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Abstract
Hypergraphs offer a natural modeling language for studying polyadic interactions
between sets of entities. Many polyadic interactions are asymmetric, with nodes
playing distinctive roles. In an academic collaboration network, for example, the order
of authors on a paper often reflects the nature of their contributions to the completed
work. To model these networks, we introduce annotated hypergraphs as natural
polyadic generalizations of directed graphs. Annotated hypergraphs form a highly
general framework for incorporating metadata into polyadic graph models. To facilitate
data analysis with annotated hypergraphs, we construct a role-aware configuration null
model for these structures and prove an efficient Markov Chain Monte Carlo scheme
for sampling from it. We proceed to formulate several metrics and algorithms for the
analysis of annotated hypergraphs. Several of these, such as assortativity and
modularity, naturally generalize dyadic counterparts. Other metrics, such as local role
densities, are unique to the setting of annotated hypergraphs. We illustrate our
techniques on six digital social networks, and present a detailed case-study of the
Enron email data set.

Keywords: Hypergraphs, Null models, Network science, Statistical inference,
Community detection

Introduction
Many data sets of contemporary interest log interactions between sets of entities of vary-
ing size. In collaborations between scholars, legislators, or actors, a single project may
involve an arbitrary number of agents. A single email links at least one sender to one or
more receivers. A given chemical reactionmay require a large set of reagents. The dynam-
ics of processes such as these may depend on these polyadic interactions, and in many
cases cannot equivalently expressed through constituent pairwise interactions. This phe-
nomenon is observed in areas as diverse as knowledge aggregation (Greening Jr et al.
2015), social contagion (de Arruda et al. 2019), and the evolution of cooperation (Tarnita
et al. 2009), among many others. Because of this, these networks cannot be represented
by via the classical paradigm of dyadic graphs without a significant loss of model fidelity.
Polyadic data representations such as hypergraphs (Berge 1984; Chodrow 2019a) and

simplicial complexes (Young et al. 2017; Carlsson 2009) have therefore emerged as prac-
tical modeling frameworks that directly represent interactions between arbitrary sets of
agents. As shown, for example, by one of the present authors in Chodrow (2019a), the
choice of whether and when to represent polyadic data dyadically can lead to directionally
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contrasting study conclusions when studying common network metrics such as triadic
closure and degree-assortativity. Furthermore, the use of polyadic data representations
enable the analyst to study measures of higher-order structure which cannot even be
defined in the dyadic framework.
In some cases, even polyadic data representations may be inadequate. Increasingly, net-

work data sets incorporate rich metadata over and above topological structure. Models
that flexibly incorporate this information can assist analysts in discovering features that
may not be apparent without metadata. In this article, we consider an important and rel-
atively general class of metadata in which nodes are assigned roles in each edge. A variety
of social data sets involve such roles. For example, research articles have junior and senior
authors. Political bills have sponsors and supporters. Movies have starring and support-
ing actors. Emails have senders, receivers, and carbon copies. Chemical reactions possess
reactants, solvents, catalysts and inhibitors. These roles induce asymmetries in edges,
and permuting role labels within an edge results in a meaningfully different data set. For
example, a movie in which actor A plays a starring role and B a supporting role becomes
a different movie if the roles are exchanged.
Metadata, including roles, can be especially important for modeling processes evolv-

ing on network substrates. A trivial example is that information cannot flow along an
email edge from receiver to sender. A less trivial example comes from a recent study
(Rotabi et al. 2017), which found that conventions in scholarly documentation preparation
tend to flow along collaborations from more senior authors to more junior ones. In many
fields, senior authors will tend to be “last” authors, while junior ones are more likely to
be “first” or “middle” authors. The author order therefore carries important information
about the spread of conventions along this collaboration network.
There exists an extensive literature studying graphs and hypergraphs with metadata

attached to nodes (Ghoshal et al. 2009; McMorris et al. 1994; Kovanen et al. 2013; Hen-
derson et al. 2012; Peel et al. 2017) and edges (Mucha et al. 2010; Gomez et al. 2013;
Battiston et al. 2014). The problem of studying hypergraphs with general roles, how-
ever, does not neatly fit into any of these frameworks. This is because roles are not
attributes of either nodes or edges, but rather of node-edge pairs. An actress is not
(intrinsically) a “lead actress” – she may play a leading role in one film and a sup-
porting role in the next. Contextual metadata is familiar in the context of directed
networks. Each edge contains two nodes, one of which possesses the role “source” and
the other “target,” however a node may be the source of some edges, and the target
of others. In Gallo et al. (1993); Gallo and Scutella (1998), the authors allow edges to
contain arbitrary numbers of nodes, each of which is assigned one of these two roles.
This results in directed hypergraphs, which have found some application in the study
of cellular networks (Klamt et al. 2009) and routing (Marcotte and Nguyen 1998) prob-
lems. Subsequent work generalized further to “multimodal networks” by introducing a
relationship of “association” (Heath and Sioson 2009) alongside the source and target
roles.
Several extant papers explicitly model roles in interactions. An early pair of papers by

Söderberg (Söderberg 2003a; 2003b) define and study a class of inhomogeneous random
graphs in which nodes possess colored (role-labeled) stubs denoting their role in a given
interaction. This class of models preserves degree distributions in expectation rather than
deterministically, and the author develops them only for dyadic graphs. A later paper by
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Karrer and Newman (2010) assigns nodes to roles in network motifs – small recurrent
subgraphs – and uses these roles to construct configuration-like models. A model closely
related to the one we develop here can be obtained by using labeled cliques as the relevant
motifs and interpreting these cliques as hyperedges. Most recently, Allard et al. (2015)
define a flexible generalization of stub-matching that can reproduce a wide variety of
network topologies, including the presence of heterogeneous hyperedges. As we discuss
below, stub-matching can often generate graphs with a small number of structural degen-
eracies. When studying dynamics on graphs as the authors do, these degeneracies can
often be ignored. Since our focus is primarily inferential, we instead choose an approach
that explicitly avoids degeneracies.
Our aim in this work is to develop a unified modeling and analysis framework for

polyadic data with contextual roles, which can then be flexibly deployed in varied
domains. The article is structured as follows. We first define annotated hypergraphs,
which naturally generalize the notion of directedness to polyadic data. We then define
a configuration model for annotated hypergraphs, and prove a Markov Chain Monte
Carlo algorithm for sampling from this model. Next, we formulate a range of role-
aware metrics for studying the structure of annotated hypergraphs. Some of these are
direct generalizations of familiar tools, including centrality, assortativity, and modu-
larity. Others, such as local role densities, are qualitatively novel. We then bring our
methods to bear on a small collection of social network data sets, showing how the
framework of annotated hypergraphs allows us to flexibly highlight interpretable fea-
tures in the data. Additionally, we conduct an extended case-study of the popular Enron
email data set. We conclude with a discussion of our results and suggestions for future
work in the modeling of rich, polyadic data. Throughout our development, we empha-
size how the incorporation of metadata allows the analyst to ask and answer a wide
array of questions not accessible through the pure hypergraph formalism of nodes and
edges.

