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Introduction
The structure of heterosexual networks plays an important role in the spread of all 
sexually transmitted infections (STIs), including chlamydia and gonorrhea. These 
networks are captured in computer simulations by a bipartite graph where the nodes 
represent the people and the edges are sexual partnerships between nodes of differ-
ent sexes. Determining what is predictable in STI models requires an algorithm to 
generate an ensemble of random graphs that resembles real-world sexual activities. 
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We describe an approach to generate a heterosexual network with a prescribed joint-
degree distribution embedded in a prescribed large-scale social contact network. The 
structure of a sexual network plays an important role in how all sexually transmitted 
infections (STIs) spread. Generating an ensemble of networks that mimics the real-
world is crucial to evaluating robust mitigation strategies for controlling STIs. Most of 
the current algorithms to generate sexual networks only use sexual activity data, such 
as the number of partners per month, to generate the sexual network. Real-world 
sexual networks also depend on biased mixing based on age, location, and social and 
work activities. We describe an approach to use a broad range of social activity data 
to generate possible heterosexual networks. We start with a large-scale simulation of 
thousands of people in a city as they go through their daily activities, including work, 
school, shopping, and activities at home. We extract a social network from these activi-
ties where the nodes are the people, and the edges indicate a social interaction, such 
as working in the same location. This social network captures the correlations between 
people of different ages, living in different locations, their economic status, and other 
demographic factors. We use the social contact network to define a bipartite hetero-
sexual network that is embedded within an extended social network. The resulting 
sexual network captures the biased mixing inherent in the social network, and models 
based on this pairing of networks can be used to investigate novel intervention strate-
gies based on the social contacts among infected people. We illustrate the approach 
in a model for the spread of chlamydia in the heterosexual network representing the 
young sexually active community in New Orleans.
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These graphs must account for the distribution for the number of sexual partners 
people have (their degree distribution) and the number of partners their partners 
have (the joint-degree, or degree-degree, distribution). The existing algorithms 
that generate bipartite random graphs preserving degree and joint-degree distribu-
tions of the nodes are strictly based on the number of partners people have and not 
other demographic factors, such as age or location (Newman 2002; Hakimi 1962; 
Boroojeni et al. 2017; Azizi et al. 2016, 2017, 2018).

The degree and joint-degree distributions are just two of many properties for a 
heterosexual network that can affect its structure and the validity of an epidemic 
model. The heterosexual network is also correlated to an underlying social contact 
network of acquaintances connected by interpersonal relationships. A person’s sex-
ual activity depends on age, race, sociodemographic, and socioeconomic features 
of the environment that can be captured by a social contact network (Amirkhanian 
2014; Adimora and Schoenbach 2005; Ruan et al. 2011; Juher et al. 2017; Morris et al. 
1995). In other words, using the extended social network of a person as a source of 
sexual partner selection when generating a heterosexual network enables the net-
work to capture the bias in heterogeneous mixing based on age, race, economic sta-
tus, and geographic location (McPherson et al. 2001).

Although it is widely accepted that social contact (non-sexual partners) and heter-
osexual (sexual partners) networks are related, there are few studies on how a popu-
lation’s social contact network impacts the spread of heterosexual STIs. The social 
network can affect the structure of the heterosexual network by providing a pool 
of sexual partners. A persons social network also influences their cultural norms 
regarding STI testing, safe sex practices, and knowledge about the spread and treat-
ment of STIs. As far as we know, there are no other existing mechanistic approaches 
that construct a heterosexual network embedded within a realistic social network. 
We will describe a new approach that fills this gap by applying social contact net-
works to generate the heterosexual network while preserving the joint-degree distri-
bution of data.

Our new network generation approach uses the underlying extended social network 
of a population to extend these previous algorithms for generating bipartite hetero-
sexual networks with prescribed joint-degree distribution (Boroojeni et  al. 2017). 
Many sexual partnerships are formed from within a person’s social circle, defined 
by the people they have regular social contact with and the contacts of their con-
tacts (their extended social network). These social circles have been modeled through 
large-scale simulations of thousands of people in a city as they go through their daily 
activities. We start with a network that mimics the social activity of the population 
(Eubank et  al. 2010), as generated by a complex social network simulation. We use 
this simulated data to create an extended social network and then identify a bipartite 
network of men and women to define our heterosexual network. We then create a vir-
tual heterosexual network as a subgraph of this bipartite social network that captures 
a prescribed joint-degree distribution.

