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Abstract 

The spatial distribution of population affects disease transmission, especially when 
shelter in place orders restrict mobility for a large fraction of the population. The spatial 
network structure of settlements therefore imposes a fundamental constraint on the 
spatial distribution of the population through which a communicable disease can 
spread. In this analysis we use the spatial network structure of lighted development as 
a proxy for the distribution of ambient population to compare the spatiotemporal evo-
lution of COVID-19 confirmed cases in the USA and China. The Visible Infrared Imaging 
Radiometer Suite (VIIRS) Day/Night Band sensor on the NASA/NOAA Suomi satellite 
has been imaging night light at ~ 700 m resolution globally since 2012. Comparisons 
with sub-kilometer resolution census observations in different countries across differ-
ent levels of development indicate that night light luminance scales with population 
density over ~ 3 orders of magnitude. However, VIIRS’ constant ~ 700 m resolution can 
provide a more detailed representation of population distribution in peri-urban and 
rural areas where aggregated census blocks lack comparable spatial detail. By varying 
the low luminance threshold of VIIRS-derived night light, we depict spatial networks 
of lighted development of varying degrees of connectivity within which populations 
are distributed. The resulting size distributions of spatial network components (con-
nected clusters of nodes) vary with degree of connectivity, but maintain consistent 
scaling over a wide range (5 × to 10 × in area & number) of network sizes. At conti-
nental scales, spatial network rank-size distributions obtained from VIIRS night light 
brightness are well-described by power laws with exponents near −2 (slopes near 
−1) for a wide range of low luminance thresholds. The largest components (104 to 105 
km2) represent spatially contiguous agglomerations of urban, suburban and periurban 
development, while the smallest components represent isolated rural settlements. 
Projecting county and city-level numbers of confirmed cases of COVID-19 for the USA 
and China (respectively) onto the corresponding spatial networks of lighted develop-
ment allows the spatiotemporal evolution of the epidemic (infection and detection) to 
be quantified as propagation within networks of varying connectivity. Results for China 
show rapid nucleation and diffusion in January 2020 followed by rapid decreases in 
new cases in February. While most of the largest cities in China showed new confirmed 
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cases approaching zero before the end of February, most of these cities also showed 
distinct second waves of cases in March or April. Whereas new cases in Wuhan did not 
approach zero until mid-March, as of December 2020 it has not yet experienced a sec-
ond wave of cases. In contrast, the results for the USA show a wide range of trajecto-
ries, with an abrupt transition from slow increases in confirmed cases in a small number 
of network components in January and February, to rapid geographic dispersion to a 
larger number of components shortly before mobility reductions occurred in March. 
Results indicate that while most of the upper tail of the network had been exposed 
by the end of March, the lower tail of the component size distribution has only shown 
steep increases since mid-June.

Keywords:  Night light, Spatial network, COVID-19, Spatiotemporal, Connectivity

Introduction
The spatial distribution of ambient population affects disease transmission, espe-
cially when shelter in place orders restrict mobility for a large fraction of the popula-
tion. At regional scales, the spatial network structure of settlements therefore imposes 
a fundavmental constraint on the spatial distribution of the population through which 
a communicable disease can spread. However, traditional population estimation meth-
ods aggregate population counts into census blocks of widely varying size, resulting in a 
progressive loss of spatial detail as population density decreases away from high density 
urban cores. With confirmed cases of COVID-19 largely reported at USA county levels, 
the loss of spatial detail is increased further as counties are generally much larger than 
census blocks. Model simulations using administrative boundaries (e.g. https​://www.
nytim​es.com/inter​activ​e/2020/03/20/us/coron​aviru​s-model​-us-outbr​eak.html) illus-
trate the disparity in county size within the US, and the tendency for larger counties to 
contain widely dispersed settlements within large areas of effectively uninhabited land 
area. As populations are dispersed over large numbers of small settlements over most of 
the peri-urban and rural USA, it is clear that people are not distributed uniformly within 
counties, and that the administrative boundaries within which data are aggregated are 
generally irrelevant to disease transmission. A more spatially explicit boundary con-
dition of population and settlement distribution could provide a much more accurate 
spatiotemporal representation of transmission pathways – particularly when mobility is 
sharply reduced and transmission occurs within networks of less mobile populations. In 
this analysis, we investigate the potential influence of the spatial structure of networks of 
population and development on the transmission of COVID-19 in China and the USA.