Annotated hypergraphs
An annotated hypergraph a hypergraph accompanied by additional metadata.

Definition 1 (Annotated Hypergraph) An annotated hypergraph H = (V , E ,X , �)
consists of:

(1) A node set V .
(2) A labeled edge set E , a multiset of subsets of V . In particular, multi-edges are

permitted, but edges in which the same node appears twice are not.
(3) A finite label set X .
(4) A role labeling function � : {(v, e) ∈ V × E |v ∈ e} → X .

The statement �(v, e) = x is to be read as “node v has role x in edge e.” We emphasize
that the labeling function is contextual. Roles are assigned neither to nodes or to edges,
but rather to node-edge pairs. There are two representations of annotated hypergraphs
that will be useful in our subsequent development. Let n = |V|, m = |E |, and p = |X |.
LetH refer to the set of all annotated hypergraphs with n nodes,m hyperedges, and label
alphabet X .
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Definition 2 (Labeled Incidence Array) The labeled incidence array T = T(H) ∈
{0, 1}n×m×p of an annotated hypergraph is defined entrywise by

tvex =
{
1 v ∈ e and �(v, e) = x
0 otherwise.

(1)

Note that the labeled incidence array is distinct from the tensorial representation of
directed hypergraphs in Xie and Qi (2016). An alternative representation is especially
useful in the design of algorithms.

Definition 3 (Annotated Bipartite Graph) The annotated bipartite graph B(H) =
(V ′, E ′) consists of

• A node set V ′ = (V , E)

• An edge set E ′, where an edge between v and e exists in E ′ iff v ∈ e in E . Each edge is
labeled by �(v, e), and may therefore be written (v, e; x).

Let B be the set of annotated bipartite graphs.

It is convenient to let Bx denote the annotated bipartite graph obtained by removing all
edges from B except those with label x.
We generalize the notion of self-loops in graphs via the concept of degeneracy.

Definition 4 (Degeneracy) An edge e ∈ E is role-degenerate if the same node v appears
twice in e, with the same role. Edge e is simply degenerate if the same node appears twice
in e, possibly in different roles. We call an annotated hypergraph H role-degenerate (resp.
degenerate) if it contains any role-degenerate (resp. degenerate) edges.

It is difficult to find amodeling justification for hypergraphs with role-degenerate edges,
but degenerate edges may have modeling applications. For example, in email networks, it
may be useful to log instances in which a sender also copies themsleves into the recipients
list. In our experiments below, however, we work only on data with neither form of degen-
eracy. Throughout the remainder of the paper, we restrict H to the set of nondegenerate
annotated hypergraphs.

A configuration model for annotated hypergraphs

We now define a configuration null model on nondegenerate, annotated hypergraphs. As
has recently been emphasized by Fosdick et al. (2018), there are several distinct models
that are often called “configuration models,” and care is required in order to define and
sample from them.
To do so, we define two sets of vectors that summarize the incidence array T. For each

x, define the vector dx of nonnegative integers entrywise as

dxv =
∑
e∈E

tvex . (2)

Similarly, define the vector k of nonnegative integers entrywise as

kxe =
∑
v∈V

tvex . (3)
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The vector dx counts the number of times that each node plays role x in H, while the
vector kx counts the number of nodes with role x in each edge. Both nodes of degree zero
(which participate in no edges) and edges of dimension zero (which contain no nodes) are
permitted. However, because we will later sample from a probability distribution via edge
swaps, these nodes and edges play no role in sampling and can be ignored.
Let D be the matrix whose xth column is dx, and K the matrix whose xth column is kx.

In a slight abuse of notation, we also regard D and K as functions ofH.

Definition 5 (Configuration Null Space) The configuration null space CD,K ⊂ H

induced by degree-role matrix D and dimension-role matrix K is

CD,K = {H ∈ H : D(H) = D , K(H) = K} .

If CD,K �= ∅, we say that D and K are configurable.

Throughout the remainder of this paper, we assume that D and K are configurable.
Note that this is always the case when D and K are extracted from an empirical data set.
More general problems concerning the configurability of arbitrary D and K may also be
considered. By viewing the annotated bipartite graph B(H) as a union ∪x∈XBx(H) of
single-role bipartite graphs, one for each role x, we can reduce the problem to determining
the configurability of the individual pairs dx and kx. An elegant necessary and sufficient
condition for the configurability of two integer sequences is provided in early work by
Ryser (1960; 2009); Gale (1957).
In CD,K, each node “remembers” how many times it played role each x and each edge

remembers how many nodes playing role x were contained in it. Summing over x, we see
that nodes remember their degrees and edges their dimensions. The null space CD,K thus
generalizes the hypergraph configuration null space of Chodrow (2019a).
A natural approach to defining a null model is to define the uniform measure on

C(H0). Such a definition is attractive from a theoretical standpoint, since this measure
is also the entropy-maximizing measure on H subject to the degree and dimension con-
straints. However, methods for sampling from uniformmodels suffer from computational
issues related to counting edge multiplicities and rejection probabilities, often resulting
in slow sampling (Fosdick et al. 2018; Chodrow 2019b). We therefore instead follow the
traditional path of Bollobás (1980); Molloy and Reed (1998), and others in defining a
configuration model as the output of a stub-matching algorithm.
A stub is an indexed pair (v, x, i) of a node and a role; the index i serves simply to dis-

tinguish stubs. For each such pair, dxv counts the number of times that node v has role x in
H0. We collect all stubs a single set:

� =
⋃
x∈X

⋃
v∈V

{
(v, x, 1), . . . , (v, x, dxv)

}
︸ ︷︷ ︸

dxv copies

.

Stub-matching forms hyperedges by selecting sets of stubs from the set �. For each
edge e:

(1) For each role x, uniformly sample kxe stubs with role x from �, without
replacement, and combine them via multiset union. Add the result to the edge set E .

(2) Send � 	→ � \ e.
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The algorithm terminates when it is impossible to form the next edge. WhenD and K are
configurable, stub-matching terminates when � = ∅ and produces a partition generating
a stub-labeled hypergraph with specified degree and dimension sequences.
By construction, the output of stub-matching is distributed according to the uniform

measureμ0 on the set�D,K of partitions of indexed stubs into subsets with fixed numbers
of stubs per node and elements per subset. Let g : �D,K → CD,K be the map that sends to
each such partition its associated hypergraph.

Definition 6 (Configuration Model) The annotated hypergraph configuration model is
the measure μ(H) = μ0(g−1(H)|H is nondegenerate).