As a case study, we construct a heterosexual network that is embedded in the social 
contact network of the New Orleans population and mimics the sexual behavior 
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obtained from a sexual behavior survey of the young adult African American popula-
tion in New Orleans (Kissinger 2014; Green et al. 2014).

Materials and method
People often find their sexual partners within their extended social network, the indi-
viduals they contact each day at work, school, or other social activities. There are 
sophisticated simulations of these social networks , such as EpiSims that is based on the 
Transportation Analysis and Simulation System (TRANSIMS) developed at Los Alamos 
National Laboratory (Barrett et al. 2005) or Simfrastructure (Eubank et al. 2010; Eubank 
2008). These social networks can be used to produce a sexual network, which is more 
realistic than basing partnerships on just the sexual activity of different individuals.

The social contact network is a graph where the nodes are synthetic people, labeled by 
their demographics (sex, age, income, location, etc.), and the edges between the nodes 
represent contacts determined in which each synthetic person is deemed to have made 
contact with a subset of other synthetic people through some Activity types. Each edge 
of the network is labeled with one of these activity locations and is weighted by the time 
spent on these contacts per day. For example edge (i,j) labeled by the activity A = Work 
and weighted by TW

i,j  means two persons i and j have a contact for TW
i,j  fraction of their 

total time spent at work. We base our algorithm on a social contact network, called Soc-
Net, generated by Eubank et  al. (2010) with activity at different locations (e.g., home, 
work, school, shopping, or other activity).

We introduce an algorithm that embeds a heterosexual network within a social net-
work and matches the sexually active population’s joint-degree distribution. The het-
erosexual network preserves the bipartite joint degree (BJD) distribution matrix that 
represents the correlations between then number of partners a person has and the 
number of partners their partners have (Boroojeni et al. 2017). The algorithm has three 
stages: 

	(i)	 Generate an extended social contact network, ESocNet: The original social con-
tact network is a simple graph, whose nodes are synthetic people, and neighboring 
nodes are their social contacts during a typical day. We assume that most sexual 
partnerships come from a person’s social contacts or the social contacts of their 
social contacts, e.g., the neighbors of the neighbors of a node. We extend the social 
contact network to create a new network, the extended social network, ESocNet, 
where some of the neighbors (social contacts) of an individual’s neighbors in this 
network are added to his/her social contacts.

	(ii)	 Generate a reduced social bipartite network, BSocNet: The ESocNet   includes all 
the individuals in the region being modeled. Our sexual network is based on indi-
viduals within a prescribed age range. In this step, we remove all nodes where the 
associated individuals are outside this age range. The extended social network is 
a simple graph where nodes have some neighbors that are of the same sex. We 
identify the embedded bipartite subgraph of this network by removing all edges 
between individuals of the same sex. The resulting bipartite graph is a social net-
work where male nodes are only connected to female nodes and vice versa.

	Finally, we removed monogamous couples from the simulation since they are not part 
of the STI transmission network and assume that siblings are not sexual partners. 
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This was achieved by removing all edges between individuals living in the same 
household, which is the edge labeled activity H for home. This is an approximation 
since there are some non-monogamous couples living in the same household, even 
in the high-risk young adult African American population being modeled. We call 
this reduced social bipartite network as BSocNet.

	(iii)	 Generate an embedded heterosexual bipartite network, SexNet: We then use the 
BSocNet  to define a heterosexual network of sexual partnerships, the SexNet, with 
a prescribed bipartite joint degree matrix BJD based on survey data (Boroojeni 
et al. 2017). That is, we preserve the correlations between the number of partners a 
person has and the distribution for the number of partners their partners have. We 
assume that most of a person’s sexual partners are neighbors in the BSocNet  and a 
few of the partners are randomly selected from elsewhere in the population where 
they might have met through social media or at any other event.

Generate an extended social contact network (ESocNet)

In the first stage of our algorithm, we create an extended social contact network, ESoc-
Net, so that an individual’s social contacts include some of the contacts of their contacts. 
That is, ESocNet  will add potential sexual partners by including some of the social con-
tacts of an individual’s social contacts.