Satellite observations of stable night light provide a unique proxy for anthropogenic 
development in which continuous spatial variations in luminance correspond to inten-
sity of development as density of lighted infrastructure. Brightness and spatial extent of 
emitted light are correlated with population density (Sutton et al. 2001), built area den-
sity (Elvidge et al. 2007) and economic activity (Doll et al. 2006; Henderson et al. 2009) 
at global scales and within specific countries. The Visible Infrared Imaging Radiometer 
Suite (VIIRS) Day/Night Band (DNB) sensor on the NASA/NOAA Suomi satellite has 
been imaging night light at ~ 700 m resolution globally since 2012. The sensor detects 
both intermittent sources (e.g. fires) and temporally stable light (e.g. settlements). Anal-
ysis of higher spatial resolution night light imagery indicates that most of the stable 
light signal in settlements is from outdoor lighting of infrastructure and transportation 

https://www.nytimes.com/interactive/2020/03/20/us/coronavirus-model-us-outbreak.html
https://www.nytimes.com/interactive/2020/03/20/us/coronavirus-model-us-outbreak.html
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corridors (Kyba et al. 2015). Comparisons with sub-kilometer-resolution census obser-
vations in different countries across different levels of development indicate that night 
light luminance scales with population density over ~ 3 orders of magnitude (Small and 
Barrozo 2020). While night light cannot directly detect intra-urban distributions of pop-
ulation at the highest densities, VIIRS’ constant ~ 700 m resolution can provide a more 
detailed proxy for population distribution in peri-urban and rural areas where aggre-
gated census blocks lack spatial detail.

In this analysis we use the spatial network structure of lighted development as a proxy 
for the distribution of ambient population to compare the spatiotemporal evolution of 
COVID-19 confirmed cases in the USA and China. We quantify this network structure 
in terms of the rank-size distributions of spatially contiguous lighted areas. By vary-
ing the low luminance threshold of VIIRS-derived night light brightness, it is possible 
to depict spatial networks of varying degrees of connectivity within which population 
are distributed. Spatiotemporal analysis of confirmed cases at the county (USA) and city 
(China) levels of aggregation provides a characterization of the temporal trajectories of 
daily COVID-19 cases in a geospatial context. Projecting the aggregated COVID-19 case 
counts onto the spatial network structure reveals the degree to which network structure 
and connectivity may have influenced transmission before and after mobility restrictions 
were imposed in the USA and China.

Data
The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor has been imaging night 
lights from the NASA/NOAA NPP Suomi satellite since 2012. The digital data have been 
used to produce annual global composites of temporally stable night-time lights from 
2015 (Elvidge et al. 2017). Cloud-free annual composites of the night-time visible band 
VIIRS dnb data provide average brightness in units of nW/(cm2 sr). Additional proce-
dures are used to remove ephemeral lights (mostly fires and aurora) and background 
noise to produce gridded stable lights products. The data and documentation are avail-
able from: https​://payne​insti​tute.mines​.edu/eog-2/viirs​/.

The VIIRS night light luminance is gridded at 0.004° (~ 500 m at the Equator), over-
sampling the 700 m native resolution of the VIIRS sensor. We reproject the geographic 
grids to Molleweide (USA) and Sinusoidal (China) equal area grids with a spatial res-
olution of 500 × 500  m. Because luminance varies over orders of magnitude, we give 
results as the Log10 of nW/(cm2 sr). The reprojected luminance grids are shown, along 
with the luminance distributions, in Fig. 1. We limit the analysis to the conterminous 
USA because the lighted areas in Alaska and Hawaii are limited to small numbers of 
geographically isolated components and are physically separated from the main spatial 
network within the conterminous USA.

