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Background
The use of interventions for epidemic control requires both an effective intervention 
and sufficient uptake by the population. In the case of human immunodeficiency virus 
(HIV), Black men who have sex with men (BMSM) are disproportionately affected by 
HIV infection throughout the United States  [1]. Pre-exposure prophylaxis (PrEP) has 
been shown to reduce lifetime infection risk and increase mean life expectancy; however, 
PrEP uptake is much lower for BMSM . Negative PrEP-related stereotypes are prevalent 
and awareness of PrEP is low among BMSM , particularly those outside of large cities 
and among men who have sex with men who are not gay-identified nor easily reached 
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through PrEP campaigns directed toward the gay community [1–3]. An ongoing study 
seeks to assess the feasibility of increasing PrEP uptake for BMSM through the use of 
a social network intervention: training network leaders to communicate the benefits of 
PrEP within their social networks [4]. In this paper, we analyze data from the pilot study 
of the intervention and present a methodological innovation needed to facilitate evalua-
tion of the possible population-level impact of the intervention on HIV incidence.

Most BMSM are connected with other men who have sex with men (MSM) of color 
in their personal social and sexual networks. For that reason, it is possible to reach 
men through their network connections. In addition to serving as a vehicle for reach-
ing high-risk BMSM in the community, networks are social environments that can be 
harnessed for interventions to increase PrEP awareness, correct PrEP misconceptions, 
and strengthen norms, attitudes, benefit perceptions, and skills for PrEP use. In the HIV 
epidemiology literature, the networks of BMSM have too often been studied only as 
drivers of disease transmission [5]. However, from a strengths-based perspective, social 
networks also carry positive, adaptive, and protective functions. BMSM confront stigma 
and exclusion due to homophobia in the Black community and racism in predominantly 
white gay communities, leading some to develop social institutions such as constructed 
families and house ball communities for support [6–11].
HIV prevention advice from personally-known and trusted sources is likely to have 

greater impact than messages from impersonal sources. For that reason, recommen-
dations that come from influential members of one’s close personal social network are 
especially powerful. Well-liked peers influence the actions and beliefs of their friends. 
Peers within the close personal networks of BMSM provide acceptance, trusted infor-
mation, and guidance on courses of action, including in matters related to HIV preven-
tion [9]. Messages that provide information but also target the recipient’s PrEP-related 
perceived norms, attitudes, intentions, and self-efficacy are likely to have the great-
est impact because these theory-based domains influence the adoption of protective 
actions [12, 13].

The intervention is also grounded in principles of innovation diffusion theory  [14]. 
After recruiting networks of BMSM in the community, the intervention involved selec-
tion of a cadre of members within each network who were most socially interconnected 
with others, most trusted for advice, and most open to PrEP . These network leaders 
together attended sessions in which they learned about PrEP and its benefits and were 
systematically engaged to talk with friends about these topics, correct misconceptions 
and counter negative stereotypes about PrEP , instill interest in PrEP , and guide inter-
ested friends in accessing PrEP providers. Thus, the intervention engaged trusted and 
socially-interconnected network leaders to function as agents who diffuse messages to 
others.

A preliminary analysis on the pilot study data demonstrates more favorable opinions 
of PrEP after the network leader intervention, across all subjects and for only those 
subjects who did not attend leadership training [4]. This analysis supports the continu-
ing use of this intervention from an individual risk perspective. The question remains, 
however, how impactful the intervention might be if implemented at scale, and how 
the benefits to HIV prevention compare to similarly intensive interventions. To make 
this assessment, we plan to use an agent-based epidemic model. In order to evaluate the 
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intervention, it is necessary to translate the results from the pilot and ongoing study to 
network and intervention parameters in the epidemic modeling framework. For this, we 
need to understand the structure of influence observed in the local networks. Hence, we 
wish to estimate the parameters of the opinion diffusion process. Since existing methods 
for fitting appropriate opinion diffusion models vastly exceed the data available in both 
the pilot and full study, we developed the parameter estimation method presented here.

We first detail classes of models for opinion diffusion, assessing the appropriateness 
of each method for modeling the diffusion of opinions about PrEP through the observed 
networks and describing our chosen model. We then detail the genetic algorithm we 
developed to estimate the parameters of the selected opinion diffusion model. Finally, we 
assess the performance of the algorithm on simulated data and demonstrate its practical 
application using the pilot study data, discussing behavior of the algorithm and interest-
ing features of the estimated opinion diffusion process.

Opinion diffusion models
A variety of models exist for opinion diffusion: the process through which opinions 
change and spread through a network. They vary in complexity, underlying assumptions, 
and the precision or structure of opinions generated. In this section, we outline the main 
classes of models and justify our choice of the DeGroot model  [15] for our intended 
application.

Modeling considerations

Our primary considerations for selecting a model are the limited number of time steps 
available, small observed networks, expected features of BMSM networks, structure of 
data collected, and focus on agent-level assessments. The pilot study consisted of obser-
vations collected at two time steps (initial opinions and one measurement of opinions 
in follow-up assessment after the intervention) and the full study will include three time 
steps (initial opinions and two follow-up assessments). These limited numbers of obser-
vations mean an appropriate model will not rely on the system reaching equilibrium. 
They also limit our ability to estimate a large number of parameters or assess the appro-
priateness of our selected model using data, informing our preference for simple mod-
els that have already been validated on the small networks ( N = 4 to N = 12 ) present 
in the pilot study. Since the networks in the study are themselves clusters from larger 
networks and contain disinformation, an appropriate model will allow for disinforma-
tion under that structure. Because the data consist of Likert-scale measures, the chosen 
model must make use of the precision available in the data, especially in the absence of 
more observations. Finally, given our interest in the influence of particular agents within 
the network, an appropriate model will involve agent-level parameters as opposed to 
network-level parameters.

Statistical physics

Statistical physics traditionally focuses on modeling the movement of particles but 
has increasingly been applied to other fields including opinion diffusion, where agents 
take the place of particles [16]. Since these models typically involve taking the thermo-
dynamic limit which–in the case of network models–means assuming a network with 
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infinitely many agents, statistical physics models are applied to large networks where 
each agent interacts with a negligible number of agents relative to the size of the net-
work [17, 18]. Even for networks with hundreds or thousands of agents, this assumption 
is problematic as behaviors of the diffusion process due to finite size effects are absent 
from the models using the thermodynamic limit  [18]. Given the very small networks 
included in our data set, models that assume an infinite network are not appropriate. 
These models also focus on explaining the overall behavior of diffusion process through 
the actions of individual agents [16, 17] while our goal is to explain the behavior of indi-
vidual agents through their interactions. Finally, while other candidate models have 
been validated using data, model validation is largely absent from the statistical physics 
literature [17].

SIR model

Banerjee, Chandrasekhar, Duflo, and Jackson successfully modeled the diffusion of 
information about microfinance loans between households using a modification of 
the Susceptible-Infected-Recovered (SIR) epidemic model in which information about 
microfinance loans takes on the role of the disease [19]. The model was fit to population-
level uptake data and does not incorporate agent-level parameters. Though this method 
would be appropriate for modeling the impact of the intervention on uptake of PrEP 
over the limited number of time steps collected, it does not allow for an assessment of 
how opinions about PrEP change within the network and would not make full use of the 
more precise opinion data collected.

Bayesian and naive learning

Unlike SIR models, Bayesian learning directly models opinions, rather than uptake; 
however, these models require distributional assumptions about each agent’s prior 
belief about the state of the world and the signals—or information—received from 
other agents, both marginally and conditional on the state of the world. Bayesian learn-
ing models also assume agents are able to calculate the likelihood of the signals they 
receive under their current worldview according to Bayes’ rule [20]. These assumptions 
are problematic both from a modeling perspective and because they imply an unrealis-
tic level of sophistication in the learning mechanisms of each agent. Additionally, this 
sophistication makes modeling of disinformation difficult [20, 21].

Two different experiments conducted on networks of seven agents using binary sig-
nals compared Bayesian learning to non-Bayesian naive learning1 where agent adopt the 
majority belief expressed by themselves and their contacts. These experiments demon-
strate that naive learning predicts the behaviors of individual agents better than Bayesian 
learning, especially in highly clustered or insular networks; however, they also indicate 
that agents behave with more sophistication than is implied by the naive model [21, 22]. 
Specifically, agents account for dependencies between signals received from agents who 
are connected to each other, though not to the extent a Bayesian learner would. A slight 
modification of the naive learning model where agents can place varying importance 

1 Naive learning can be expressed as a DeGroot model with wij =
1

Ni+1
 for aij  = 0 where wij and aij are as defined in the 

DeGroot Model subsection below and Ni is the number of agents in the neighborhood of agent i.
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on the signals of other agents allows for more sophistication in the learning behavior of 
agents and can even approximate the behavior of a Bayesian learner, especially when the 
importance can vary with time [22]. This modification brings us to the DeGroot model 
for opinion diffusion.