Consider two people (nodes) i and j who are not currently connected, but have 
kA(i, j) > 0 common social contacts within activity A. We define pAij as the probability 
that they will meet through a single contact. Therefore, the probability that they will 
meet and be connected in the ESocNet  after kA(i, j) contacts is 1− (1− pAij )

kA(i,j).
The probability pAij is a function of the time that i and j spend in an activity A in Soc-

Net. From the data in SocNet, we can define τAk  as the average fraction of time person k 
spends with each social contact, when engaged in activity A:

where TA
k ,l is the fraction of time two contacts k and l spend together in activity A, and 

NA(k) is set of all social contacts for person k through an activity location A. We then 
define pAij = τAi τ

A
j  . Figure 1 describes a schematic of this algorithm for a simple network.

Generate a reduced social bipartite network, BSocNet
In our heterosexual network, we only consider the sexually active population within a 
prescribed age range α = [α1,α2] . That is, we trim the ESocNet  by removing all people 
with ages outside this range to not including any edges (sexual contacts) with people 
outside this range. We then remove all edges between people of the same sex to create 
a bipartite heterosexual social network. To avoid including siblings as potential sexual 
partners and because men and women in our young high-risk population cohort are less 
likely to live together as sexual partners in the same household, we eliminate the sexual 
partnerships between individuals living in the same household by removing all edges 
labeled activity H as home, to define the BSocNet.

(1)τAk =

∑
l∈NA(k)

TA
k ,l

|NA(k)|
,
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Generate an embedded heterosexual network (SexNet)

The Soc2Sex algorithm uses BSocNet  to generates a heterosexual network, SexNet, 
that mimics the heterogeneous mixing of the real population. We assume that we 
have an estimate for the distribution for the number of partners of men and women 
(the degree distributions for their associated nodes) and the joint-degree distribution 
for the number of partners that their partners have (Boroojeni et al. 2017).

An edge, ij , between two persons i and j in SexNet   represents a sexual partner-
ship. The degree of a person i, is defined by the number of his/her sexual partners. 
The degree distribution {dk} defines the number of people with degree k. The joint-
degree distribution (k,  j) is the number of partnerships between a man with degree 
j and a woman with degree k. This distribution can be represented by the Bipartite 
Joint Degree or BJD matrix:

where, w is the maximum degree in women nodes, and m is the maximum degree in 
men nodes, each element eij is the number of edges between women with i partners and 
men with j partners.

The degree distribution of the number of women nodes, dwk  , and men nodes, dmk  , 
with k partners can be obtained from BJDSexNet:

BJDSexNet =




e11 e12 e13 · · · e1m
e21 e22 e23 · · · e2m

.

.

.

ew1 ew2 ew3 . . . ewm


 ,

(2)dwk =

∑m
j=1 ekj

k
, and dmk =

∑w
i=1 eik

k
.

i k1

k0

k2

j

A ik
0
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Fig. 1  Suppose the persons i and j are not currently social contacts in SocNetbut have three different 
common social contacts k0,k1, and k2 through different activities. They might be connected in the extended 
social network, ESocNet, when at least one of their common social contacts meet them within the same 
activity location. Suppose Aik0 = Ajk0 = Aik1 = Ajk1 = A �= Aik2 �= Aik2 , that is, k0 meets i and j at the same 
location, similarly k1 meets i and j at the same location to k0’s, however, k2 meets them in different places. 
To compute pAi  and pAj  we only count the social contacts who meet them at the same location A, therefore, 
pAi = (TAik0

+ TAik1
)/2 , and pAj = (TAjk0

+ TAjk1
)/2 . Finally, the probability that i and j make an edge- are 

connected in the extended social network- is 1− (1− pAi p
A
j )

2
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Though the heterosexual network SexNet   is a subgraph of BSocNet, we also consider 
some sexual partners that are within a person’s extended social circle. That is, for the 
general case, SexNet  is partially embedded in BSocNet.

The Soc2Sex algorithm first generates an initial heterosexual network that closely 
agrees with the desired BJD matrix and is partially embedded in BSocNet. Usually, 
this network satisfies the desired BJD, but can fail when the average degree (number 
of partners people have) becomes large. When this happens, a second fix-up algo-
rithm, based on rewiring the network, is used to repair any discrepancies so tht the 
final SexNet  has the desired BJD matrix.

Generating the bipartite network

The Soc2Sex algorithm starts with the SocNet, the BJD matrix corresponding to SexNet, 
and the fraction p ∈ [0, 1] of partners that are chosen randomly from the extended social 
contacts in the BSocNet. The remaining fraction, (1− p) , of a person’s sexual partners 
are randomly selected from elsewhere in the population. These partnerships might have 
formed by meeting through social media or a social event not captured by the original 
SocNet. The Soc2Sex algorithm then generates a heterosexual network that is a partial 
subgraph of BSocNet  and has a joint-degree distribution given by the BJD matrix. Note 
that p is approximately the percentage of SexNet  that is a subgraph of BSocNet.