A detailed comparison between the 2015 VIIRS product and 10 m resolution Sen-
tinel 2 optical imagery reveals a systematic relationship between the density of built 
surface (roads & buildings) and night light brightness (Small 2019). Because different 
luminance levels in the VIIRS composite generally correspond to different building 
and road density, different luminance thresholds encompass different types of devel-
opment. Higher thresholds limit spatial extent to the brightest urban cores with the 
highest spatial density of outdoor lighting, while lower thresholds also encompass 

https://payneinstitute.mines.edu/eog-2/viirs/
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lower density periurban areas where lighting is more intermittent with dimmer, 
more diffuse sources. For this reason, different luminance thresholds can be consid-
ered representative of different ranges of development density, with lower thresholds 
encompassing a wider range of built environments with greater spatial connectivity. 
Given the differing implications of different luminance thresholds, it makes sense to 
treat the threshold itself as a variable in the analysis. In this study, three low lumi-
nance thresholds are used to produce three spatial networks of varying degrees of 
spatial connectivity. The lower threshold (10−0.5 nW/cm2/sr) attenuates only the lower 

Fig. 1  China and conterminous USA night light luminance as imaged by VIIRS in 2015. Because smaller 
isolated light sources are dimmer, the majority of lights cannot be seen at the scale of this figure. However, 
network structure is apparent
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tail of dimmest pixels, while the upper threshold (10+0.5 nW/cm2/sr) cuts the primary 
mode of the distribution and retains only the shoulder and upper tail of brighter pix-
els. The intermediate threshold (100 nW/cm2/sr) retains approximately half of the 
lighted pixels. Given the late hour (~ 1 AM) of VIIRS’ overpass, the luminance imaged 
represents a conservative estimate of urban extent resulting from lighted outdoor 
infrastructure (primarily roads), as studies have shown that many early evening light 
sources are turned off by midnight.

(Dobler et al. 2015; Li et al. 2020). Figure 2 shows full resolution comparisons of the 
USA’s Northeast Corridor and China’s Beijing-Tianjin corridor for each threshold. The 
reduction in size, number and connectivity of network components with increasing 
threshold is more apparent at full resolution than at the reduced resolution of Fig. 1.

The spatial correspondence between night light luminance and residential popula-
tion density is illustrated by superimposing the 500 m VIIRS luminance and 2010 cen-
sus blocks of varying spatial resolution (gridded at 500 m). Figure 3 shows the strong 
correspondence in density and luminance as shades of gray and the disparities in blue 
and yellow. The larger blue rural census blocks are seen to be mostly unlighted, illus-
trating the drastic improvement in representation given by night light product over the 
aggregated census block mapping. The disproportionately luminant areas appear yellow, 
corresponding generally to commercial corridors (along major thoroughfares), central 
business districts (e.g. Midtown Manhattan) and industrial areas (NJ Meadowlands) as 
well as seaports and airports. The inset bivariate distribution in Fig.  3 shows the cor-
respondence between density and luminance spanning at least two orders of magnitude 
in each dimension. Superimposed on the high density upper tail of the distribution is a 
suite of offset Logit curves to illustrate the consistent relationship between luminance 
and maximum density. The more diffuse lower tail of the distribution is less well-defined 
because of the combined effect of aggregation blurring in the larger census blocks and 
spatial overglow on the periphery of the most brightly lighted areas. Because both of 
these unavoidable factors introduce an asymmetric artificial dispersion into the lower 
tail of the bivariate distribution, we consider the upper tail maximum density to be more 
representative of the ambient daytime population density. This assumption is consist-
ent with our strategy of varying the low luminance threshold to simulate the effect of 
increasing connectivity by attenuating the lower luminance pixels that are more likely to 
represent both types of artifact.