The configuration model μ weights elements of CD,K according to their likelihood
of being realized via stub-matching, conditional on nondegeneracy. In this, it differs
from the uniform distribution on CD,K, since the same annotated hypergraph can be
realized through multiple configurations. Indeed, any permutation of stubs of the form
(v, x, 1), (v, x, 2) does not alter the image under g. Because of this, the configuration model
tends to give greater probabilistic weight to annotated hypergraphs in which there are
many parallel edges.
By definition, we can in principle sample from μ by repeatedly performing stub-

matching until a nondegenerate configuration is obtained, and then applying the function
g. This approach is usually impractical, as the probability of realizing a nondegenerate
configuration is typically very low. The generalization of limit laws such as those pro-
vided by Angel et al. (2016) for a dyadic configuration model governing the probability of
nondegeneracy would be a welcome development beyond our present scope.
An alternative approach is to perform stub-matching and then simply discard degener-

ate edges. This approach was pioneered by Molloy and Reed (1995). The model of Allard
et al. (2015) can be used to sample annotated hypergraphs using this method. The theoret-
ical justification of this approach is that, though the probability of at least one degeneracy
may be high, the expected number of degeneracies is low (see again Angel et al. (2016)).
One might therefore suppose that these can be removed without doing significant vio-
lence to the topological structure of the realized network. Since our present interest lies in
null random graph hypothesis-testing, it is desirable to avoid the issue of nondegeneracy
entirely. We do so by developing a simple extension of the standard edge-swap Markov
chain, and show that this chain is sufficient to perform approximate sampling from μd,k
directly.

Edge-swapMarkov chains

Edge-swap Markov Chain Monte Carlo provides an alternative approach to sampling
from μD,K. The benefit of this method of sampling is that, as long as it is initialized with
a non-degenerate hypergraph, all samples produced are guaranteed to be nondegenerate.
It is convenient to define edge swaps on the annotated bipartite graph B. There is con-

siderable literature on edge-swap Markov chains for bipartite graphs (Kannan et al. 1999;
Erdős and Gallai 1960; Ryser 1960). The edge-swap Markov chain we develop here may
be viewed as a superposition of standard chains, one for each role label. This is in princi-
ple sufficient to imply irreducibility and aperiodicity; we provide a full proof in order to
make our exposition self-contained.
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Definition 7 An role-preserving edge-swap on B is a map of pairs of edges:

(v1, e1; x), (v2, e2; x) 	→ (v2, e1; x), (v1, e2; x)

We can also regard a role-preserving edge-swap of bipartite edges f1 and f2 as a map
π : B → B that generates a new bipartite graph B′. In this case we write B′ = π(B|f1, f2).
Note that it is possible that B = π(B|f1, f2); this occurs when f1 = (v, e1; x) and f2 =
(v, e2; x) for some v or f1 = (v1, e; x) and f2 = (v2, e; x) for some e. Nondegeneracy rules
out the case that f1 = f2 = (v, e; x) for distinct f1 and f2.
Let Bx denote the edges of B with role label x. Then, we can construct a Markov chain

Bt ∈ B by repeated role-preserving double edge swaps. Some care is needed to ensure that
each state of this chain is nondegenerate. The full algorithm is formalized in Algorithm 1.
The Markov chain Bt of hypergraphs induces a chain Ht ∈ H of annotated hypergraphs.
Theorem 1 ensures that samples from this chain at sufficiently long intervals will be
approximately i.i.d. according to μ.

Algorithm 1MCMC Sampling for μ

Input: Initial annotated hypergraphH0 with bipartite graph B, sample interval
δt ∈ Z+, sample size s ∈ Z+.

Initialization: t ← 0, B ← B0
while t ≤ s(δt) do

sample e1, e2 u.a.r. from
(Et
2
)
sample f1 = (v1, e1; x1) and f2 = (v2, e2; x2) u.a.r. from e1

and e2
if x1 �= x2 then

pass
else

B′ ← π(Bt|f1, f2)
if B′ is nondegenerate then

Bt+1 ← B′ t ← t + 1
end

end
Output: {Bt such that t|δt}

Theorem 1 The Markov chainHt ∈ H is irreducible and reversible with respect to μ.

Proof Our proof follows the broad contours of those found in Fosdick et al. (2018);
Chodrow (2019a). Equivalent and alternative proofs of irreducibility may be found in
Kannan et al. (1999); Ryser (2009).
It is convenient to first view stub-matching as an algorithm for generating stub-

labeled bipartite graphs. To do so, we observe that the output partition of stub-matching
defines a bipartite graph similar to B, except that to each edge (v, e; x) is associated an
integer between 1 and dxv . Let B̄ denote this stub-labeled bipartite graph, and B̄ the
set of such graphs. We recover a standard bipartite graph B from B̄ by erasing the
stub-labels.
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We now observe that a bipartite edge-swap B̄t+1 = π(B̄t|f1, f2) always produces a new
element of B, since each bipartite edge has a distinct stub-label. For the same reason, if
B̄t+1 = π(B̄t|f1, f2), then f1 and f2 are the only bipartite edges for which this relation holds.
In particular, the transition kernel of the edge-swap Markov chain may be written

P(B̄′|B̄) =
{
r(f1, f2|B̄) ∃f1, f2 : B̄′ = π(B̄|f1, f2)
0 otherwise,

where r(f1, f2|B̄) is the probability that bipartite edges f1 and f2 are sampled and that x1 =
x2. It follows that P will be reversible with respect to the uniform measure on B provided
that r(f1, f2|B̄) = r(f ′

1, f ′
2|B̄′) whenever B̄′ = π(B̄|f1, f2) and B̄ = π(B̄′|f ′

1, f ′
2). To see why

this is the case, note that r(f1, f2|B̄) depends on B̄ only through the sizes of edges and
the role distributions within each edge. These quantities are preserved under double edge
swaps. We thus conclude that Bt is reversible with respect to μ0, and therefore Ht is
reversible with respect to μ.
It remains to show irreducibility. We will construct a supported path in state space from

B̄ to B̄′, where these are stub-labeled bipartite graphs with fixedmarginals. Choose x such
that B̄x \ B̄′x is nonempty, and let (v1, e1; x, i1) ∈ B̄′x \ B̄x. Then, there must exist edges
of the form (v1, e2; x, i1) and (v2, e1; x, i2) in B̄x \ B̄′x, since node v1 must be connected
to some edge with role x, and similarly edge e1 must be connected to some node with
role x in B̄. In particular, the swap (v1, e2; x, i1), (v2, e1; x, i2) 	→ (v1, e1; x, i1), (v2, e2; x, i2)
reduces the size of the set B̄x \ B̄′x by at least one. This is because we have generated
the edge (v1, e1; x, i1), which was in B̄′x by hypothesis, while neither of the removed edges
(v1, e2; x, i1) or (v2, e1; x, i2) were in B̄′x. Repeating this procedure allows us to reduce
the size of B̄x \ B̄′x indefinitely Iterating over all labels x is then sufficient to generate a
supported path between any two stub-labeled bipartite graphs B,B′ ∈ B. Dropping the
stub-labels produces a supported path between any two elements of B, and therefore any
two elements ofH, as was to be shown.