DeGroot model

The DeGroot model is the foundational opinion diffusion model and most influential 
non-Bayesian model, with the majority of non-Bayesian models being modifications of 
the DeGroot model  [15, 20–22]. Under the DeGroot opinion diffusion model, agents 
update their opinions at each time step to be a weighted average of their own current 
opinion and the opinions of everyone with whom they interact. This process is described 
on a network of N agents by

where X (t) is a vector of length N with xi(t) ∈ [0, 1] representing the opinion of agent i at 
time t and W is an N × N  matrix of weights with wij representing the weight that agent 
i places on the opinion of agent j. The elements in the weight matrix W are restricted so 
that 0 ≤ wij ≤ 1 and 

∑N
j=1 wij = 1.

W is further restricted based on the social network as represented by the adjacency 
matrix A, in which aij = aji = 1 if agents i and j are connected in the network and 
aij = aji = 0 otherwise. Since agents can only be directly influenced by the opinions 
of agents with whom they interact, wij = 0 if agents are not connected in the network 
( aij = 0 ). We set aii = 1 to allow agents to update their opinions based on their own cur-
rent opinions [15]. While we considered extension of the DeGroot model that include 
bounded confidence or decaying weight placed on the opinions of others, we lack the 
time steps to assess whether either extension is appropriate or to estimate the relevant 
parameters. Based on our intended application, the DeGroot model is the clear choice 
due to its simplicity, ability to model disinformation, capacity for using precise opinion 
data, and validation on small networks [21, 22].

Methods
Available methods to estimate parameters of a DeGroot model are quite limited. Cas-
tro and Shaikh were able to estimate the parameters of a Stochastic Opinion Dynam-
ics Model (SODM)—a variant of the DeGroot model which includes information from 
external sources and normal measurement error on observed opinions—using data col-
lected from an observed opinion diffusion process over an online social network. While 
they developed both maximum-likelihood-based and particle-learning-based algorithms 
for estimating the parameters of the SODM , these algorithms require more time steps 
than agents and at least 100 time steps, respectively [23, 24]. Since the requirements for 
the existing algorithms vastly exceed the available data for the PrEP studies and simi-
lar opinion diffusion applications, we developed a novel genetic algorithm capable of 
recovering the parameters of a DeGroot opinion diffusion process—the elements in the 
weight matrix W—using small data sets, including those with missing data and more 
model parameters than observed time steps.

X(t + 1) = WX(t)
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Objective function

We propose a squared deviation function summed across all N agents and T time steps2 
which measures how closely the predicted opinions match the observed opinions:

Since lower values indicate a better fit, the optimal solution is one that minimizes the 
value of the objective function. To assess fit at the agent-level, we simply exclude the sum 
over all agents and instead compute a separate value of the objective function for each 
agent using

Genetic algorithm

Genetic algorithms, which mimic the natural processes through which the fittest genes 
survive to subsequent generations, are an ideal choice for fitting a DeGroot model; they 
have fewer assumptions and a lower chance of becoming stuck in local optima compared 
to other optimization algorithms  [25]. Genetic algorithms consist of a population of 
chromosomes, or complete solutions to the optimization problem, which are each com-
posed of genes, subsets of the solution consisting of either individual values or collec-
tions of values. In each iteration of the algorithm, these parent chromosomes undergo a 
variety of operators which modify the genes, producing a population of offspring chro-
mosomes that differ from the population of parent chromosomes. This process repeats 
with the offspring chromosomes becoming the parent chromosomes of the subsequent 
iteration until some stopping criterion is met  [25]. In the case of the simple DeGroot 
model, a chromosome is defined as the weight matrix W and a gene as a single row of 
the weight matrix, denoted Wi . This means each gene corresponds to an individual agent 
and represents the weights that agent places on the opinions of other agents.

We adapt a genetic algorithm developed for generating D-optimal designs for constrained 
mixture experiments by Limmun, Borkowski, and Boonorm: a useful starting point since 
both the design matrix for mixture experiments and the weight matrix for a DeGroot model 
are row-stochastic with the elements in each gene summing to 1 [25]. Though this com-
mon constraint on the matrices means the operators developed for mixture experiments 
are well suited for estimating the parameters of the DeGroot model, there is an important 
difference in the way the objective functions are used to assess the fitness of chromosomes 
and the genes within them. Under D-optimality, the fitness of a gene within the design 
matrix is dependent on the other genes and cannot be assessed separately from the fitness 
of the entire chromosome. In contrast, since each gene corresponds to an agent, the objec-
tive function for a DeGroot opinion diffusion process can be assessed at the gene-level by 

fC(X̂ ,X) =

N
∑

i=1

T−1
∑

t=0

(

x̂i(t)− xi(t)
)2
.

fC(x̂i, xi) =

T−1
∑

t=0

(

x̂i(t)− xi(t)
)2
.

2 Within this paper, the observed and predicted initial opinions are equal, meaning that the contribution to the value 
of the objective function and other fit assessments from opinions at time t = 0 is always 0. For use of extensions to this 
method when observed and predicted initial opinions differ, we present all relevant equations in the form that incorpo-
rates the deviation between observed and predicted initial opinions.
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assessing how well the model predicts the opinions of a particular agent, as demonstrated 
in the above objective function. We leverage this ability to assess fit on the gene-level by 
incorporating a gene-swapping process into the algorithm along with the selection, blend-
ing, crossover, mutation, and survival operators described below.

Gene‑swapping

While the objective function can be assessed at the agent or gene-level, since agents update 
their opinions based on the opinions of others, the fitness of a gene is dependent on the 
predicted opinions of the other agents which are, in turn, dependent on the other genes 
within the chromosome. Consider a case where agent 1 has an unfavorable view of PrEP 
which changes to a favorable view after speaking with their contacts, including agent 2. A 
gene corresponding to agent 1 which places high weight on agent 2 will fit well if the model 
predicts a favorable view for agent 2 but fit poorly if the model predicts an unfavorable view. 
In essence, when presented with a pair of genes corresponding to the same agent between 
two chromosomes, it is possible to assess which gene better predicts the opinions of the 
agent within its current chromosome but the fitter gene is not guaranteed to continue to 
produce better predicted opinions when swapped with a less fit gene in an otherwise fitter 
chromosome.

For example, consider the following population of chromosomes (B, C, and D) for a net-
work of N = 3 agents whose opinions are recorded across T = 6 time steps. The value of 
the objective function for each chromosome, broken down by gene, is given to the right of 
the chromosome. Genes of interest, along with their contributions to the value of the objec-
tive function, are bolded.

Compared to chromosome D, the second gene in chromosome B and the third gene 
in chromosome C produce predicted opinions closer to the observed opinions (objec-
tive function contributions of 0.017 < 0.044 and 0.001 < 0.005 ); however, when the fit-
ter genes are swapped with the corresponding genes in chromosome D, the value of the 
objective function for the new chromosome D∗ increases, indicating the swapped genes 
perform worse than the original genes within chromosome D. This is due to changes in 
the predicted opinions over time when modified weights are placed on others’ opinions.

B =





0.336 0.664 0.000

0.261 0.364 0.375

0.349 0.306 0.345



 , f (X̂B,X) = 0.125+ 0.017+ 0.006 = 0.148

C =





0.378 0.622 0.000

0.509 0.324 0.167

0.441 0.381 0.178



 , f (X̂C ,X) = 0.093+ 0.036+ 0.001 = 0.130

D =





0.845 0.155 0.000

0.235 0.427 0.338

0.349 0.306 0.345



 , f (X̂D,X) = 0.007+ 0.044 + 0.005 = 0.056
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Within the algorithm, the gene-swapping process behaves in a manner very similar to 
the above example. The fittest chromosome, which we again call D, is identified and the 
fitness of each chromosomes is assessed at the gene-level. We then compare the fitness 
of each gene within D to the fitness of the corresponding genes in all other chromo-
somes. In all cases where a fitter gene is present, the corresponding genes are swapped 
between D and the chromosomes containing fitter genes, resulting in D∗ and modified 
versions of all other chromosomes previously containing fitter genes. After all swaps are 
completed, we compare the fitness of D to the fitness of D∗ . All swaps are retained if D∗ 
is the fitter chromosome and all swaps are rejected, returning all chromosomes to their 
previous version, if D is the fitter chromosome.

Selection

The purpose of the selection operator is to preserve the current optimal solution if 
the subsequent iteration of the algorithm is unable to find a better one. To this end, 
we implement selection with elitism, where the best chromosome is identified prior to 
each iteration of the algorithm. This elite chromosome undergoes gene swapping with 
non-elite chromosomes and then remains unchanged for the remainder of the current 
iteration of the algorithm, while the remaining chromosomes undergo the subsequent 
operators.