Daily counts of confirmed COVID19 cases, aggregated at the county level for 3262 
counties in the continuous USA, were obtained from the Johns Hopkins University 
of Medicine Coronavirus Resource Center GitHub site (https​://githu​b.com/CSSEG​
ISand​Data/COVID​-19). Daily counts of confirmed COVID19 cases, aggregated at the 
city level for 339 city-specific polygons in China, were obtained from the Harvard 
Dataverse China Data Lab (https​://datav​erse.harva​rd.edu/datas​et.xhtml​?persi​stent​
Id=doi:10.7910/DVN/MR5IJ​N). The construction of the China dataset is described 
by Hu et  al. (2020). Spatially explicit quantities derived from these geocoded time 
series were gridded in equal area projections (China: Sinusoidal, USA: Molleweide) 
at 500 m resolution to coregister with the reprojected VIIRS grids. Cumulative con-
firmed case time series span the period from 1/22/2020 to 8/30/2020 for the US coun-
ties and from 1/15/2020 to 8/30/2020 for the China cities.

https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/MR5IJN
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/MR5IJN
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Methods
The process of segmenting a continuous luminance field into discrete spatially con-
tiguous subsets of pixels (segments) produces a spatial network in which each segment 

Fig. 2  Full resolution comparison of the Northeast Corridor and the Beijing-Tianjin Corridor with three low 
luminance thresholds. Increasing the threshold attenuates dimmer light pixels at the periphery of network 
components. The result is to reduce the number, size and connectivity of all components in the network. 
Luminance scale same as Fig. 1. Enlarge to see full resolution detail
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represents a distinct network component (subset of linked nodes). In each component, 
adjacent lighted pixels are analogous to nodes with links implied by adjacency. Hence, 
the spatial networks we consider are defined as sets of network components represent-
ing spatially contiguous areas of stable anthropogenic luminance exceeding the speci-
fied low luminance threshold. In order to calculate the area of each contiguous network 
component the 2015 composite is segmented with Queen’s case adjacency neighbor-
hood using each of the three low luminance thresholds and a 9 pixel minimum segment 
size. For each spatially contiguous segment, area and perimeter are calculated and sorted 
to produce rank-size distributions. Because segment areas (and perimeters not shown) 
span 4+ orders of magnitude, the segment area composites use Log10 area.

To quantify the scaling properties of the networks, we estimate two parameters of 
the rank-size distributions: slope (1/(α − 1)) and linear domain. Previous analyses of 
city population size distributions (Rosen and Resnick 1980; Soo 2005) and other pur-
ported power laws (Clauset et al. 2009; Newman 2005) indicate that the estimate of 
the exponent can be sensitive to biases inherent in the method of estimation. In this 

Fig. 3  VIIRS night light and population density in the New York Metro area and central Northeast Corridor. 
Small, high density census blocks approach the 700 m resolution of the VIIRS sensor so the scaling is clearly 
resolved on the high density tail. Blue rural areas correspond to larger, lower density census blocks extending 
into unlighted forest and farmland. Yellow in urban areas corresponds to brightly lighted commercial 
corridors, industrial areas, seaports and airports. The diffuse low density tail of the bivariate distribution is a 
result of larger census blocks and overglow
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study we use the Maximum Likelihood Estimate (MLE) for a power law exponent (α) 
to quantify the distribution of segment sizes. Although the Ordinary Least Squares 
(OLS) approach is, by far, the more commonly used method for estimation of Zipf 
exponents, it suffers from a number of shortcomings as a means of quantifying and 
testing the power law hypothesis (Clauset et al. 2009; Newman 2005; Sornette 2003). 
We use more statistically sound estimates of the power law exponent and optimal 
upper tail cutoff, derived using the MLE and semi-parametric bootstrap approach 
given by Clauset et  al. (2009). The linear domain given by the  optimal upper tail 
cutoff corresponds to the descending rank at which the Maximum Likelihood misfit 
achieves a minimum and begins to increase.

The spatiotemporal characterization of city (China) and county (USA) level daily 
confirmed cases of COVID19 follows the methodology described by Small (2012). 
The Principal Component transformation is applied to the Log10 of daily confirmed 
case time series separately to produce distinct temporal feature spaces for the China 
city and USA county data. The temporal feature spaces of the spatial principal com-
ponent loadings show the relationships between the two primary temporal patterns 
of confirmed case trajectories for each country. Geographic variations in temporal 
trajectories are manifest by the topology of the temporal feature space. Similarly, the 
spatial principal component loadings can be projected onto the night light-derived 
network to illustrate the geographic distributions of different temporal trajectories.