The algorithm starts with an empty set of nodes SexNet and then builds a network 
guided by the BJD matrix. The nodes with the smallest degree have the least flexibility, 
so we start building SexNet  by randomly selecting a man node of BSocNet  with the 
highest (social) degree and assign its desired sexual degree to be column size of BJD 
matrix. This is represented by stubs, or unconnected edges, associated with this node.

We repeat the following process until all edges in SexNet, which is equal to the 
summation of elements in BJD matrix, are placed: at any step, we select a node with 
the highest stub in SexNet. Then we generate a uniform random number. If this ran-
dom number was less than p then we use the pool of the node’s social contact in 
BSocNetfind him/her a partner with proper degree defined by BJD. If the random 
number was bigger than p, we find the partner with proper degree defined by BJD 
from people other than their social contact but with smallest distance in their social 
contact. After finding such partner, we reduce the node’s new partner’s stub by one. 
If we find all the partners for all nodes in SexNet, we add a new node to SexNet   
from highly socially active nodes in BSocNet. Then, we assign this new added node a 
desired degree and stub equal to the current maximum degree frequency of SexNet.

To keep or remove an edge, we have to calculate the degree of nodes attached 
to it for each possible edge in the SocNet, thus, the full set of experiments run in 
O(|E|PmPw ) time, where |E| is the number of edges in SocNet, Pm number of its men 
nodes and Pw number of its women nodes. This method is feasible if the average 
degree (  2|E|

Pm+Pw  ) of the network is not high.
Table 1 shows the average CPU time for generating a SexNet with between 400 nodes 

to 12,800 nodes that are embedded within the BSocNet. These networks all maintained 
the same average degree, 1.5, and men-women ratio, 0.35:0.65, as our survey data.

For completeness, we provide pseudo-code for our Python scripts in Algorithms 1 
and 2. Table 2 is the table of symbols used in these Algorithms.
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Table 1  Average CPU time in seconds and 95% confidence intervals (CI) for generating 50 random 
SexNet on a MacBook Pro laptop computer. Notice that the CPU time scales almost linearly with the 
network size for a fixed average degree

Network size = 400 800 1600 3200 6400 12,800

CPU time 12.0 23.6 43.2 86.7 225 497

95% CI [11.5, 12.4] [23.3, 23.8] [42.3, 44.2] [86, 88] [219, 230] [454, 540]
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The initial algorithm will generate a network with the prescribed degree distribution. 
We have observed that the resulting network always had the desired BJD matrix for all 
of the sparse heterosexual networks we have generated in this project. However, there 
are some situations, where the desired network is not sparse, the algorithm can fail to 
exactly produce a network with the desired BJD matrix for the joint-degree distribu-
tion. When this happens, a second algorithm is used to rewire the network so that it will 
exactly match the desired bipartite joint-degree distribution for the number of partners 
that a person’s partners have.
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Rewiring SexNet  for a given BJD matrix

The rewiring algorithm corrects any mismatch between the joint-degree distribution of 
generated SexNet   and the desired BJD. We define the joint-degree distribution of the 
generated SexNet  as B̃JD and the mismatch error matrix E = BJD − B̃JD . If the matrix 
E has nonzero elements, then the network is rewired to eliminate the error. There are 
three possible cases: 

	(i)	 If entry E(i,j), (i, j > 1) , is a positive value k, it means that SexNet   needs k more 
edges between degree i women and degree j men. To create these edges, we iterate 
the following process k times: 

(a)	 First, identify a woman, wi , in SexNet, where dSexNet(wi) = i , and has as a 
partner, m1 , with degree-1, i.e. dSexNet(m1) = 1.

(b)	 Next, identify another man, m j ∈ SocNet.N (wi)− SexNet.N (wi) , where 
dSexNet(mj) = j and m j has a degree-1 partner, w1 . That is dSexNet(w1) = 1.

(c)	 Finally, we rewire the network by removing the edges (wi ,m1 ) and (m j,wi ) and 
add edge (wi , m j ), as illustrated in the Rewiring (1) of the Fig. 2.