Blending

For blending, all non-elite chromosomes are randomly paired. Blending occurs for each 
pair of genes between paired parent chromosomes independently with probability pb 
and produces new genes which are weighted averages of the chosen gene pairs. Suppose 
chromosomes B and C are paired and that Bi and Ci are the ith genes in chromosomes B 
and C, respectively. Assuming blending occurs for row i, the offspring genes B∗

i  and C∗
i  

are defined as

where β ∼ Unif (0, 1) is a randomly selected blending factor.

Crossover

We use a modified version of the within-parent crossover operator developed by Lim-
mun, Borkowski, and Boonorm [25]. Modifications are required to adequately explore 
the relatively large parameter space of the DeGroot model, in contrast to the smaller 
design space in constrained mixture experiments. Within-chromosome crossover occurs 
with probability pc independently for all genes in the non-elite chromosomes. For genes 
selected for crossover, all non-fixed weights are randomly permuted within the gene.

D =





0.845 0.155 0.000

0.235 0.427 0.338

0.349 0.306 0.345



 , f (X̂D,X) = 0.056

D∗ =





0.845 0.155 0.000

0.261 0.364 0.375

0.441 0.381 0.178



 , f (X̂∗
D,X) = 0.071

B∗
i = βBi + (1− β)Ci and C∗

i = (1− β)Bi + βCi
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Mutation

Mutation of a gene occurs with probability pm independent of all other genes in the non-
elite chromosomes. For mutation, a weight w is selected randomly from all non-fixed 
weights within the gene and a random perturbation ε ∼ N (0, σ 2) is added to the selected 
weight to produce w∗ = w + ε . All other non-fixed weights within the row are then 
scaled by 1

1−wfixed−w∗ , where wfixed is the sum of all fixed weights within the row, so that 

the row sums to 1. We provide more details on fixed weights below in the Other Features 
section. To avoid division by zero and maintain weights in the interval [0,1], we imple-
ment the following special cases:

• If w∗ < 0 , w∗ is set to 0
• If w∗ > 1− wfixed , w∗ is set to 1− wfixed . All other non-zero weights in the row are 

then set to 0.
• If the selected weight w = 1− wfixed , the excess weight of 1− wfixed − w∗ is evenly 

distributed between all other non-fixed weights within the row.

Survival

The survival operator is a means to retain only offspring chromosomes that are an 
improvement over the corresponding parent chromosomes. The survival operator 
occurs after mutation, blending, and crossover and compares each pair of parent and 
offspring chromosomes and retains the fitter of each pair. The retained chromosomes 
are then subject to gene swapping with their corresponding rejected chromosomes. The 
final retained chromosomes become the parent chromosomes for the subsequent itera-
tion of the algorithm.

Other features

The fixed values mentioned in the mutation operator allow for specification of elements 
in the weight matrix W whose values are either known or assumed. Most often, this will 
be because weights are fixed at 0 because agents are not linked in the network ( wij where 
aij = 0).

For early iterations of the algorithm, the purpose of the crossover and mutation 
operators is to explore the parameter space of the DeGroot model. To this end, we use 
relatively high values of the probabilities ( pc, pm ) and of σ . In later iterations, the pur-
pose shifts to refining an existing solution. Since the blending operator is better suited 
to this purpose, we progressively reduce the probabilities of crossover and mutation 
and the mutation variance σ 2 while increasing the probability of blending ( pb ). These 
changes are implemented using a multiplicative adjustment each time a specified num-
ber of iterations with no improvement is reached (until the probabilities and σ attain 
specified minimum or maximum values). The hyperparameters of the algorithm used 
in both the simulation study and data analysis are given in Table 1. The ranges of oper-
ator probabilities ( pb, pc, pm ) and σ are informed by the work of Limmun, Borkowski, 
and Boonorm  [25] with adjustments to accommodate searching a larger space. The 
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remainder of the parameters were selected based on our experience using the algorithm 
to heavily favor convergence over computational efficiency with the intention of the val-
ues having minimal impact on results.

We also implement a chromosome reintroduction process that serves either to sup-
port a prior belief that agents will place high weight on their own opinions or to aid 
the refinement process. In either case, after a specified number of iterations without 
improvement, the worst chromosome—as identified by the highest value of the objective 
function—is removed from the population and replaced with a reintroduced chromo-
some. To support a prior belief about high self-weight, the reintroduced chromosome 
has 1− wfixed along the diagonal and zero for all other non-fixed weights. To aid the 
refinement process, the reintroduced chromosome is a clone of the elite chromosome 
which would otherwise be exempted from the the remaining operators in the selection 
operator. We reintroduce the elite chromosome in the simulation study and data analysis 
for this paper. A chromosome with 1− wfixed on the diagonal is always included in the 
population of initial chromosomes.

Simulation study
We first demonstrate the performance of the algorithm implemented in Julia  [26] on 
simulated data varying the factors described in Table 2. The values chosen are informed 
by the intended application of the algorithm to the pilot and full PrEP studies as well 

Table 1 Simulation study hyperparameters

The table gives the name of each hyperparameter in the software developed to implement the new genetic algorithm, the 
value used for the simulation study and data analysis in the paper, and a description of the hyperparameter

Hyperparameter Value Description

chromosomes 21 Number of chromosomes

probb 0.01 Initial probability of blending ( pb)

factorb 2 Multiplicative factor for modifying pb
maxb 0.2 Maximum value of pb
iterb 1000 Number of iterations with no improvement before modifying pb
probc 0.2 Initial probability of crossover ( pc)

factorc 0.5 Multiplicative factor for modifying pc
minc 0 Minimum value of pc
iterc 1000 Number of iterations with no improvement before modifying pc
probm 0.2 Initial probability of blending ( pm)

factorm 0.5 Multiplicative factor for modifying pm
minm 0.01 Minimum value of pm
iterm 1000 Number of iterations with no improvement before modifying pm
sigma 1 Initial value of standard deviation σ of error for mutation operator

factors 0.5 Multiplicative factor for modifying σ

mins 0.001 Minimum value of σ

iters 2000 Number of iterations with no improvement before modifying σ

max_iter 1E6 Maximum number of iterations to run algorithm

min_improve 0 Minimum decrease in value of objective function considered an improvement

min_dev 0 Acceptable value of objective function for stopping algorithm

reintroduce “elite” type of chromosome to be reintroduced

iterr 2500 Number of iterations with no improvement before reintroducing chromosome



Page 11 of 40Johnson et al. Appl Netw Sci            (2021) 6:22  

as possible features of other network studies ill-suited to existing methods: those with 
few observations per agent on smaller networks. Since the smallest network in the pilot 
study had four agents, we use N = 4 as the smallest network in the simulation study. 
Though data collection methods that can practically be applied to networks of 50 agents 
should allow for the collection of a sufficient number of time steps to use alternate algo-
rithms, we include a network of size N = 50 to ensure the range of network sizes consid-
ered includes all networks where this algorithm is the most practical option.

The use of number of time steps of T = 2 and T = 3 are based on the number of time 
steps in the pilot and full study, respectively. While the motivation for the development 
of this method is the ability to fit opinion diffusion models using small data sets, the 
number of time steps available in the PrEP studies are extremely small. We include time 
steps of T = 6 and T = 11 (initial opinions plus five and ten follow-up assessments, 
respectively) in order to assess the impact of these extremely small samples on algorithm 
performance compared to other small samples. Though at most T = 11 time steps are 
ever provided to the algorithm, we simulate data over 21 time steps so that the time 
steps provided to the algorithm and the time steps withheld would serve as pseudo test-
ing and training sets, allowing us to assess the ability of the algorithm to project opinions 
past the time steps on which data were collected. We use 21 time steps so that the num-
ber of time steps over which we extrapolate is the same as the number of time steps past 
initial provided to the algorithm for the largest number of time steps used ( T = 11).

In each simulation, we generate an Erdős–Rényi random network of size N with with 
connection probability p = d

N−1
 based on a target degree of d, excluding mathematically 

impossible combinations. While the overall structure of the social networks being lever-
aged is unlikely to be a random network, the use of relatively dense random networks 
reflects the attempt to sample clusters in the BMSM social network for intervention. We 
enforce reachability between all pairs of nodes by rejecting any generated networks that 
are not connected. This rejection does inflate the average degree beyond the target with 

Table 2 Simulation study inputs

Values for factors used in the simulation study

Input Values Notes

Network size N = 4, 10, 20, 50 Reachability enforced

Degree d = 2, 5, 9 Minimum degree d = 1 for all nodes

Self-weight wii = 0.1, 0.5, 0.8 Beta distribution with κ = α + β = 10

Time steps T = 2, 3, 6, 11 Performance assessed on t = 1, . . . , 20

Missingness 0%, 10%, 25%, 50% Minimum 2 observations per agent

Table 3 Target and mean degrees

Target degree and observed mean degree from simulation study

Target Mean

d = 2 d̄ = 2.47

d = 5 d̄ = 5.03

d = 9 d̄ = 9.01
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the inflation being worse for smaller degrees as seen in Table 3. We address this in our 
analysis of the simulation study results by using the observed degree in place of the cat-
egorical target degree where reasonable. We use the same approach with self-weight, 
though the mean self-weight within each target category is equal to the target when 
rounded to two decimal places.

