Schwartz 2010; Ma
et al. 2013; Mao and Bian 2010; Cohen et al. 2003; Zanette and Kuperman 2002; Zuzek
et al. 2015), we consider the SIR contagion model. For more details, see “The SIR model”

section.

Vaccination strategies
We compare the proposed IB Centrality vaccination strategy to six other benchmark

vaccination strategies:

+ Random Node pick a random node in the network (used for example in Holme 2004;
Ma et al. 2013; Shaw and Schwartz 2010).

+ Random Neighbor pick a random node in the network and then pick a random neigh-
bor of it (used for example in Holme 2004; Cohen et al. 2003).

+ Highest-Degree Neighbor pick a random node in the network and then pick its high-
est degree neighbor (used for example in Holme 2004; Gallos et al. 2007).

+ Non-Overlap Neighbors pick a random node v in the network and then pick one of its
neighbors who has the highest number of neighbors that are not overlapping with v's
neighbors (used for example in Holme 2004).

+ Degree Centrality pick the node with the highest Degree Centrality in the network
(used for example in Dezs6 and Barabasi 2002; Schneider et al. 2012; Chen et al.
2008; Ma et al. 2013; Mao and Bian 2010; Zanette and Kuperman 2002; Vidondo
et al. 2012; Holme et al. 2002).

+ Betweenness Centrality pick the node with the highest Betweenness Centrality in the
network (used for example in Salathé and Jones 2010; Schneider et al. 2012; Hébert-
Dufresne et al. 2013; Chen et al. 2008; Holme et al. 2002; Wang et al. 2016).

Simulation procedure

In order to evaluate the proposed vaccination strategy and compare it with the bench-
mark strategies, we simulated the following contagion and vaccination procedure.
First, a randomly selected (susceptible) node was chosen, and its state was changed
to I in order to ignite the contagion process. Then, the process continued in rounds,
where at each round, we performed the following steps: (1) applying the SIR model to
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allow infected nodes the opportunity to infect their susceptible neighbors as well as
become recovered; (2) choosing a set of nodes to be vaccinated, according to the con-
sidered vaccination strategy and the vaccination budget constraints. (3) vaccinating
the chosen set of nodes and remove them from the network. This process continues
as long as the budget is not over. Once the budget is over, no more nodes are vacci-
nated, and the SIR model is applied iteratively until convergence (i.e., no more nodes
are found in state 7). Similar to other studies in this field (Mao and Bian 2010; Cohen
et al. 2003; Zanette and Kuperman 2002; Vidondo et al. 2012; Zuzek et al. 2015), as
the primary measure, we used the total number of nodes in state R at the end of the
process (which is equivalent to the total number of nodes who were at state I during
the contagion process).

Given a vaccination budget, B, we followed the methodology suggested in Wang
et al. (2017a) to allocate the budget over time. More specifically, the fraction of the
budget allocated at timestamp ¢, denoted by By, is given by: B; = B/2’. This allows us
to allocate larger fractions of the budget at earlier stages of the contagion process, and
therefore considerably limit the rate of the spread, while securing a certain fraction
of the vaccination budget for later stages of the contagion process, allowing to uti-
lize the temporal properties of the contagion process. Since our evaluation considers
networks of different sizes, instead of referring to the vaccination budget in absolute
numbers (denoted as B above), we refer to it as a fraction of the network size and
denote it as F.

It is important to emphasize that since the states of nodes are changing over time,
IB Centrality requires to recalculate the scores of susceptible nodes at each times-
tamp of the contagion process. This is not the case for the other benchmark strate-
gies that can determine all nodes to be vaccinated at time ¢ = 0 (even if these nodes
are vaccinated over time). Consequently, in principle, the benchmark strategies can
choose nodes to vaccinate that are infected or recovered, and vaccinating such nodes
is clearly wasteful. To make the comparison of our strategy with the benchmark strat-
egies fairer, at each round of the simulation, we restricted the benchmark strategies to
choose nodes to vaccinate from the set of susceptible nodes only.

Due to the stochastic nature of this process, each simulation was repeated 50 times,
and the reported results are the average of these 50 repetitions.