	(ii)	 If element E(i,j) , (i, j > 1) , is a negative value k ′ , it means that SexNet  have extra k ′ 
edges between degree i women and degree j men. To remove these edges, we iter-
ate following process k ′ times: 

(a)	 First, identify a woman, wi , in SexNet, where dSexNet(wi) = i , which has 
a degree-j partner like m j , that is dSexNet(mj) = j . The nodes wi and mj are 
selected so that they have at least one social contact with opposite sex that is 
not their sexual partner.

(b)	 Next, identify another man, m1 ∈ SocNet.N (wi)− SexNet.N (wi) , and a 
woman, w1 ∈ SocNet.N (mj)− SexNet.N (mj).

Table 2  Table of notation for a conventional network G in algorithms

Notation Description

G.n Set of nodes in network G

G.e Set of edges in network G

dG Degree frequency list for network G

dG(i) Degree of node i in network G

G.N(i) Set of neighbors of node i in Network G

dist(G,u, v) Distance between two nodes u and v in Network G

M.col/M.row Column/row size of a matrix M

M(i,  : )/M( : , i) ith row/column of matrix M

V(i) ith element of vector V

V.index(a) Index of element a in vector V

|S| Size (the number of elements) of a set S

S.remove(m) Remove member m from a set S

S.sample(P) Randomly select an element with property P (if P = 
1 there is no property) from set S

urn Uniform random number in [0, 1]
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(c)	 Finally, rewire the network by removing the edge (wi,mj) and add edges (wi, 
m1) and (w1,mj), as illustrated in the Rewiring (2) of the Fig. 2.

	(iii)	 In the previous steps, we pushed back nonzero elements in E to its first row and 
column, which causes new nonzero elements in the first row and column. To 
remove these nonzero values, we have to add or remove small components. For 
example, if the element (i,1) of E is a positive value k, it means that we need a small 
component of a degree i woman whose partners are all degree 1 men. Therefore, we 
simply make this component from the people who are not currently in SexNet.n. 
If the element (1, j) of E is a negative value k, it means we have to remove a small 
component of a degree j man whose partners are all degree 1 women. Therefore, 
we simply look for such a component and remove it from SexNet.

We have found that this algorithm almost always converges to the desired BJD. How-
ever, there are rare cases when the desired rewiring nodes may not exist, and algorithm 
stalls with E  = 0 . In test simulations, we could construct some sparse social networks 
where this algorithm could not exactly match the desired BJD. These cases were rare 
and, when they did occur, the rewiring step still improved the approximation to the 
desired BJD of SexNet. In the numerical simulations, all of the generated New Orleans 
heterosexual network had exactly the desired BJD based on survey data.

In the next section, we apply our algorithm to generate and analyze several random 
SexNet   corresponding to sexual activity of adolescent and young adult sexually active 
African Americans reside in New Orleans. First, we explain the inputs of our approach: 
New Orleans social network and joint-degree distribution- BJD matrix- corresponding 
to its sexual network. Then we use our algorithm to generate and analyze a bunch of 
SexNets for a subpopulation of people in New Orleans.

Simulations
We analyze an ensemble of sexual networks with a prescribed joint-degree distribution 
representing sexual activity of young adult African Americans in New Orleans.

The New Orleans social activity data and SocNet
The SocNet   is based on the synthetic data generated by Simfrastructure (Eubank 
et  al. 2010; Eubank 2008) for 130,000 synthetic people residing in New Orleans. Sim-
frastructure is a high-performance, service-oriented, agent-based simulation system, 

wi

...

m1

mj

...

w1

wi

...

m1

mj

...

w1

Rewiring (1)

Rewiring (2)

Fig. 2  Schematic of steps 1 and 2 of Rewiring approach to correct BJD 
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representing and analyzing interdependent infrastructures. The data for the network 
includes information for each individual, identified by their PID (personal identifier), 
and includes their age, gender, household, and other demographic information. The con-
tact information for each PID is encoded in the contact file in Table 3.

The Simfrastructure data was used to generate the original SocNet, which was then 
used to generate ESocNet  and BSocNet  as described in the previous section.