We then randomly generate a weight matrix subject to a target self-weight. Each wii is 
drawn from a beta distribution with concentration κ = α + β = 10 with α and β derived 
from the concentration and the target mean. Weights are fixed as indicated by the adja-
cency matrix of the social network so that wij = 0 if aij = 0 . The remaining 1− wii in 
each row is randomly distributed between all weights not fixed at 0. This weight matrix 
is then used to simulate the opinion diffusion process according to the DeGroot model 
over twenty time steps past the initial (total of 21). Initial opinions are drawn from a Unif 
(0, 1) distribution. Finally, we create the “observed” data set by restricting to T time steps 
and randomly removing a specified percentage of observations, ensuring that no initial 
observations were missing and at least one other observation is non-missing for each 
agent. Again, combinations of network size and missing data which are incompatible 
with the above requirements are excluded. We then use the algorithm to fit the DeGroot 
model to the simulated data set, repeating the process ten times for each generated data 
set.

Performance is assessed for correct prediction of opinions across the time steps used 
to fit the weight matrix (T), correct prediction of opinions across the time steps extrapo-
lated past those used to fit the weight matrix ( 21− T  ), and recovery of weights. We used 
the root-mean-square error (RMSE) for all assessments:

and

where P is the number of elements not fixed at zero in the weight matrix (the number of 
parameters to be estimated) and wp is the pth non-zero element with wp and ŵp repre-
senting the true and estimated weights, respectively.

Results

Since possible proportions of missing data depend on the number of time steps and 
possible degrees depend on the network size, we assess the effect of each pair of vari-
ables together. We also make use of the mean number of observations per agent, which 
incorporates information about both missingness and time steps. For each variable or 
combination of variables, we assess the ability of the algorithm to recover the model 
parameters and investigate whether high recovery RMSE is the result of the algorithm 

RMSEfit =

√

∑T−1
t=0

∑N
i=1

(

x̂i(t)− xi(t)
)2

N (T − 1)
,

RMSEext =

√

∑21
t=T

∑N
i=1

(

x̂i(t)− xi(t)
)2

N (21− T )
,

RMSErec =

√

√

√

√

∑N
i=1

∑N
j=1(wij − ŵij)

2

∑N
i=1

∑N
j=1 aij

=

√

∑P
i=1(wp − ŵp)

2

P
,
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identifying a solution that fits the data poorly or identifying a solution that fits the data 
well without recovering the model parameters. We also explore whether fit on the time 
steps used for estimation is indicative of fit on time steps extrapolated past those used to 
estimate the weight matrix. Because RMSE is bounded below and many of the plots used 
show right-skew, we present all summary statistics for RMSE using median and IQR.

Network size and degree

Figure 1 and Table 4 show a clear decrease in variability of the RMSE for weight recov-
ery, with increasing degree and network size. They also indicate that recovery tends 
to improve with increasing degree and size, though the differences are small and this 
relationship is inconsistent for low degree networks. As noted previously, the method 
for generating networks inflates the actual degree beyond the target for low-degree 
networks. The effect is worse for larger networks as indicated in Fig. 1 and confirmed 
by Table  5. The high variability for low degree networks combined with the observed 
degree being inflated beyond the target may explain the trend in observed medians for 
networks with a target degree of d = 2.

Initially, both of these relationships seem counter-intuitive since increasing either net-
work size or degree increases the number of model parameters to be estimated. We pro-
pose that the observed relationship is due to the dependencies between weights within 
a row, resulting from the restriction that the weights must sum to one. For a network 
where agents have a degree of two, there are at most three non-zero weights within each 
row. If one of these weights differs from the true weight, either one or both of the oth-
ers must also differ from the true weight, inflating the recovery RMSE. As the degree 
increases, if one weight differs, it becomes possible for other weights in the row to closely 
match the truth since the excess weight can be distributed between or taken from the 
many other weights within the row. For networks with low degree, once a single weight 
within a row differs, this effect cascades through the rest of the row and produces high 

Fig. 1 RMSE for model parameter recovery by degree and size. RMSE for known and predicted weights by 
mean degree, target degree, and network size across panels
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recovery RMSE, explaining both the higher median and variability for networks with low 
degree.

This explanation does not address whether the algorithm struggles to identify good 
solutions for networks with low degree since the cascading effect occurs whether 
or not these weights produce predicted opinions close to those observed. In fact, 
we would expect model parameter recovery to be easiest for low-degree networks 
since there are fewer model parameters to recover. This is supported by the pres-
ence of near perfect model parameter recovery for small networks with low degree as 

Table 4 Median recovery RMSE by degree and sizee

Median and IQR of RMSE for model parameter recovery by degree and network size

Size Degree

2 5 9

4 0.15 (0.23) NA NA

10 0.17 (0.18) 0.17 (0.14) 0.15 (0.10)

20 0.17 (0.17) 0.18 (0.12) 0.15 (0.10)

50 0.17 (0.15) 0.17 (0.12) 0.15 (0.08)

Table 5 Mean degree by size

Observed mean degree from simulation study for networks with target degree of d = 2 by network size

Size Mean

4 d̄ = 2.15

10 d̄ = 2.48

20 d̄ = 2.58

50 d̄ = 2.62

Fig. 2 RMSE for model parameter recovery by fit RMSE, degree, and size. RMSE for known and predicted 
weights by RMSE for observed and predicted opinions on observed time steps, target degree, and network 
size across panels
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demonstrated in Fig. 1 and Table 6. Figure 2 confirms that these low-degree networks 
with high recovery RMSE are not the result of the algorithm failing to identify an 
adequate solution but are instead the result of solutions that fail to recover the model 
parameters while still predicting opinions with reasonable accuracy. This is especially 
true for small networks (which we consider in more detail below).

Though the effect of network size is slightly complicated by self-weight—as we will 
discuss later—we postulate that the decrease in median RMSE and IQR for larger net-
works is a result of the larger networks mitigating the dependency induced between 
weights by the degree of each agent. While low degree ensures that a single poorly 
recovered weight will result in more poorly recovered weights within the row, in 
larger networks that problematic row has less influence on other rows. This is sup-
ported by Fig. 3, which demonstrates that—within a target degree—larger networks 
result in less variability in model parameter recovery for similar values of fit RMSE. 
This figure also confirms that the higher median and variability in recovery RMSE for 
smaller networks is not the result of the algorithm failing to identify a solution that 
fits the data, since the marginal distribution of fit RMSE is comparable across net-
work sizes.

Table 6 Minimum recovery RMSE by degree and size

Minimum RMSE for model parameter recovery by target degree and network size

Size Degree

2 5 9

4 4.92× 10
−8 NA NA

10 3.89× 10
−4

1.68× 10
−3

1.05× 10
−2

20 3.17× 10
−2

2.75× 10
−2

4.48× 10
−2

50 4.77× 10
−2

4.29× 10
−2

5.00× 10
−2

Fig. 3 RMSE for model parameter recovery by fit RMSE, size, and degree. RMSE for known and predicted 
weights by RMSE for observed and predicted opinions on observed time steps, network size, and target 
degree across panels
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Self‑weight

Figure 4 and Table 7 demonstrate that lower self-weights are more difficult to recover 
and produce greater variability in the RMSE. We theorize that this discrepancy is par-
tially explained by the fact that the same target self-weight was used for all agents. 
Agents with high self-weight necessarily place low weight on the opinions of other 
agents, so their predicted opinions will remain fairly stable over time and as the opin-
ions of other agents change during estimation. As a result, the fit of a row with high 
self-weight will be robust to incorrect predicted opinions of other agents, implying 
robustness to incorrect estimated weights for other agents. The opposite is true for 
agents with low self-weight: the fit of a row is highly dependent on the estimated 
weights of other agents and the predicted opinions they generate, making estimation 
more unstable.

However, Fig. 5 demonstrates that networks with high recovery RMSE do not have 
particularly high fit RMSE, implying that the above explanation alone does not explain 
the patterns observed. We suggest that the high recovery RMSE for networks with 
low self-weight is caused by a similar phenomenon as was suggested in our discussion 
of the effect of degree: the strong dependencies between rows within networks with 
low self-weight result in a single incorrect weight affecting the rows for agents on 
whom incorrect weight is placed. Including self-weight in our assessment of size and 
degree supports this idea as demonstrated by Fig. 6, which shows all of the highest 
recovery RMSE values are from networks with low self-weight. This is consistent with 
the hypothesized effects of both degree and self-weight. When a single weight within 
a row of low degree is incorrect, the other weights in the row must also be incorrect. 
When agents have low self-weight, these incorrect weights in a single row spread to 
other rows which must also contain multiple incorrect weights because of the low 
degree. As the geodesic distance between the agent with incorrect weights and other 
agents increases, the rows corresponding to those other agents become progressively 

Fig. 4 RMSE for model parameter recovery by self-weight.  RMSE for known and predicted weights by 
observed mean self-weight and target self-weight
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less influenced by the incorrect weights. This allows size to mitigate the effect of low 
self-weight as we suggested it did for low degree.