Corollary 1 As δt → ∞, the output of Algorithm 1 is asymptotically independent and
identically distributed according to μ.

For the feature of guaranteed nondegeneracy, we pay a computational cost in mixing
times. While some results are known for mixing times of bipartite edge-swap Markov
chains (Kannan et al. 1999; Erdös et al. 2010), the conditions under which these results
are obtained are restrictive and often do not hold in empirical data sets. Results avail-
able for non-bipartite graphs (Greenhill 2014; 2011) scale poorly with the node degrees
and total number of edges, suggesting that the computational burden may be sig-
nificant. Despite these considerations, edge-swap Markov chains can be nevertheless
be practically deployed in a variety of practical settings, see Fosdick et al. (2018) for
a review.

Analysis of annotated hypergraphs
In this section, we introduce a series of tools for measuring the structural properties
of annotated hypergraphs while flexibly incorporating information about roles. We split
these into two categories; those that can be natively defined on the annotated hypergraph
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structure, and those that can be measured using a projection of the annotated hypergraph
to a weighted directed network.

Native polyadic observables

Role densities

The simplest nontrivial statistic is the individual role density associated to a node.
The individual role density is a probability distribution summarizing the proportion of
interactions in which node v plays each role. It may be computed as

pv = dv
〈e,dv〉 , (4)

where e is the vector of ones, and dv is the vector of degrees of node v in each role, defined
in Eq. (2).

Local role density

It is of interest to compare the individual role density pv of node v to the proportion of
roles in a neighborhood of v. Let cyv give the number of times in which a node incident to
v plays role y, other than v itself. We then have,

cyv =
∑
x∈X

∑
e∈E

I(�(v, e) = x)
∑

u∈e,u �=v
I(�(u, e) = y) =

∑
e:v∈e

kye − dyv .

Normalizing yields the local role density p′,

p′
v = cv

〈e, cv〉 . (5)

The local role density measures not the behavior of node v, but rather the typical
behavior of the nodes with which v interacts.

Assortativity

Classically, degree-assortativity measures the tendency of nodes of similar degrees to con-
nect to each other. In particular, it is often observed that nodes of high degree tend to
connect to other nodes of high degree. In an annotated hypergraph, each node possesses
a distinct degree corresponding to each role. We therefore develop a role-dependent
assortativity measure, similar to assortativity for directed graphs. The measure we choose
generalizes that of Chodrow (2019a), which was formulated for hypergraphs without
annotations. We first provide the mathematical formulation, and then discuss the nature
of the correlation it measures.
Fix roles x, y ∈ X . For any nodes u, v ∈ V , let

sxyuv =
∑
e∈E

I(�(u, e) = x)I(�(v, e) = y)

count the number of edges in which u has role x and v has role y. We compute an assor-
tativity score as a correlation coefficient between the random variables dxU − sxyUV and
dyV−sxyUV , where the random nodesU andV are sampled according to a two-stage scheme.
We first select a uniformly random edge e from E, and then select a uniformly random
pair of distinct nodes U and V, conditional on the events �(U) = x and �(V ) = y. In case
e contains no such nodes, we resample it and try again. The resulting probability law for
U and V is
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P
xy(U = u,V = v) =

∑
e∈E

(ke
2
)−1

I(�(u, e) = x)I(�(v, e) = y)∑
e∈E

(ke
2
)−1 ∑

u′,v′∈e I(�(u′, e) = x)I(�(v′, e) = y)
. (6)

To compute a Spearman assortativity coefficient, let qxuv denote the rank of dxu − sxyuv
among all pairs u and v. Then, the Spearman assortativity coefficient is given by

ρxy = cov
(
qxUV , q

y
VU

)
√
var

(
qxUV

)
var

(
qyVU

) = E
[(
qxUV − E

[
qxUV

]) (
ryVU − E

[
qxVU

])]
√
E

[(
qxUV − E

[
qxUV

])2]
E

[(
qyVU − E

[
qyVU

])2] ,

(7)

with expectations computed with respect to the law P
xy defined by Eq. (6). By construc-

tion, ρxy is symmetric in the roles x and y. Note also that the definition of qxuv excludes
from the calculation instances in which u and v themselves interact in these roles. The
assortativity coefficient supports quantitative investigations of questions like: is it statis-
tically the case that the sender and receiver of a given email tend to send and receive
many emails, respectively? Do scholars with many first-authorships tend to collaborate
with scholars with many last-authorships?
Since it can in practice be difficult to compute the expectations appearing in Eq. (7)

exactly, it is often convenient to estimate them via repeated sampling from Eq. (6). This is
the method used in our experiments below.

The weighted projection

We often wish to apply tools from dyadic graph theory and network science to polyadic
data. The usual way to do this is to project the latter by replacing each k-dimensional
hyperedge with a k-clique. When role information is available, we can perform more
flexible projections. Let R =[ rxy]∈ R

p×p. We refer to R as a role-interaction kernel,
which describes directed interaction strengths between pairs of roles. We do not place
any restriction on the values in R, although we can without loss of generality rescale to
ensure that maxx,y |rxy| = 1. In all our examples, the entries of R will be nonnegative, but
in principle negative interaction weights can also be used.
We compute the weighted projection matrixW = W(H,R) entrywise via the formula

wuv =
∑
x,y∈X

rxy
∑
e∈E

I(�(u, e) = x)I(�(v, e) = y) . (8)

Each entrywuv thus counts the number of edges connecting any pair of nodes, weighted
by the entries of R. To illustrate, let us first consider the directed hypergraphs of
(Gallo et al. 1993).
Directed hypergraphs possess two possible roles, “source” and “target.” To project a

directed hypergraph to a weighted dyadic graph that respects the roles, we can compute
Eq. (8) using the interaction kernel

R =
[ source target

source 0 1
target 0 0

]
.

The result is a weighted directed graph in which wuv counts the number of hyperedges
in which u appears as a source and v as a target. This example is somewhat trivial, but
the benefit of our general formalism is that flexible modeling choices are possible. For
example, in our case study of the Enron email data set below we use the interaction kernel
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R =
⎡
⎢⎣

from to cc

from 0 1 0.25
to 0 0 0
cc 0 0 0

⎤
⎥⎦ .