The BJD matrix for New Orleans heterosexual activity

An ongoing community-based pilot study was conducted among sexually active Afri-
can Americans ages 15− 25 in New Orleans (Kissinger 2014), to assess the effectiveness 
of prevention and intervention programs for chlamydia. Socio-demographic informa-
tion including age, race, educational level and, sexual behavior—number and age of het-
erosexual partners in the past two months—and history of their STI test results were 
collected from 202 men and 414 women participants. Meanwhile, their partners’ infor-
mation has been collected by asking questions referring to the status of each relationship 
such as the partner’s age and the possibility that their partner(s) have intercourse with 
others. The survey results were used to construct the BJD matrix of a heterosexual net-
work of individuals in New Orleans. For a population P = 15,000 sexually active young 
adult men and their women partners residing in New Orleans, we have

The dimension of this BJD matrix is 6× 21 , that is, the maximum number of partners 
women have is 6 and for men is 21.

SexNet  analysis

Using the social network and BJD matrix provided in the previous subsections and 
approach described in Section “Materials and method”, we generated 150 SexNets of 

BJD15000 =




1663 1588 1225 896 645 469 342 252 186 138 105 90 72 57 41 34 23 24 14 13 14

474 452 350 255 185 133 97 73 52 39 31 26 20 17 11 9 8 7 3 4 4

198 188 145 107 77 57 40 29 22 16 12 12 9 6 5 3 2 4 1 1 2

68 63 49 35 26 18 15 10 8 6 4 3 3 3 1 2 0 0 1 10 0

18 18 13 9 6 6 3 4 1 1 2 0 0 1 1 0 1 0 0 1 0

3 3 3 2 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1




.

Table 3  Table input for the social contact network of individuals

The PID is personal ID, FID is their social contact ID, A is activity in which PID meet FID, and T is the fraction of time in a day 
that two social contacts meet with each other through activity A. We have five different activities, including H as home, W as 
work, Sc as school, Sh as shopping, and O as others. For example, person 43722 stays with person 16981 at the same home 
for 7.2 h in a day

PID FID A T

43722 16981 H 0.3

11462 W 0.2

37790 Sh 0.01
.
.
.

.

.

.

.

.

.

51981 23476 Sc 0.16

18462 O 0.02

10790 H 0.5
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
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15000 people for p = 0.2, 0.4, 0.6, 0.8 and 1, where p is the proportion of sexual partners 
that are selected from social friends. That is, 30 of the SexNets are 20%, 30 are 40%, 30 
are 60%, 30 are 80%, and the rest 30 are 100% subgraph of BSocNet. We then compared 
some descriptive metrics of this ensemble of random networks that were not imposed 
when generating the networks, including the size of giant components and bi-compo-
nents, number of connected components, and average redundancy coefficient.

First, we evaluated and compared the size of the giant component and bi-component 
(the first and second biggest connected components of the network) for each group of 
the networks. Figure 3 shows the box plot of these sizes: there is an increment in the 
size of giant components when people select most of their sexual partners from their 
social contacts. Because in that case, sexually active people are tighter together within 
the social contact network. But there is not a significant difference in the size of giant 
bi-component.

The number of connected components, Nc, is another measure characterizing network 
toughness. This measure can be, not necessarily, correlated to the component’s size of 
the network. Figure 4 displays descriptive statistics for Nc in each network group. Note 
that data distributions are approximately symmetrical, and metrics of Nc are similar 
across groups, but, they change by changing the source of partner selection- changing p.

Redundancy coefficients are the measure of the degree to which nodes in a bipartite 
graph tend to cluster together:

Definition 1  For a bipartite network, redundancy for a node is the ratio of its overlap 
to its maximum possible overlap according to its degree. The overlap of a node is the 
number of pairs of neighbors that have mutual neighbors themselves, other than that 
node (Latapy et al. 2008). For a typical node v, the redundancy coefficient of v is defined 
as

where, N (v) is the set of all neighbors of node v, and E is the set of all edges in the 
network.

We compare this measure for the networks in Fig.  5: each data point Rc(k) for 
degree k is obtained by averaging redundancy coefficient over the group of people 
with k partners. In most of the networks, Rc(k) decreases with k (Newman 2010). 
Redundancy coefficient Rc is affected by social network BSocNet: when people select 
more sexual partners from their social contacts the value for Rc increases, which is 
because of stage one of the algorithm- Generate an extended social network. In that 
stage, by connecting the social contacts of a person in BSocNet, we increase its clus-
tering coefficient. Therefore, because increasing p SexNet   becomes a stronger sub-
graph of BSocNet, it inherits more properties from BSocNet, that is, by increasing p 
Rc of the SexNet, which is correlated to clustering coefficient of BSocNet, increases.