Missingness and time steps

Figure 7 shows model parameter recovery improves with more time steps of data used 
for estimation and lower proportions of missing data, though both Fig.  7 and Table  8 
indicate diminishing improvement as the number of time steps increases. While Table 8 
also demonstrates that variability in RMSE tends to increase with more time steps 
and higher proportions of missing data, it is unclear if this relationship holds for low 

Fig. 5 RMSE for model parameter recovery by fit RMSE and self-weight. RMSE for known and predicted 
weights by RMSE for observed and predicted opinions on observed time steps and target self-weight

Fig. 6 RMSE for model parameter recovery by degree, self-weight, and size. RMSE for known and predicted 
weights by mean degree, target self-weight, and network size across panels
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Table 7 Median recovery RMSE by self-weight

Median and IQR of RMSE for model parameter recovery by target self‑weight

Target self-weight RMSErec

0.1 0.18 (0.18)

0.5 0.17 (0.12)

0.8 0.14 (0.10)

Fig. 7 RMSE for model parameter recovery by missingness and time steps. RMSE for known and predicted 
weights by proportion of missing data past initial and number of time steps across panels

Fig. 8 RMSE for model parameter recovery by fit RMSE, missingness, and time steps. RMSE for known and 
predicted weights by RMSE for observed and predicted opinions on observed time steps, proportion of 
missing data, and number of time steps across panels
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proportions of missing data. Figure 8 confirms the decreased recovery ability for lower 
numbers of time steps is not the result of poor fit on the time steps used for estimation, 
instead the ability of the algorithm to recover parameters is improved when more data 
are available, as is to be expected.

Though the relationships between model parameter recovery and both missing-
ness and time steps are intuitive in that fewer observations result in worse recovery of 
model parameters, whether the presence of missing data is problematic solely because 
it reduces the amount of information available for fitting the model is unclear from the 
information in either Fig. 7 or Table 8. To address this, we present Fig. 9, which demon-
strates that, for a given mean number of observations per agent, the algorithm is more 
accurate and precise when provided with more complete data from fewer time steps (see 
also Table 9). We suggest this is due to the data being missing at random instead of dis-
tributed evenly between agents or across time points, making some observations more 
valuable than others.

Figure  9 confirms that the distribution of missing data between time steps is an 
issue based on the comparison of networks with two time steps to those with three 
time steps past initial and 50% missing data. Based on the requirement that all agents 

Table 8 Median recovery RMSE by rate of missingness and time steps

Median (IQR) of RMSE for model parameter recovery by proportion of missing data and number of time steps used for 
estimation

Time steps Missingness

0 0.1 0.25 0.5

2 0.15 (0.07) NA NA NA

3 0.09 (0.04) 0.15 (0.05) 0.20 (0.06) 0.28 (0.07)

6 0.06 (0.04) 0.14 (0.05) 0.19 (0.08) 0.25 (0.09)

11 0.06 (0.04) 0.14 (0.06) 0.20 (0.10) 0.24 (0.12)

Fig. 9 Observations by RMSE for model parameter recovery, missingness, and time steps. Mean number of 
observations per agent by RMSE for known and predicted weights, proportion of missing data past initial, 
and number of time steps across panels
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have at least one non-missing observation past initial, all agents in networks with 
three time steps and 50% missing data have two observations but the second observa-
tion could occur at either the first or second time step. While both setups result in the 
same number of observations per agent, recovery RMSE is higher for the networks 
with missing data, indicating missing data increases recovery RMSE beyond what 
would be expected from the decreased number of observations per agent.

As shown in Fig. 10, with the exception of simulations with only two time steps, recov-
ery RMSE roughly increases with fit RMSE and larger values for both measures tend to 
be from networks with more missing data. The lack of a relationship for simulations with 
two time steps indicates fit on the observed time steps is a poor indicator of parameter 
recovery when only two time steps are available. While Fig.  8 also indicates the pres-
ence of unusually high recovery RMSE relative to fit RMSE for some networks with high 
missingness, high missingness alone does not explain this. In Fig. 11 we can see that all 
such networks have either low self-weight, low degree, or both.

We see a similar pattern with fit on the observed time steps and fit on extrapolated 
time steps where networks with only two time steps behave differently than all others. 
Figure 12 shows the relationship between fit on the time steps provided to the algorithm 
(observed time steps) and fit on the time steps not provided to the algorithm (extrapo-
lated time steps). With the exception of simulations where only two time steps are pro-
vided to the algorithm, fit on the observed time steps is indicative of fit on extrapolated 
time steps with the strength of this relationship increasing with an increasing number 
of time steps provided to the algorithm. Since RMSE for the time steps provided to the 
algorithm ignores the presence of missing data, Fig.  12 includes clusters with higher 
RMSEfit and RMSEext for higher proportions of missingness.

The collection of points in a vertical line for the simulations with only two time 
steps demonstrates the lack of a relationship which is consistent with worse parameter 

Fig. 10 RMSE for model parameter recovery by fit RMSE, time steps, and missingness.  RMSE for known and 
predicted weights by RMSE for observed and predicted opinions on observed time steps, number of time 
steps, and proportion of missing data across panels with different x-axis scales
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Table 9 Median recovery RMSE by missingness and observations

Median and IQR of RMSE for model parameter recovery by proportion of missing data and mean number of observations 
per agent

Observations Missingness

0 0.5

2 0.15 (0.07) 0.28 (0.07)

6 0.06 (0.04) 0.24 (0.12)

Fig. 11 RMSE for model parameter recovery by fit RMSE, degree, self-weight, and time steps. RMSE for 
known and predicted weights by RMSE for observed and predicted opinions on observed time steps, target 
degree, target self-weight, and number of time steps across panels

Fig. 12 Extrapolation RMSE by fit RMSE, missingness, and time steps. RMSE for observed and predicted 
opinions on extrapolated time steps by RMSE for observed and predicted opinions on observed time steps, 
proportion of missing data, and number of time steps across panels



Page 22 of 40Johnson et al. Appl Netw Sci            (2021) 6:22 

recovery for fewer time steps even when the estimated parameters fit the data well as 
was seen in Figs. 8 and 10. Fit on observed time steps is indicative of fit on extrapolated 

time steps across network size, degree, self-weight, and missingness as demonstrated by 
Figs. 13, 14, 15, and 16. The notable feature in all of these plots is the collection of points 
in a vertical line already discussed here.

Fig. 13 Extrapolation RMSE by fit RMSE, time steps, and missingness. RMSE for observed and predicted 
opinions on extrapolated time steps by RMSE for observed and predicted opinions on observed time steps, 
number of time steps, and proportion of missing data across panels with different x-axis scales

Fig. 14 Extrapolation RMSE by fit RMSE, degree, and size. RMSE for observed and predicted opinions on 
extrapolated time steps by RMSE for observed and predicted opinions on observed time steps, target degree, 
and network size across panels
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Application: diffusion of willingness to use PrEP among BMSM

Study overview

The pilot intervention study was conducted in Milwaukee, WI in 2016-2017 with social 
networks of BMSM enrolled in the study. Network leaders—members of each network 
who were most socially interconnected with others in the same network, as well as those 
linked in their friendship with network members who would not otherwise be reached—
were selected to attend a group intervention which met each week for five weeks for 2 
h per session. Intervention sessions provided PrEP education and skills training in how 

Fig. 15 Extrapolation RMSE by fit RMSE, size, and degree.  RMSE for observed and predicted opinions on 
extrapolated time steps by RMSE for observed and predicted opinions on observed time steps, network size, 
and target degree across panels

Fig. 16 Extrapolation RMSE by fit RMSE and self-weight. RMSE for observed and predicted opinions on 
extrapolated time steps by RMSE for observed and predicted opinions on observed time steps and target 
self-weight
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to endorse PrEP to friends. All participants (network leaders and other network mem-
bers) completed assessments at enrollment and three months later. The research was 
approved by the Medical College of Wisconsin Institutional Review Board (IRB), and 
written informed consent was provided by all study participants. Further information on 
procedures is available elsewhere [4].