This kernel reflects an assumption that information travels efficiently from senders to
direct receivers, but more weakly to cc’d receivers.

Centrality

Standard, dyadic centrality analysis may be performed on the weighted projected graph
of an annotated hypergraph. For our examples below, we consider the results of com-
puting Pagerank (Brin and Page 1998) and eigenvector centrality on weighted projected
networks (Newman 2010). We note that there are alternative approaches to defining cen-
trality in hypergraphs such as (Zhou et al. 2007) and (Benson 2019). The first of these uses
a random walk formulation that can be represented via normalized weighted projections.
The latter is applicable only for k-uniform hypergraphs. Our approach, while not a direct
generalization of either, is considerably more flexible in applied data analysis.

Modularity and community detection

Many networks display modular or “community” structure, with nodes in the same mod-
ule displaying higher average rates of connection than nodes in different modules. Of
the many extant approaches toward detecting modular structure in networks, mod-
ularity maximization (Newman 2006; Newman and Girvan 2004) is one of the most
popular. While limitations of the algorithm include a resolution limit (Fortunato and
Barthélemy 2006), provable lack of polynomial-time exact algorithms (Brandes et al.
2007), and statistically-restrictive assumptions (Newman 2016), the availability of highly
efficient and scalable heuristics (e.g. Blondel et al. (2008)) contribute to its long-standing
prevalence in practice.
Let G ∈ {0, 1}n×� denote the one-hot encoding of a partition g. The uth row gi of G is

one in entry j iff g assigns node u to group j. The modularity of g with respect to a null
model η is then

Qη(g) = 1
〈e,We〉

(
GT (W − Eη[ W̃] )G

)
,

where W is the (weighted) adjacency matrix of the graph under study. The notation
Eη[ W̃] refers to the expected realization of a random adjacency matrix W̃ under the null
η. We extend modularity to annotated hypergraphs by using our configuration model as
the null and approximating Eμ[ W̃] to first order. We note that several other authors have
also defined modularity objectives on polyadic data sets. For example, a recent proposal
of Kaminski et al. (2018) defines a modularity objective function which directly encodes
polyadic relationships. We instead adopt an approach based on dyadic projections. Sev-
eral papers have taken projection-based approaches to hypergraph partitioning (Kumar
et al. 2018; Zhou et al. 2007; Evans and Lambiotte 2009). Our proposed objective may be
viewed as an extension of this approach to incorporate role metadata.
Recall that wuv gives the observed weighted edge count from u to v, with the weights

specified via R. In order to derive a working notion of dyadic modularity, we need only
to estimate the expectation of wuv under a suitably-chosen null. We will approximate this
expectation under the annotated hypergraph configuration model.
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Let us estimate Eμ

[
Mxy

uv
]
, the expected number of edges that contain node u in role

x and node v in role y. We begin by forming an edge e via stub-matching. There are
kxe x-stubs that must be selected to form e. Each of these has probability approximately
dxu∑
� dx�

= dxu〈e,dx〉 to be node u. Supposing the probability of degeneracy in an individual edge

to be small, we can thus approximate the probability that e contains u in role x as kxe
dxu〈e,dx〉 .

Similarly, the probability that e contains v in role y is kye dyv〈e,dy〉 . Summing over edges gives
our approximation for Eμ

[
Mxy

uv
]
:

Eμ

[
Mxy

uv
] =

∑
e∈E

kxe k
y
e

dxud
y
v

〈e,dx〉〈e,dy〉 .

We can write this expression more compactly as

Eμ[Mxy]= 〈kx, ky〉(dx ⊗ dy)
〈e,dx〉〈e,dy〉 ,

where ⊗ denotes the vector outer product.
To compute Eμ[ W̃], we weight by R and sum over role pairs:

Eμ[ W̃]=
∑
x,y∈X

rxyEμ[Mxy] .

We then define a dyadic modularity score of a partition g with one-hot encoding G:

Qμ(g) = 1
〈e,We〉 tr

(
GT (W − Eμ[ W̃] )G

)
. (9)

As usual, the pre-factor ensures that −1 ≤ Qμ(g) ≤ 1.
It is important to clarify the nature of the null model used in the modularity calcula-

tion. A procedure that is commonly followed for studying polyadic data is to construct
a projected graph and perform modularity maximization with respect to an implicit null
defined over dyadic graphs. In contrast, we have defined a null over the space of anno-
tated hypergraphs, and then computed expectations in the projected graph with respect
to this higher-order null. This approach has the benefit of preserving some information
about polyadic interactions in the modularity score, even though this score is natively
dyadic. These two approaches will generally lead to different null matrices and therefore
different partitions.
In order to approximately maximize Eq. 9, we adopt the multiway spectral algorithm

of Zhang and Newman (2015), though many alternatives are possible. The matrix W
is not symmetric, and therefore it is necessary to make a small adjustment to this
algorithm (Leicht and Newman 2008). Rather than computing the leading eigenvectors
of the matrix W − Eμ[ W̃], we instead compute the eigenvectors of the symmetrized
form 1

2

(
W + WT − Eμ

[
W̃ + W̃T

])
. The multiway spectral algorithm is then applied to

perform this task.

Results
We illustrate how annotated hypergraphs and their null models can be used to enrich
analysis of previously studied data sets.

Enron case study

We first focus our analysis on the Enron email data set (Klimt and Yang 2004). This data
contains the emails from employees of the company prior to its forced bankruptcy and
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Fig. 1 Role distributions in the Enron data set. a. The individual role densities (orange) and local role densities
(blue). b. The individual role densities (orange) and local role densities (blue) of the four Enron CEOs, now
with lines connecting the statistics for each node. c. The local role densities (black) compared with a single
sample from the role-preserving ensemble (blue) and non-role-preserving ensemble (orange)

shutdown due to corporate fraud and corruption. While this data is temporal in nature
we consider only the time-aggregated graph, neglecting the timestamps of edges. We also
only consider official email accounts of Enron employees, referrd to as the ‘core’ group.

Role distributions and assortativity

The data contains three roles: “from”, “to”, and “cc.” These describe the sender, recipi-
ents, and carbon copy recipients of emails respectively1. Depending on the occupation
of the employee, the number of emails they send and receive (and therefore their role
participation) will vary. Figure 1a shows the distribution individual and local role densi-
ties for the data. Here we see a diverse range of behaviour, with an increased diversity
in individual node distributions compared to local distributions. For example, there are
nodes that are exclusively message senders or exclusively message receivers, but no node
neighbourhoods consist of a single one role. The extent of role hybridization highlights
the importance of modeling roles as properties of node-edge pairs, since no node can be
assigned a single role.
Figure 1b shows the individual and local role densities for the four CEOs of the com-

pany, now each connected by a line. Here we see that, while the CEOs correspond with
other individuals who perform similar roles, they exist across a spectrum of behaviour
themselves, namely in whether they are senders or receivers of emails. For example,
Kenneth Lay was the sender of emails roughly 65% of the time, in comparison with David
Delainey, who played that role in less than 10% of interactions. This passive role of David
Delainey as a receiver of information rather than originator of it may be reflected in the
lesser sentencing he received in comparison to Lay.
In Fig. 1c we show the effect of randomization under hypergraph configuration

models. The configuration model preserves the roles of all nodes, while in the non-role-
preserving variant we simply erase the role labels. The samples from both null models
show a reduction in heterogeneity of the role distribution – randomization has the
effect of homogenizing the population. This effect is especially apparent under non-role-
preserving randomization and the local role distribution converges towards the average
over all nodes.