Table 2 Simulation parameters space

Parameter

Values

G—The network topology

N—The network size

F—The vaccination budget
B—The transmission probability
1/y—The recovery time

Prison, Game of Thrones, Email, Facebook, Cita-
tion

100, 500, 1000, 5000, 10,000, 50,000, 100,000

0.01,0.05,0.10,0.15,0.20, 0.25,0.30, 0.35,0.40

0.05,0.10,0.15,0.20,0.25

5,10, 15,20, 25

Default values are marked in bold
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Parameters’ space

In the experiments, we examined a variety of values for the different parameters. In
each set of simulations reported below, all parameters except one were set to their
default value, while a single remaining parameter was examined over a varying range
of values. The parameters’ space used in our experiments is detailed in Table 2.

A few of our experiments involved an analysis of varying network sizes N. For that
purpose, we sampled the given number of nodes and the edges between them from
the Citation network. To make this sampling process more robust, for each net-
work size, we performed 30 different samplings of sub-networks of that size, and the

reported results are averages over these 30 sub-networks.

Results

In this section, we report the result of our extensive evaluation. We begin by provid-
ing an overall comparison of the proposed IB Centrality strategy with the other bench-
marked methods (“Overall comparison of IB Centrality with the other benchmark
methods” section), followed by a sensitivity analysis of the parameters (“Sensitivity anal-
ysis of the parameters” section) and runtime analysis (“Runtime” section).

Overall comparison of IB Centrality with the other benchmark methods
In this subsection, we present an overall comparison of the IB Centrality strategy to the
other six benchmark methods described in “Vaccination strategies” section.

Figure 4 presents the (averaged) ratio of infected nodes after convergence |R|/N, for
each of the seven considered methods, over the five network topologies described in
Table 1. In this experiment, all other parameters listed in Table 2, except for the network

topology, were set to their default values.

1 0.010
084 0.005
0.000
0.6 1
g
3
0.4 1
0.2 1
0.0 -
Prison GOT Facebook Email Citation
HEl Random Node Degree Centrality
mmm Random Neighbor B Betweenness Centrality
Highest-Degree Neighbor Il B Centrality
Non-Overlap Neighbors
Fig. 4 Average ratio of infected nodes after convergence |R|/N as a function of the network topology G. The
inset on the top right corner provides a zoomed-in view of the Citation network topology. IB Centrality (blue
bars) considerably outperforms all other benchmark methods
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As expected, the worst-performing method is the Random Node strategy (brown
bars), which does not utilize any information about the network topology nor the nodes’
states.

Next, come the Random Neighbor (red bars), Highest-Degree Neighbor (orange bars),
and Non-Overlap Neighbors (green bars) strategies. As expected, these three strategies
perform better than the Random Node strategy as they use some information on the
network topology. It is important to note, however, that the type of information they use
is restricted to the local environment of the randomly selected node.

The following are the Degree Centrality (turquoise bars) and Betweenness Centrality
(light blue bars) strategies. These two strategies use global information about the net-
work topology, which allows them a more careful selection of the nodes to vaccinate,
compared to the Random Neighbor, Highest-Degree Neighbor, and Non-Overlap Neigh-
bors strategies, which rely on local information only.

Finally, IB Centrality (blue bars) considerably outperforms all other benchmark meth-
ods. More specifically, when comparing IB Centrality to Betweenness Centrality (sec-
ond-best strategy), IB Centrality obtains a ratio of infected nodes, which is 23% to 99%
lower than that obtained by Betweenness Centrality. This is due to IB Centrality’s inher-
ent ability to combine the information about the global network topology together with
information about the dynamic states of nodes during the contagion process.

Sensitivity analysis of the parameters
In this subsection, we present a comparison of the IB Centrality strategy to the other six
benchmark methods for various parameters’ values that are listed in Table 2.