Recruitment of social networks

Five social networks were enrolled in the study. Recruitment of each network began by 
identifying, approaching, and recruiting an initial seed in a community venue. Entry cri-
teria for seeds were reporting male sex at birth; describing oneself as African Ameri-
can, Black, or multiracial; being age 18 or older; reporting sex with males in the past 
year; and not reporting being HIV positive. When consented and enrolled in the study, 
seeds were asked to identify friends who were MSM . First names were recorded by the 
study staff, and the seed was provided with study invitation packets to distribute to listed 
friends. Interested friends of the seed were then enrolled following the same procedures 
as for the seed with the same entry criteria except not restricting study eligibility based 
on serostatus. This first ring of friends surrounding the seed were then asked to iden-
tify their own MSM friends, and were asked to give an invitation packet to each named 
friend, with enrolled friends constituting the second and final ring extending outward 
from the seed. The recruited networks of the five seeds had a total of 40 unique mem-
bers, and networks were composed of between 4 and 12 participating members.

Fig. 17 Difference between observed and predicted opinions by adjacency matrix and measure. Difference 
between observed and predicted opinions measured in number of bins by adjacency matrix construction 
method and measure across all networks and runs of the algorithm
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Assessments

Assessment measures were completed using self-administered questionnaires during 
individual sessions at the time of the baseline and follow-up visits. Key measures for 
this analysis were PrEP self-efficacy and PrEP willingness. PrEP self-efficacy was assessed 
with eight items. Each item asked participants to use a 4-point scale to indicate how 
difficult, from very hard to very easy, it would be to engage in an action (sample item: 
“How difficult or easy would it be for you to visit a doctor who can provide PrEP?”). PrEP 
willingness was assessed with three items. Each item asked participants to indicate their 
strength of agreement using a 5-point Likert scale (from “strongly disagree” to “strongly 
agree”; sample item: “I would be willing to go on PrEP if I had a casual sex partner who 
was HIV-positive”).

Methods

We selected willingness and self-efficacy for this analysis since increasing willingness to 
take PrEP is a key study aim and previous work has demonstrated a direct association 
between self-efficacy and PrEP use  [27]. A single value per agent was created for each 
measure by summing all the component Likert-scale items. Possible values ranged from 
8-32 for self-efficacy and 3-15 for willingness. Since initial observations for both willing-
ness and self-efficacy were missing for agent 11 in network 2 and agent 4 in network 
3, we imputed these values using followup data for those agents where available or the 
median initial response for all other agents.

As the DeGroot model uses continuous data on the interval [0, 1], both scale measures 
were converted to continuous for model fitting and back-transformed for evaluation of 
model fit using the following processes:

Forward transformation

1 Begin with data on an n-point composite scale.
2 Divide the interval [0, 1] into n sub-intervals of equal width.
3 An opinion of x on the composite scale takes on the middle value, y, in the xth sub-

interval on the continuous scale.

Back transformation

1 Begin with data on a continuous [0, 1] interval to be converted to an n-point com-
posite scale.

2 Multiply the continuous opinion y by n.
3 Round the multiplied continuous opinion to an integer to produce an opinion on the 

composite scale.

The transformation to a continuous scale would allow us to use the objective function 
used for the simulation study,
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but the optimal solution in the case of Likert-scale data is the one that best predicts 
observed opinions on the original scale. Specifically, predicted opinions that differ from 
the observed opinions on the continuous scale should only be penalized if they also dif-
fer on the original scale after the rounding step in the backwards transformation. We 
accomplish this through the use of the objective function

where B(x̂i(t), xi(t)) measures the absolute deviation between the observed and 
predicted opinions on the Likert scale. We refer to predicted opinions where 
B(x̂i(t), xi(t)) = 0 as being in the correct bin or as a correctly predicted opinion. The 
inclusion of the absolute deviation on the continuous scale serves to penalize only esti-
mates outside of the correct bin. Since the absolute deviation on the Likert scale as 
measured by B(x̂i(t), xi(t)) is already a second penalty for predicted and observed opin-
ions that differ greatly, we do not square the absolute deviation on the continuous scale 
as in the continuous version of the objective function. The fit can be assessed on a row 
or agent level by only summing across time steps to obtain an agent-level value of the 
objective function using

While there are only two time steps, the followup assessment was conducted three 
months after the initial assessment, meaning agents likely engaged in multiple interac-
tions between the initial and followup assessments. To address this, we define a time 
step to be one month and treat time steps t = 1 and t = 2 as missing for all agents. This 
approach allows for information and opinions shared by the network seed to spread to 
their friends who can then share the information with their friends instead of assuming 
information from the seed has not yet reached the second ring of recruitment.

Since the recruitment process does not result in complete information about connections 
within the network, we construct two different adjacency matrices for each network: one 
where we begin with a matrix of zeros and add only connections we can be certain exist 
(denoted Build in reporting of results) and another where we begin with a matrix of ones 
and remove any connections we are certain do not exist (denoted Remove in reporting of 
results).

For all four combinations of outcome measure and adjacency matrix construction, we 
run the algorithm ten times. Though mathematically derived error estimates for either 
parameter estimates or predicted opinions are impractical, conducting multiple runs of the 
algorithm allows us to generate estimates of algorithmic variability for both. While we do 
not present point estimates for opinions as part of our results, we include standard devia-
tions for all estimated weights. In order to assess algorithmic variability and predictive per-
formance on a network level, we use modified forms of the RMSE measures used for the 
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simulation study adapted to account for the unknown model parameter values and scale 
data:

and

where C represents the number of possible bins and is included to allow comparison of 
variability in estimated weights between the willingness and self-efficacy measures, w̄ij 
is the mean estimated weight agent i places on the opinion of agent j, and w̄p is the pth 
weight not fixed at zero.

Results

To provide context for the following results, we include Table 10 which identifies both 
the seed and leader (s) in each social network. Note that some networks had a higher 
density of network leaders (range: one-eighth to one-third of network members).

Accuracy of predicted opinions

We present Fig. 17 which demonstrates the models are able to predict opinions with rea-
sonable accuracy while highlighting some limitations. It is worth noting that, while devi-
ation is measured in number of bins—units on the composite scale—between observed 
and predicted opinions for both willingness and self-efficacy, the size of a bin is not the 
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Table 10 Network leaders and seeds

Table of agents who are either network leaders or seeds by network

Network 1 ( N = 12)

 Agent 1 Leader Seed

 Agent 2 Leader

 Agent 3 Leader

 Agent 4 Leader

Network 2 ( N = 11)

 Agent 1 Leader Seed

 Agent 2 Leader

 Agent 3 Leader

Network 3 ( N = 8)

 Agent 1 Leader Seed

Network 4 ( N = 5)

 Agent 1 Seed

 Agent 4 Leader

Network 5 ( N = 4)

 Agent 1 Leader Seed

 Agent 2 Leader
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same between measures: a deviation of one bin is a larger difference for willingness than 
for self-efficacy.

The presence of the 10 observations that are seven bins away from the observed opin-
ions using the build matrix for self-efficacy is particularly interesting. These observations 
are all from agent 5 in network 1. As can be seen in Table 11, agent 5 has only one con-
nection in the build matrix, to agent 2. Since agent 2 has a lower self-efficacy score at 
both observed time steps than agent 5, their connection to agent 2 is unable to explain 
the improvement in self-efficacy at followup. In contrast, the model using the remove 
matrix has no deviations exceeding four bins. We see evidence of this effect across both 
measures with improved predicted opinions for the remove matrix. Table 11 also shows 
that agent 5 is allowed to update their opinion based on more agents within the network, 
explaining the improvement in predicted opinions. This is not to say that the remove 
matrix is a more accurate representation of the underlying network, only that informa-
tion sources are missing from the build matrix. This could be a missing connection that 
is present in the remove matrix but it could also be a connection to an individual not 
included in the network or an external source such as social media, advertisements, or 
individual research.

Weight estimates and variability

We present Tables 11, 12, 13, 14, 15, 16, 17 to summarize the estimated weights for all 
five networks across ten runs of the algorithm for both willingness and self-efficacy on 
adjacency matrices built from known ties or created by removing connections known 
not to exist. Elements fixed at 0 according to the adjacency matrix are indicated with a 
0 without a standard deviation. Weights places on leaders are indicated with an aster-
isk (*) and weights that are structurally zero in the build matrix are italic in the remove 
matrix. As was discussed previously, there are notable differences in Table 11 for agent 
5 between the build and remove matrices with estimated weights between 0.12 and 0.21 
placed on agents whose weights were fixed at 0 for the build matrix. We also see evi-
dence that the algorithm is able to identify connections present in the adjacency matrix 
that may not be present in the network in the form of zero or nearly zero estimated 
weights for both build and remove adjacency matrices.