1 Blind carbon copy, or “bcc,” has been merged into ‘cc’ for simplicity.
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The role assortativity, defined in Eq. (7), captures the tendency of nodes that frequently
play one role to be associated with nodes that frequently play another. Figure 2 com-
pares the observed and null-distributed assortativities ρxy for each combination of roles
in the Enron data set. Five combinations are shown – there are six pairs of role labels,
and the ‘from/from’ combination is vacuous since all emails have exactly one sender. In
four of the five combinations, the assortativity coefficient is much higher than would
be expected under the null and would generally be judged statistically significant. The
positive assortativities in the ‘from/to’ and ‘from/cc’ combinations quantify the tendency
of prolific senders to share information with prolific receivers. The latter combination
highlights the importance of using null models to contextualize network measurements.
Despite the fact that the observed assortativity is negative, the null distributions are even
more so. The data should therefore be judged more assortative than expected by chance.
The ‘to/to’ and ‘cc/cc’ combinations quantify the tendency of important receivers to do
so along the same communication threads. The ‘to/cc’ combination illustrates the utility
of role-preserving randomization – while this measurement would be statistically signif-
icant under randomization without role information, it falls within the bulk of the null
when roles are preserved.We recall that the Spearman coefficient defined above subtracts
out the edges along which u and v interact. It is natural to conjecture that the result for the
‘to/cc’ combination indicates a tendency for nodes to cluster in recurring ‘to/cc’ motifs,
which are then removed in the course of calculation. An example of a recurring pattern
might be frequent emails to an executive with their personal assistant cc’d.

Centralities

In this and subsequent sections, we study the weighted projected graph of the Enron
annotated hypergraph. We will primarily use the role interaction kernel given by

R =
⎡
⎢⎣

from to cc

from 0 1 0.25
to 0 0 0
cc 0 0 0

⎤
⎥⎦ . (10)

Fig. 2 Hypothesis-testing for significant role-dependent assortativity as measured by Eq. (7). The empirical
values (black bars) are shown alongside labeled (orange) and unlabeled (green) configuration null
distributions for each combination of roles
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This kernel emphasizes flow along edges – information flows strongly to receivers listed
in the ‘to’ field and less strongly to those listed in the ‘cc’ field.
Figure 3 illustrates the flexibility of interaction kernels in studying graph properties. We

compute eigenvector and PageRank centralities on the weighted projected graph using the
kernels R and RT . High-centrality nodes under R will tend to be those to whom informa-
tion flows, while under RT they will tend to be those from whom information originates.
The kernel R thus emphasizes information sinks, and RT information sources. In bulk, the
source and sink centralities are only weakly correlated, indicating that they capture dis-
tinct structural properties of the network. The flexibility of the formalism of annotated
hypergraphs with user-specified role interaction kernels supports the discovery of these
features.

Modularitymaximization

Figure 4 shows the single highest-modularity partition of 100 candidate partitions
obtained using this kernel for k = 4 communities. Inspection of the clustered adjacency
matrix (left) suggests that three of the communities are relatively coherent, while one is
highly disperse and essentially serves as a “none of the above” class. On the right, we show
the communities themselves, along with nodes colored according to job title.
It is useful to draw contrast against the uniform role interaction kernel, which ignores

roles entirely:

R′ =
⎡
⎢⎣

from to cc

from 1 1 1
to 1 1 1
cc 1 1 1

⎤
⎥⎦ (11)

The use of this kernel produces substantially different communities when compared to
the information flow kernel. The best of 100 partitions obtained using this kernel only
chose three communities, when up to k = 4 were available. This partition achieves mod-
ularityQ = 0.524. The modularity scores of the two kernel weighting methods should not
be compared directly, since they are computed on different modularity matrices.

Fig. 3 Sensitivity of eigenvector and PageRank centrality measures to role interaction kernels. The horizontal
axis gives centrality scores under the projection RT , while the vertical gives those under R. The PageRank
teleportation parameter is α = 0.15
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Fig. 4 Example partition of the Enron data set via approximate spectral maximization of Eq. (9). (Left): The
adjacency matrix, arranged in order of the partition. Colors give the value of logWij + 1; log-scaling was
chosen for readability. (Right): Visualization of the network. Directed edges have been made undirected. The
darkness of each edge corresponds to its weight. The color of each node corresponds to listed job title. In this
experiment, k = 4, and the kernel used is the information flow kernel R of Eq. (10). The modularity of the
shown partition is 0.506

A simple measure of similarity between the two partitions is the normalized mutual
information

NMI = 2
I(X,Y )

H(X) + H(Y )
,

where X and Y are random variables giving the community assignment of a uniformly
random node under each scheme, H(X) is the entropy of random variable X, and I(X,Y )

the mutual information of the two random variables X and Y. The NMI has maximum
value of unity when X and Y are deterministically related, and minimum value of zero
when they are statistically independent. In this case, the normalized mutual informa-
tion between the weighted and unweighted community assignments is 0.55. This score
indicates that the partitions are correlated, as we might expect – however, there are nev-
ertheless substantial differences between them. These simple experiments emphasize the
importance of appropriately-specified interaction kernels when performing community
detection on annotated hypergraphs.