Figure 5 presents the (averaged) total number of infected nodes (after convergence)
|R|, for each of the seven considered methods, over the Citation network topology, for
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Highest-Degree Neighbor
Non-Overlap Neighbors

Degree Centrality
—®- Betweenness Centrality
-®- B Centrality

Fig. 5 Average number of infected nodes after convergence |R|, as a function of the vaccination budget F. 1B
Centrality (blue plot) remains the best performing strategy for all considered values of F

Page 10 of 16



Lev and Shmueli Appl Netw Sci

(2021) 6:6
6000 /
14
1
1
5000 !
]
4000 - P
= 7/
= 1 I/
¥ 3000 1 1
Iy
,' ! e mmmS TS TT ST T E ST
2000 i/ e
Iy /
"l /'
1000 - W
I ¢
u,!
0d oL
0 25 50 75 100 125 150 175
t

Degree Centrality
——- Betweenness Centrality

—==-|B Centrality

—== Random Node

——=- Random Neighbor
Highest-Degree Neighbor
Non-Overlap Neighbors

Fig. 6 Cumulative number of infected nodes along time ZB |/¢]. 1B Centrality maintains a seemingly “flat”
curve, with a very low number of infected nodes (close to zero) during the entire contagion process
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Fig. 7 Average number of infected nodes (after convergence) |R|, for the IB Centrality strategy (left) and

the Betweenness Centrality strategy (right), for different values of the contagion model parameters g and
y. B Centrality obtains |R| values that are considerably lower than those of Betweenness Centrality for all

considered values of Band y
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different values of the vaccination budget F. In this experiment, all other parameters

listed in Table 2, except for F were set to their default values.

As expected, the number of infected nodes decreases with F, for all considered strate-

gies (i.e., vaccinating more nodes reduces the number of infected nodes). However, it is
interesting to see that this decrease presents a “diminishing return” effect where most of
the strategies strive to zero infected nodes (for around F = 40%). The figure also dem-
onstrates the superiority of the IB Centrality strategy (blue plot), which remains the best
performing strategy for all considered values of F.
To better understand how the different vaccination strategies behave over time, we cal-
culated the (averaged) cumulative number of infected nodes at each timestamp during
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the contagion process Zg |It| (see Fig. 6), for each of the seven considered methods. In
this experiment, all parameters listed in Table 2, were set to their default values. As can
be seen in the figure, IB Centrality maintains a seemingly “flat” curve, with a very low
number of infected nodes (close to zero) during the entire contagion process.

Figure 7 presents the (averaged) total number of infected nodes (after convergence)
|R|, for the IB Centrality strategy (left) and the Betweenness Centrality strategy
(right), for different values of the contagion parameters g and y. Each entry in the two
heatmaps represents a pair of 8 and y values, and the color of the entry represents the
(averaged) total number of infected nodes (after convergence), where warmer colors
represent higher |R| values. In this experiment, all other parameters listed in Table 2,
except for B and y, were set to their default values.

As can be seen from the figure, IB Centrality obtains |R| values that are considera-
bly lower than those of Betweenness Centrality for all considered values of 8 and y.
As expected, we observe that in the case of Betweenness Centrality, |R| increases with
higher values of the transmission probability 8 and lower values of the recovery rate y
(or higher values of %). Interestingly, this phenomenon is not clearly evident in the
case of IB Centrality. More specifically, we do see some differences between lower and
higher values of g, but it is difficult to find a clear pattern with regard to y values. This
can be a result of the relatively low values of |R| that make such a comparison more
difficult but could also suggest that y has a relatively low effect on the resulting num-
ber of infected nodes in the case of IB Centrality.

Figure 8 presents the (averaged) total number of infected nodes (after convergence)
|R|, for each of the seven considered methods, and different (sampled) network sizes
N of the Citation network topology. In this experiment, all other parameters listed
in Table 2, except for N, were set to their default values. Again, it can be seen that IB
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Fig. 8 Average number of infected nodes after convergence |R|, as a function of the network size N. The
X-axis (N) is presented in log scale. IB Centrality maintains a low number of infected nodes, even for relatively
large network sizes
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Centrality maintains a low number of infected nodes, even for relatively large network

sizes.

Runtime

Figure 9 presents the (median) runtime taken to vaccinate a single node, for each of the
seven considered methods, and different (sampled) network sizes N of the Citation net-
work topology. In this experiment, all other parameters listed in Table 2, except for N
were set to their default values.