While Tables 11, 12, 13, 14, 15, 16, 17 do provide information about variability between 
runs of the algorithm, Table 18 presents this information in condensed form. It shows 
that algorithmic variability is much lower for self-efficacy than for willingness. Within 
measures, algorithmic variability is higher on the remove matrix for willingness and 
higher on the build matrix for self-efficacy. The assessment of how well the predicted 
opinions fit the data confirms the relationship seen in Fig. 17 with models on the remove 
matrix tending to produce predicted opinions closer to those observed. Again, this sup-
ports the idea that information is missing from the build matrices though the additional 
information in the remove matrices is not necessarily correct.

Comparison of leaders to other agents

In order to assess whether leaders are better able to influence their friends, we calcu-
late the mean weight placed on leaders versus non-leaders for each network, adjacency 
matrix, and measure combination. We also determine, out of all possible non-zero 
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weights placed on leaders or non-leaders, both the number and proportion that exceed 
0.005 for all combinations. All of these measures exclude agents not connected to a 
leader. We also include mean self-weight for leaders and non-leaders for all agents within 
the networks. Table 19 shows these summary statistics for willingness.

For willingness, on networks 1, 2, 3, and 5 the mean estimated weight for leaders is higher 
for both adjacency matrices. It is higher for non-leaders across both adjacency matrices 
for network 4. There is no clear pattern in the proportion of practically non-zero weights 
(weights greater than 0.005) between leaders and non-leaders. We note that the uncertainty 
in the adjacency matrices could obscure any relationship between leadership training and 

Table 15 Estimated weights for willingness and self-efficacy on network 3

Estimated weights and standard deviations for willingness and self‑efficacy across 10 runs for network 3 using network built 
with connections known to exist and network where connections known not to exist are removed where weights placed on 
leaders is indicated with * and italic estimated weights in the remove matrix which are fixed in the build matrix

Willingness build

 0.05* (0.08) 0.00 (0.00) 0.49 (0.01) 0.46 (0.07) 0 0 0 0

 1.00* (0.00) 0.00 (0.00) 0 0 0.00 (0.00) 0 0 0

 0.04* (0.06) 0 0.96 (0.06) 0 0 0 0 0

 0.00* (0.00) 0 0 0.15 (0.13) 0 0.51 (0.24) 0.34 (0.21) 0.00 (0.00)

 0 0.51 (0.15) 0 0 0.49 (0.15) 0 0 0

 0 0 0 0.53 (0.05) 0 0.47 (0.05) 0 0

 0 0 0 0.49 (0.05) 0 0 0.51 (0.05) 0

 0 0 0 0.24 (0.00) 0 0 0 0.76 (0.00)

Willingness remove

 0.02* (0.03) 0.94 (0.15) 0.01 (0.02) 0.03 (0.09) 0 0 0 0

 0.25* (0.24) 0.44 (0.34) 0.04 (0.05) 0.11 (0.31) 0.03 (0.03) 0.06 (0.10) 0.03 (0.03) 0.03 (0.01)

 0.30* (0.10) 0.05 (0.06) 0.10 (0.11) 0.17 (0.15) 0.13 (0.07) 0.12 (0.08) 0.07 (0.05) 0.07 (0.01)

 0.20* (0.27) 0.01 (0.02) 0.00 (0.00) 0.28 (0.29) 0.16 (0.30) 0.13 (0.16) 0.22 (0.31) 0.00 (0.00)

 0 0.26 (0.41) 0.00 (0.00) 0.04 (0.06) 0.12 (0.16) 0.30 (0.32) 0.29 (0.33) 0.01 (0.02)

 0 0.00 (0.00) 0.00 (0.00) 0.44 (0.39) 0.08 (0.20) 0.20 (0.29) 0.28 (0.36) 0.00 (0.00)

 0 0.03 (0.07) 0.00 (0.00) 0.15 (0.24) 0.10 (0.17) 0.40 (0.33) 0.32 (0.32) 0.00 (0.00)

 0 0.00 (0.00) 0.20 (0.07) 0.02 (0.02) 0.01 (0.04) 0.01 (0.01) 0.02 (0.06) 0.74 (0.01)

Self-efficacy build

 0.96* (0.04) 0.03 (0.03) 0.00 (0.00) 0.01 (0.02) 0 0 0 0

 0.00* (0.00) 0.94 (0.01) 0 0 0.06 (0.01) 0 0 0

 0.14* (0.00) 0 0.86 (0.00) 0 0 0 0 0

 0.00* (0.00) 0 0 0.93 (0.10) 0 0.06 (0.10) 0.00 (0.01) 0.01 (0.01)

 0 0.01 (0.02) 0 0 0.99 (0.02) 0 0 0

 0 0 0 0.31 (0.03) 0 0.69 (0.03) 0 0

 0 0 0 0.00 (0.00) 0 0 1.00 (0.00) 0

 0 0 0 0.14 (0.00) 0 0 0 0.86 (0.00)

Self-efficacy remove

 0.91* (0.02) 0.05 (0.02) 0.00 (0.00) 0.03 (0.03) 0 0 0 0

 0.02* (0.01) 0.67 (0.24) 0.06 (0.01) 0.14 (0.25) 0.03 (0.03) 0.05 (0.06) 0.02 (0.01) 0.02 (0.01)

 0.00* (0.01) 0.00 (0.00) 0.85 (0.01) 0.03 (0.06) 0.01 (0.01) 0.00 (0.00) 0.10 (0.06) 0.00 (0.01)

 0.03* (0.05) 0.26 (0.35) 0.02 (0.03) 0.04 (0.09) 0.48 (0.38) 0.06 (0.07) 0.08 (0.12) 0.02 (0.01)

 0 0.04 (0.02) 0.03 (0.03) 0.13 (0.12) 0.34 (0.15) 0.13 (0.13) 0.18 (0.10) 0.15 (0.15)

 0 0.18 (0.06) 0.01 (0.01) 0.08 (0.05) 0.04 (0.03) 0.52 (0.15) 0.06 (0.04) 0.12 (0.04)

 0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) 0.00 (0.00) 0.64 (0.02) 0.35 (0.01)

 0 0.02 (0.01) 0.00 (0.00) 0.01 (0.01) 0.01 (0.01) 0.07 (0.04) 0.02 (0.03) 0.87 (0.03)
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the proportion of possible non-zero weights that are present and that network 4 is the only 
network where the seed did not attend leadership training, providing a possible explana-
tion for the inefficacy of the leader in that network. For both measures, mean self-weight 
tends to be higher for the build matrix than for the remove matrix, indicating the algorithm 
identifies a solution where weight is distributed over either more or different agents when 
available.

Table  20 presents the same statistics for self-efficacy. For self-efficacy, whether higher 
weight was placed on leaders or non-leaders is only consistent between the build and 
bemove matrices for networks 1 and 5 with higher weight placed on non-leaders. With net-
work 4 again being a notable exception, both the weights and the differences between them 
tend to be small relative to those estimated for willingness. This necessarily results in higher 
estimated self-weights than for willingness, indicating agents were more open to chang-
ing their willingness to use PrEP than their beliefs about the difficulty of engaging in PrEP 
behaviors. Again, there is no clear pattern in the proportion of practically non-zero weights 
between leaders and non-leaders and self-weight tends to be higher for the build matrix.

Conclusions
In order to expand the use of opinion diffusion models to public health and social sci-
ence applications, we developed a novel genetic algorithm capable of recovering the 
parameters of a DeGroot opinion diffusion process using small data sets, including those 
with missing data and more model parameters than observed time steps. We assessed 
the efficacy of the algorithm on simulated data, considering a variety of features of the 
networks and data sets where this method could reasonably be used. We also demon-
strated the performance of the algorithm on the PrEP pilot study data, producing esti-
mated weights that result in predicted opinions close to those observed. This serves as 
a first step in the development of an epidemic model informed by the opinion diffusion 
process to assess the network leader intervention, an option not previously available 
with the limited size of the data set.