Ensemble study

We now turn to studying annotated graph features systematically across a range of
data sets. We consider six data sets, outlined in Table 1, with full descriptions given in
Appendix A. We capture the wide variety of possible hypergraphs, those where the num-
ber of nodes exceeds that of the number of edges (|V | � |E|), and those where the
number of nodes is much less than the number of edges (|V | � |E|). The number of node-
edge stubs can take a maximum value of |V ||E| which corresponds to every node being
included in every edge. All the data are social in nature, but diverse in their interpreta-
tion. With the exception of the Enron data, all are sparse, with low mean node degree 〈d〉
and edge dimension 〈k〉.
For each data set we calculate seven summary statistics. Two of these are the average

entropy of the individual and local role densities (Eqs. (4) and (5) resp.), which capture the
diversity of roles observed on individual nodes and their neighbourhoods. An entropy of
zero indicates no role diversity observed, while maximal entropy2 indicates all roles are

2If the number of roles is |X | = p then the entropy has a maximum value of log2 p.
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Table 1 Descriptive statistics for each data set

|V | |E| |X | 〈d〉 〈k〉
enron 112 10,504 3 230.6 2.5

stack-overflow 22,131 4,716 3 1.3 6.0

math-overflow 410 154 3 1.7 4.6

scopus-multilayer 1,677 938 3 1.7 3.1

movielens 73,155 43,058 2 2.8 4.7

twitter 52,294 123,158 4 5.1 2.2

The fourth and fifth columns give the mean node degree and mean edge dimension, both ignoring role labels

equally likely to be observed. In addition we calculate the mutual information between
a node’s individual roles and local roles. This quantity is computed as the mean KL-
divergence between the individual and local role densities. We also calculate the weighted
degree, PageRank, and eigenvector centralities for each node. To create suitable summary
statistics we again use entropy, now across the distribution of centrality across nodes. This
captured how concentrated the centrality is across all nodes in the hypergraph. Finally we
report the number of weakly connected components in the weighted projection.
We assess the significance of each feature by comparing with ensembles generated from

both role-preserving and non-role-preserving randomised swaps. We take 500 samples
from each null model, each time performing �0.1|E ′|� shuffles, where |E ′| is the number
of edge stubs. We use a burn-in period of 10|E ′| shuffles to ensure that all chains are
sufficiently well-mixed.
In Fig. 5 we show the local role mutual information across each data set. We see in all

cases except for math-overflow that the local role mutual information is significant
when compared to the non-role-preserving null model. This intuitively makes sense given
that nodes may switch roles and so any correlation between node states is lost. In all data
the local role density is significant when compared to the role-preserving model, how-
ever again the math-overflow shows the least difference (likely due to the small data
size). Despite being significant in all but one data set, the local role mutual information
can be both larger than expected (e.g. enron, scopus-multilayer) and small than

Fig. 5 The average local role mutual information across data sets, with comparisons to the role-preserving
(green) and non-role-preserving ensembles (green). In all cases, the observed value falls outside the
inter-quartile range for the role-preserving ensemble (orange), and in all but the math-overflow data set
for the non-role-preserving ensemble (green)
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expected (e.g. stack-overflow, twitter) when compared to the null. This can be
explained by certain nodes having little diversity of roles in their local neighbourhood. For
example, in the enron hypergraph, certain nodes may only ever send messages (and so
their neighbourhood is considers of recipients) as we saw in Fig. 1b. However, upon shuf-
fling, these nodes may be swapped with other nodes with more diverse neighbourhoods,
effectively increasing the average local diversity. Those which are lower than expected
suggest that the hyperedges themselves are relatively uniform in participating roles. In the
twitter data this could be due to the limit on the edge cardinality (due to the character
limit on posts).
The significance of the remaining features for two data sets is given in Table 2. Nat-

urally the node role entropy is never significant under the role-preserving null model,
however in all cases it becomes significant when roles are not preserved upon shuffling.
In the enron data set all features (barring the number of connected components) dif-
fer significantly from the non-role-preserving null. Interestingly the shuffling effect is
not consistent across the different centrality measures. For the eigenvector centrality is
more localised than expected (lower entropy) however the PageRank is less localised
than expected (higher entropy). Echoing Fig. 1c, the neighbourhood role distributions
are more diverse in both null models. For the stack-overflow data, the significance
of number of components can easily be explained by the presence of topic cliques in
the original data. For example, users answering questions on Python may be unlikely
to answer questions on Javascript. Since the null model is agnostic to these topics, the
components are merged under shuffling. The role entropies are all significantly lower
than expectation. This can be explained by nodes being consistent in the roles that they
take across multiple questions - question answerers tend to answer more questions, for
example.
A full summary of the of the analysis across all features and datasets is given in

Appendix B.

Table 2 The significance of multiple observables across the enron and stack-overflow data
sets

Non-preserving Preserving

Data Feature Orig. Val Avg. Val. z-score Avg. Val. z-score

enron Connected components 1.00 1.00 0.00 1.00 0.00

Local role MI 0.14 0.03 15.68 0.06 9.78

Local role Entropy 1.24 1.36 -12.47 1.34 -8.24

Node role Entropy 0.99 1.33 -19.55 0.99 0.00

Weight. degree entropy 5.87 5.83 3.00 5.87 -0.39

Weight. eigenvector entropy 4.02 5.84 -154.46 5.88 -55.09

Weight. pagerank entropy 6.36 6.11 26.47 6.14 13.74

stack-overflow Connected components 1168.00 1166.71 0.06 1041.01 6.49

Local role MI 0.22 0.23 -7.69 0.22 -3.88

Local role Entropy 0.87 0.88 -4.73 0.88 -6.32

Node role Entropy 0.05 0.07 -19.78 0.05 0.00

Weight. degree Entropy 13.89 13.81 14.97 13.84 8.71

Weight. eigenvector entropy 7.95 8.19 -0.38 7.28 1.24

Weight. pagerank entropy 14.28 14.23 18.13 14.24 13.88

Significance scores coloured red are two standard deviations larger in the original data than the null model. In contrast, those
coloured blue are two standard deviations smaller. The results for all data sets are presented in Fig. 6
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Discussion
Many of the seminal results in network science were obtained using dyadic, unweighted
networks without metadata – perhaps the minimal model of a complex system. As the
quantity and richness of networked data have grown, so too has the need to incorporate
higher-order interactions and heterogeneous node and edge properties into our models.
Toward this program, we have offered annotated hypergraphs as a modeling framework
for rich, polyadic data. Annotated hypergraphs may be viewed as a natural extension of
directed graphs for modeling heterogeneous, polyadic interactions. Because the setting
of annotated hypergraphs is highly general, they allow the data scientist to flexibly incor-
porate their assumptions about how role information should feature into downstream
analysis.
We have also made contributions to the inferential and exploratory analysis of anno-

tated hypergraphs. First, we have formulated a role-aware configuration null model.
This model can be used to assess whether an observed structural feature in an anno-
tated hypergraph can be explained purely through information about role-dependent
edge and node incidence. Features that cannot may be reasonably attributed to higher-
order mechanisms, which may then be investigated. Second, we have provided a
small suite of analytical tools that generalize many common methods for studying
dyadic networks, including centrality, assortativity, and modularity scores. We have
shown how each of these may be used in role-aware ways to highlight diverse fea-
tures of the data. Along the way, we have argued that the incorporation of meta-
data enables more detailed approaches to standard methods in network science, while
also offering a stable mathematical foundation upon which to build qualitatively new
methodologies.
Annotated hypergraphs admit multiple avenues of future work. There are opportu-