Rc(v) =
|{{u,w} ⊆ N (v), ∃v′ �= vs.tuv′ ∈ E,wv′ ∈ E}|

|N (v)|(|N (v)|−1)
2

,
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Discussion
We described a new algorithm to generate an ensemble of heterosexual networks 
based on heterosexual behavior surveys for the young adult African American pop-
ulation in New Orleans. The prescribed degree and joint-degree distribution repre-
sented the heterosexual network embedded within a social network that captures the 
biased mixing of the population based on age, physical location, and social activities.

We generated an ensemble of different heterosexual networks with the same BJD. 
When the networks had a more percentage of partners selected from their extended 
social contacts, then we observed a tighter distribution in the number of connected 
components and the size of giant component and bi-components. When more part-
ners are chosen from the extended social network, instead of randomly selected from 
the population, then the size of giant component increases, and following that the 

Fig. 3  Box plot representing the size of the giant component and bi-component for each group of networks: 
x-axis are the level of the subgraph of SocNet. For example the value 20% refers to the SexNets which 20% 
of their edges comes from SocNet. The stars are the average values for each box and the orange line are 
their median values. The size of the giant component becomes bigger when the portion of the subgraph 
becomes stronger, however, the social network does not have much impact on the size of the giant 
bi-component

Fig. 4  Box plot representing the number of connected components, Nc, for each group of networks: x-axis 
are the level of the subgraph of SocNet, for example the value 20% refers to the SexNets which 20% of 
their edges comes from SocNet. The stars are the average values for each box and the orange line are their 
median values. A significant difference is observed in Nc between each group, Nc is lower in larger subgraph 
of social networks
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number of connected components decreases, which is because of reducing the mix-
ing in generating sexual network: when people select their sexual partners from their 
social contacts they stand in a tight group within social network. In fact, when being 
subgraph of the extended social network become stronger, the candidate set of sexual 
partners for each person that is set of social contacts decreases and becomes local 
(this set includes close contacts and contacts of contacts) compared with when this 
set is the whole population.

As p increases, then more partners are chosen from a person’s extended social net-
work. This also increases the network clustering coefficients (where more partners of 
your partner’s partner are also one of your partners). The redundancy coefficients for 
networks increases as the dependence of sexual network on social one rises when p 
increases, which is because of the high clustering coefficient of the social network due 
to the first stage of the algorithm, generate an extended social contact network. In that 
stage, we made some new contacts between the contacts of each individual, which causes 
the increment in the clustering coefficient of the social contact network. On the other 
hand, when more partners are chosen from the social contact network, more proper-
ties of the social network such as the clustering coefficient become inherited by SexNet. 
Thus, increasing p, we observe increment in the redundancy coefficient of SexNet.

We studied the metrics of networks that may affect the spread of an STI at the popu-
lation level. Metrics such as the size of giant components and redundancy coefficients 
provide information about connectivity among the individuals. In our future work, 
when studying the spread of chlamydia on heterosexual networks, we will measure their 
impact on the prevalence of chlamydia over SexNets generated using different p values.

Our bipartite networks are being used to study the spread of chlamydia in situations 
where the probability of infection spread via homosexual activities is negligible. The 
approach can be extended to model the spread of STIs with mixed heterosexual, bisex-
ual, and homosexual activities such as the spread HIV/AIDS. This can be accomplished 
by modifying the second stage of the algorithm to include the fractions of the population 
within these different sexual groupings.

Fig. 5  Scatter plot of Redundancy Coefficient Rc versus degree for five different networks: Rc for SexNet  
which is strong subgraph of BSocNet  (higher percentage of subgraph p) is higher, because clustering 
coefficient for BSocNet  is high and therefore, SexNet  inherits this property by having higher Rc than the 
ones which are weak subgraph of BSocNet 
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There are still unanswered questions for proving the existence of a heterosexual net-
work with a prescribed joint-degree distribution embedded within a prescribed social 
network. That is, there are no explicit criteria to guarantee that a heterosexual network 
with a particular joint-degree distribution can be embedded within a particular social 
network or not.

We are currently simulating a stochastic agent-based network model on SexNet   for 
the spread of chlamydia and comparing different intervention strategies to control the 
spread of STIs that are implemented in public health, such as screening, partner treat-
ment, rescreening, and peer referrals (Qu et al. 2020; Azizi et al. 2020). These simula-
tions will use the underlying social contact network to improve the current intervention 
models by considering the impact of counseling and behavioral changes such as increas-
ing condom use or social contact notification.
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