Table 17 Estimated weights for willingness and self-efficacy on network 5

Estimated weights and standard deviations for willingness and self‑efficacy across 10 runs for network 5 using network built 
with connections known to exist and network where connections known not to exist are removed

Build Remove

Willingness

 0.50* (0.09) 0.50* (0.09) 0.00 (0.00) 0.00 (0.00) 0.48* (0.06) 0.52* (0.06) 0.00 (0.00) 0.00 (0.00)

 0.49* (0.06) 0.51* (0.06) 0 0 0.53* (0.14) 0.47* (0.14) 0.00 (0.00) 0.00 (0.00)

 0.04* (0.00) 0 0.96 (0.00) 0 0.00* (0.00) 0.00* (0.00) 0.68 (0.01) 0.32 (0.01)

 0.21* (0.00) 0 0 0.79 (0.00) 0.12* (0.07) 0.09* (0.07) 0.00 (0.00) 0.79 (0.00)

Self-efficacy

 0.71* (0.00) 0.00* (0.00) 0.00 (0.00) 0.29 (0.00) 0.71* (0.00) 0.00* (0.00) 0.00 (0.00) 0.29 (0.00)

 0.12* (0.00) 0.88* (0.00) 0 0 0.10* (0.03) 0.88* (0.01) 0.00 (0.01) 0.02 (0.03)

 0.00* (0.00) 0 1.00 (0.00) 0 0.00* (0.00) 0.00* (0.00) 1.00 (0.00) 0.00 (0.00)

 0.00* (0.00) 0 0 1.00 (0.00) 0.00* (0.00) 0.00* (0.00) 0.00 (0.00) 1.00 (0.00)
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Simulation study

The simulation study demonstrates the algorithm is able to recover the model param-
eters of the opinion diffusion process and correctly predict opinions, though the accu-
racy of both types of estimates depend on degree, network size, self-weight, number of 
time steps observed, and proportion of missing data. Small, low degree networks are the 
only networks capable of nearly perfect model parameter recovery but can also result in 
inaccurate model parameter estimates even when the solution fits the observed opin-
ions well. Increased network size mitigates this issue, decreasing both the median and 
IQR of the recovery RMSE at the expense of increasing the minimum recovery RMSE. 
Networks comprised of agents who place little weight on their own opinions also result 
in poorer recovery of weights even when predicted opinions closely match the observed 
ones. Low degree may exacerbate this problem but larger network size mitigates the 
effect of low self-weight as for low degree. Both lower proportions of missing data and 
more time steps improve recovery by increasing the number of observations per agent 
though applying the algorithm to data with a few completely observed time points will 
result in better parameter recovery than an application with a comparable number of 
observed time points per agent resulting from more follow-up time points but signifi-
cant missing data.

Table 18 Mean self-weight, mean weight, proportion, and number by network, adjacency 
matrix and leadership for self-efficacy

Mean self‑weight, mean weight from other agents, and proportion and number of possible weights from other agents that 
exceed 0.005 for self‑efficacy

Network Measure Adjacency RMSEalg RMSEfit

1 ( N = 12) Willingness Build 0.09 0.36 (0.01)

Remove 0.16 0.37 (0.02)

Self-efficacy Build 0.04 0.51 (0.00)

Remove 0.00 0.28 (0.02)

2 ( N = 11) Willingness Build 0.12 0.45 (0.00)

Remove 0.19 0.42 (0.01)

Self-efficacy Build 0.04 0.23 (0.00)

Remove 0.00 0.23 (0.01)

3 ( N = 8) Willingness Build 0.09 0.33 (0.01)

Remove 0.20 0.33 (0.00)

Self-efficacy Build 0.03 0.21 (0.01)

Remove 0.00 0.15 (0.00)

4 ( N = 5) Willingness Build 0.02 0.71 (0.00)

Remove 0.11 0.70 (0.03)

Self-efficacy Build 0.02 0.54 (0.00)

Remove 0.00 0.42 (0.00)

5 ( N = 4) Willingness Build 0.05 0.32 (0.00)

Remove 0.06 0.29 (0.00)

Self-efficacy Build 0.00 0.38 (0.00)

Remove 0.00 0.38 (0.00)
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Table 19 Mean self-weight, mean weight, proportion, and number by network, adjacency 
matrix and leadership for willingness

Mean self‑weight, mean weight from other agents, and proportion and number of possible weights from other agents that 
exceed 0.005 for willingness with standard deviations where applicable

Network Adjacency Leader Self-weight Weight Proportion Number

1 ( N = 12) Build Leader 0.50 (0.21) 0.21 (0.29) 0.79 11

Non-leader 0.74 (0.34) 0.14 (0.17) 0.88 7

Remove Leader 0.40 (0.26) 0.11 (0.18) 0.72 26

Non-leader 0.30 (0.26) 0.05 (0.08) 0.55 44

2 ( N = 11) Build Leader 0.61 (0.52) 0.17 (0.15) 0.70 7

Non-leader 0.66 (0.41) 0.15 (0.16) 0.75 6

Remove Leader 0.37 (0.55) 0.09 (0.07) 0.78 18

Non-leader 0.23 (0.33) 0.08 (0.08) 0.88 64

3 ( N = 8) Build Leader 0.05 (NA) 0.35 (0.57) 0.67 2

Non-leader 0.48 (0.33) 0.26 (0.25) 0.57 4

Remove Leader 0.02 (NA) 0.25 (0.05) 1.00 3

Non-leader 0.31 (0.22) 0.11 (0.17) 0.80 36

4 ( N = 5) Build Leader 0.83 (NA) 0.00 (0.00) 0.00 0

Non-leader 0.84 (0.19) 0.14 (0.16) 0.67 4

Remove Leader 0.68 (NA) 0.02 (0.01) 0.75 3

Non-leader 0.61 (0.30) 0.13 (0.21) 0.57 8

5 ( N = 4) Build Leader 0.50 (0.01) 0.31 (0.23) 1.00 4

Non-leader 0.88 (0.12) 0.00 (0.00) 0.00 0

Remove Leader 0.48 (0.01) 0.21 (0.25) 0.67 4

Non-leader 0.74 (0.08) 0.05 (0.13) 0.17 1

Table 20 Mean self-weight, mean weight, proportion, and number by network, adjacency 
matrix and leadership for self-efficacy

Mean self‑weight, mean weight from other agents, and proportion and number of possible weights from other agents that 
exceed 0.005 for self‑efficacy with standard deviations where applicable

Network Adjacency Leader Self-Weight Weight Proportion Number

1 ( N = 12) Build Leader 0.76 (0.18) 0.05 (0.07) 0.57 8

Non-leader 0.97 (0.05) 0.07 (0.15) 0.50 4

Remove Leader 0.50 (0.23) 0.04 (0.05) 0.58 21

Non-leader 0.55 (0.39) 0.05 (0.12) 0.54 43

2 ( N = 11) Build Leader 0.60 (0.53) 0.20 (0.31) 0.90 9

Non-leader 0.72 (0.32) 0.13 (0.20) 0.88 7

Remove Leader 0.35 (0.43) 0.04 (0.06) 0.57 13

Non-leader 0.32 (0.29) 0.09 (0.16) 0.70 51

3 ( N = 8) Build Leader 0.96 (NA) 0.05 (0.08) 0.33 1

Non-leader 0.90 (0.11) 0.02 (0.03) 0.71 5

Remove Leader 0.91 (NA) 0.02 (0.01) 0.67 2

Non-leader 0.56 (0.29) 0.07 (0.10) 0.78 35

4 ( N = 5) Build Leader 1.00 (NA) 0.12 (0.02) 1.0 2

Non-leader 0.47 (0.54) 0.22 (0.44) 0.25 1

Remove Leader 1.00 (NA) 0.30 (0.42) 0.75 3

Non-leader 0.61 (0.41) 0.03 (0.05) 0.36 5

5 ( N = 4) Build Leader 0.80 (0.12) 0.03 (0.06) 0.25 1

Non-leader 1.00 (0.00) 0.14 (0.21) 0.5 1

Remove Leader 0.80 (0.12) 0.02 (0.04) 0.17 1

Non-leader 1.00 (0.00) 0.05 (0.12) 0.33 2
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Opinion diffusion modeling

Analysis of the estimated weights demonstrates that agents generally place more weight 
on the opinions of leaders than non-leaders when updating their willingness to use PrEP , 
though evidence is mixed for self-efficacy. They also suggest the network leader inter-
vention is more effective for changing willingness than self-efficacy. While these results 
agree with previous research and indicate the use of opinion leaders may be an effec-
tive intervention for increasing PrEP usage to reduce transmission of HIV , this is not the 
intended use of the estimated weights. Instead, the application of this algorithm to the 
pilot study data is the first step in a detailed investigation of the opinion diffusion pro-
cess underlying the use of network leaders as an intervention to increase uptake of PrEP 
for BMSM.

Though other methods can be used to assess the effectiveness of the intervention for 
each agent, this method allows for an exploration of why the intervention was or was 
not effective for each agent in the network. Since the model includes an estimate of 
the weight each agent places on the opinions of all other agents, we are able to identify 
agents who were particularly receptive or resistant to the opinions of the network lead-
ers. Identifying demographic or relational differences that explain the varying receptivity 
of agents with the network allows for better prediction of the change in opinions about 
PrEP that could be expected when applying the network leader intervention to other 
networks.

While only having two time steps is a limitation that results in higher variability in 
model parameter estimates, both the simulation study and application of the algorithm 
to the pilot study data show the algorithm can be used to estimate the model parameters 
of the diffusion process using very few time points. In addition, the simulation study 
demonstrates a substantial improvement in the performance of the algorithm on three 
time steps as compared to two time steps. This suggests the algorithm will be able to 
produce estimates that are more precise and accurate using the three time steps included 
in the full study. These estimates can then be used to inform parameters of an epidemic 
model for evaluating the use of a network leader intervention as a means to reduce inci-
dence of HIV for BMSM.
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