nities to define and study diffusion, spreading, and opinion dynamics on annotated
hypergraphs, using models that explicitly account for heterogeneous, polyadic interac-
tions. For example, our weighted projection scheme does not incorporate any explicit
accounting of edge dimensions. It may be of interest to define a role-dependent
simple random walk along the hypergraph. These structures implicitly normalize
edge dimensions, implying that a node who received an email along with ten oth-
ers is in some sense less important than one who received a private communica-
tion. This walk could then be used to define alternative measures of centrality and
modularity.
Another direction of future development concerns the structure of hyperedges. By

assigning roles within each hyperedge, we impose a certain model of how the interac-
tion marked by the edge takes place. Further structural assumptions are possible. In some
cases it may be useful to assume, for example, that the hyperedge itself contains a small
network between the nodes. The role of the hyperedge in this case is to serve as a sin-
gle entity housing a network motif (Alon 2007). A null model over such structures would
allow for the sampling of random graphs with control over the participation of nodes in
various microscale graph structures. While such a model would be substantially more
complex, the emerging importance of network motifs (Benson et al. 2016) and network-
of-networks modeling (e.g. Kenett et al. (2015)) may provide sufficient impetus to pursue
it. The work of Karrer and Newman (2010) offers promising progress in this direction,
but we suspect that there is still much to be done. In particular, there is a certain tension
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between their notion of roles, which is strictly based on the location of a given node in
the context of a specified network motif, and ours, which is defined via metadata extrinsic
to the network structure. The question of how to reconcile these notions when model-
ing topological motifs in rich networks is an important one which we hope will receive
attention from the community.
Finally, an important feature of many polyadic data sets is that interactions are

temporally localized. The incorporation of temporal information into models of hyper-
graphs and annotated hypergraphs is of substantial importance for modeling realis-
tic dynamics on network substrates. One route may be to generalize temporal event
graphs (Mellor 2018) for rich, polyadic data. Such a generalization, along with the
development of associated metrics, would be of significant theoretical and practical
interest.
This work is a contribution to the project of integrating progressively more com-

plex information into network data science. We foresee that this program will become
increasingly important as rich, relational data sets become more readily available.

Appendix A: Data and software

Data sets and choice of role-interaction matrix

Enron email

This consists of the core Enron emails from the archived Enron email database (Klimt and
Yang 2004). Core email addresses are those with a valid Enron address. All other emails
have been omitted. Here the node roles are from, to, and cc which capture the various
fields in a typical email header (in this case bcc has been merged with cc). Note that a
node may appear in an edge twice under multiple roles, for example sending a message to
oneself.
For this hypergraph we choose the role-interaction matrix to be

R =
⎡
⎢⎣

from to cc

from 0 1 0.25
to 0 0 0
cc 0 0 0

⎤
⎥⎦.

This reflects that information can only be transmitted from the sender. Furthermore
this reflects the assumption that information is less likely to be transmitted (or not fully
transmitted) to those who are “cc’d.”

Scopusmultilayer literature

This data consists of academic literature surrounding ‘multilayer networks,’ collected
using Scopus. Specifically we choose all references from the following three reviews and
books:

(1) Kivelä et al. "Multilayer networks." Journal of Complex Networks 2.3 (2014):
203-271.

(2) Bianconi. Multilayer networks: structure and function. Oxford University Press,
2018.
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(3) Boccaletti et al. "The structure and dynamics of multilayer networks." Physics
Reports 544.1 (2014): 1-122.

Authors are assigned roles for each article dependent on their order in the list of authors.
Although practices vary across disciplines and institutions, here we distinguish between
first, middle, and last authors. When there are fewer than three authors then the role is
assigned as first for a single author, and first and last for a pair of authors (regardless of
any note of equal contribution).
For this hypergraph we choose the role-interaction matrix to be

R =
⎡
⎢⎣

first middle last

first 0 1 0.5
middle 0.2 0.2 0.2
last 1 0.25 0

⎤
⎥⎦.

We make the modelling assumption that the first author is the most knowledgeable and
therefore able to spread information to other authors. The last author is often an advi-
sor who can spread information to the first author, while the middle authors can weakly
diseminate information between everyone.

MovieLens actor credits

This data contains a list of credits from the MovieLens data collection. We consider the
top five billed actors from a collection of [] movies. Actor roles are distinguished by being
the top-billed actor, or in the remaining cast.
For this hypergraph we choose the role-interaction matrix to be

R =
[ top rest

top 0 1
rest 0.25 0.25

]
.

The top billed actor is assumed to be the most diffusive, potentially spreading fame and
influence. The lower billed cast have a smaller diffusive rate.

Stack overflow threads

This data contains a list of Stack Overflow question threads which achieved a score
greater than 25 between 1st January 2017 to 1st January 2019. The score is calculated
and reflects the quality of the question both in terms of its pertinence and its presenta-
tion. Here edges reflect questions threads where users can be in three roles. These are the
question setter, the question answerers, and the best answerer (chosen by the question
setter as the accepted answer). If a question remains unanswered, or an answer has not
been accepted, then the answerer and best answerer roles are not present in the edge.
For this hypergraph we choose the role-interaction matrix to be

R =
⎡
⎢⎣

setter answerer accepted

setter 0 0.1 0.1
answerer 0.3 0.3 0.3
accepted 1 0.5 0

⎤
⎥⎦.

Here, the question setter may disseminate some information (either about the question,
or the topic). The question answerers may share information uniformly across all roles.
The node whose question is answered transfers the most information to the question
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Fig. 6 Full results

setter since the setter has chosen this response to adopt. This accepted answer may also
benefit the other answerers with less useful answers.

Math overflow threads

This data is in the identical format to the Stack Overflow threads, however ques-
tions threads are now on the topic of mathematical research as opposed to general
programming.

Twitter keyword sample

This data contains a list of messages posted on the social media platform Twitter over
a 24 hour period. All these messages contained a particular keyword relating to the
aviation industry. Each edge corresponds to a message (or tweet). Nodes participating
in a message can have four possible roles, a sender, a receiver, a retweeter, and the
retweeted3.
3See https://help.twitter.com/en/twitter-guide for details of each role.

https://help.twitter.com/en/twitter-guide
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For this hypergraph we choose the role-interaction matrix to be

R =

⎡
⎢⎢⎢⎣

sender receiver retweeter retweeted

sender 0 1 0 0
receiver 0 0 0 0
retweeter 0 0.25 0 0
retweeted 0 0.25 1 0

⎤
⎥⎥⎥⎦.

We assume that the sender transmits information to the receivers in a directed fashion
(information travelling only one way). A retweeted node can transmit information to the
node that retweets it and so to any receivers who are also included in the message.

Appendix B: Ensemble study

In Fig. 6 we present the all results from the ensemble study.
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