As expected, Betweenness Centrality, which has a runtime complexity of O(VE)
(Brandes 2001), takes the longest time to run for all values of N, and its runtime increases
considerably with the network size N (note the log-log scale of the axes). At the other
end, Random Node presents the fastest time, and this time is independent of N. Degree
Centrality is the second-fastest strategy after Random Node, and while it involves a very
simple calculation (i.e., determining the degree of a given node), it requires to perform
it for all nodes in the networks, and therefore its runtime depends on N. Somewhere in
the middle, we find the three acquaintance vaccination strategies (Random Neighbor,
Highest-Degree Neighbor, and Non-Overlap Neighbors). While these strategies do not
require to perform a calculation for each network node (in contrast to Degree Centrality,
and similarly to Random Node), their runtime still depends on N. This happens since the
probability of randomly picking a node having no neighbors at all or having only infected
neighbors increases at later stages of the contagion process, making it more time con-
suming for the strategy to pick nodes to vaccinate. IB Centrality’s runtimes are slightly
higher than those of the three acquaintance vaccination strategies for small network
sizes. However, since it manages to maintain a relatively fixed runtime, it becomes faster
for large network sizes.
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Summary and conclusion

In this paper, we proposed a novel targeted vaccination strategy, IB Centrality, which
relies on both the static network topology as well as the dynamic states of the nodes
during the contagion process. More specifically, at any given time ¢, the strategy recalcu-
lates scores for all susceptible nodes, where the score of a given node v is the fraction of
shortest paths between a given pair of nodes that go through v, summed over all pairs of
infectious nodes (at time ) and susceptible nodes (at time £). Then, depending on budget
constraints, nodes with the highest scores are chosen to be vaccinated. Extensive evalu-
ation that we conducted over a multitude of parameters’ values showed that our strategy
considerably outperforms state-of-the-art vaccination strategies in all considered cases.

Additional research directions may include the following:

+ Larger Network Sizes The network sizes considered in this paper ranged between
several dozens to 100,000 nodes, which reflect small to medium real-world net-
works. Future research should examine settings with a considerably larger-sized
network and evaluate the effectiveness as well as the efficiency of the proposed
method under such settings.

+ Additional Contagion Models In this paper, we considered the well-studied SIR
model as the underlying contagion model. However, many other contagion mod-
els were proposed in the literature, including susceptible-infected-recovered-sus-
ceptible (SIRS) (Enatsu et al. 2012; Hu et al. 2011; Jin et al. 2007) and susceptible-
infected-susceptible (SIS) (Hethcote 1989) to name a few. It would be interesting
to investigate the properties of the proposed method under different contagion
models.

+ Partial Information The proposed strategy requires complete information on both
the network topology and the states of nodes at any given time. An interesting future
research direction would be to evaluate the proposed method and adapt it to settings
where only partial information (on either the network topology or states of nodes) is
available.

o Closely related domains In this paper, we focused on the targeted vaccination prob-
lem, which aims at selecting a subset of nodes to be vaccinated in order to minimize
the spread of a disease.

A closely related problem is that of influence maximization, which aims at selecting
a subset of nodes to be seeded in order to maximize the diffusion of information.
While the two problems are different (diffusion of information differs from a spread
of diseases, and maximization is different from minimization), it would be interest-
ing to adapt and evaluate IB Centrality in the influence maximization problem. This
direction is even more compelling since several recent works that studied influence
maximization suggested strategies for adaptive seeding of nodes (Goldenberg et al.
2018; Jankowski et al. 2017a, b; Sela et al. 2018).

Another closely related domain is that of computer viruses. Similarly to biological
viruses, computer viruses may spread over the computer network, and computers
may be “vaccinated” by installing an antivirus software or software patches. A few
studies in this domain (e.g., Chen and Carley 2004; Khouzani et al. 2011) offered
dynamic patching strategies which are similar in mind to the targeted vaccination
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strategies discussed in this paper. An interesting research direction would be to com-
pare strategies developed in the two domains, and adopt strategies developed in one
domain to the other domain.

Abbreviations
IB: Infectious betweenness; SIR: Susceptible-infected-recovered; SIRS: Susceptible-infected-recovered-susceptible; SIS:
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