Administrative area choropleth maps of confirmed cases per county are projected 
onto the intermediate threshold night light network for visualization of the cumula-
tive confirmed cases in the context of the spatial networks of development. Cumula-
tive confirmed cases were gridded using the administrative area shapefile polygons 
provided with each dataset. Color lookup tables are applied to the choropleth maps 
to depict increasing numbers of cases along a visible color spectrum with warmer 
colors corresponding to more cases. These administrative level choropleth maps are 
projected onto the night light network using a Hue Saturation Value (HSV) color 
transform of the color-coded choropleth map in which the Value channel is replaced 
with the normalized luminance value from the night light network then inverse 
transformed from HSV to RGB. The result is a color map retaining the spatial struc-
ture of the night light network, with hue corresponding to the number of confirmed 
cases and the brightness (Value) corresponding to the luminance as a proxy for the 
ambient population density. In this representation, more densely populated parts of 
the network stand out in higher contrast against the black background of unlighted 
(presumed unpopulated) areas. The first two spatial principal components for the 
USA confirmed case time series are projected onto the network using the same pro-
cedure. In order to calculate the number of confirmed cases within each network 
component, the total number of cases within each county is normalized by the total 
area of network components within each county so that total cases summed within 
components agree with the original county-level case numbers.
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Fig. 4  Network component area map and total confirmed case distribution for China. At this scale, the large 
number of smaller components with fewer cases are not resolved. As expected, the largest number of cases 
is in Wuhan, while the surrounding smaller components in Hubei have comparable numbers of cases to the 
high density cores of the much larger components. Enlarge to see detail
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Results
At national scales, the network component area maps for China and the USA clearly 
illustrate the characteristic feature of networks of population and development; 
heavy-tailed distributions containing small numbers of large components and large 
numbers of small components (Small et  al. 2011; Small and Sousa 2016). At the 
national scale and intermediate luminance threshold shown in Figs. 4 and 5, the large 
numbers of smaller components are not visible. However, the full resolution illustra-
tions in Fig. 6 show them clearly. Each country’s spatial network shows a continuum 
of size and number of components, with the largest components generally containing 
the largest cities.

Fig. 5  Network component area map and county level confirmed case distribution for the USA. At this 
scale, the large number of smaller components with fewer cases are not resolved. Case density scales with 
population density, with the largest numbers in dense urban cores throughout the country. In contrast to 
China, there is no single epicenter but many large cities with > 104 cases. Similar to China, there are case 
density gradients within the larger network components. Enlarge to see detail
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The cumulative confirmed case distribution maps shown in the lower panels of 
Figs.  4 and 5 clearly show a stark contrast between the patterns observed in China 
and the USA. In China, Wuhan stands out as an isolated component with an order 
of magnitude more cases than the numerous smaller components surrounding it. A 
radial geographic gradient is apparent, with numbers decreasing with distance before 
increasing in the urban cores of several larger components. In contrast, the USA has 
several network components with > 104 confirmed cases in urban cores. Within the 
larger network components in both China and the USA, conspicuous gradients are 
apparent, revealing the influence of population density on cumulative case count.

Rank-size plots of component area for the three low luminance thresholds illustrate 
the effect of varying spatial connectivity on network structure. For both China and 

Fig. 6  Full resolution comparison of network component area and total confirmed case distributions for 
Wuhan (left) and the US Northeast Corridor (right). Despite very different network configurations, both 
examples show spatial gradients in number of confirmed cases with distance from a central hotspot (Wuhan 
& NYC), however the much larger Northeast Corridor shows strong gradients and multiple local maxima 
within a single connected component while the smaller components surrounding Wuhan show much 
smaller numbers of cases. While the Northeast Corridor component is large relative to the spatial gradient 
in cases, the Wuhan component is much smaller and comparable to the scale of the gradient observed in 
the NYC hotspot. The distributions are also a result of the disparity in spatial resolution between the 700 m 
VIIRS resolution and the widely varying sizes of county administrative units within which case counts are 
aggregated. Each area 500 × 500 km
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the USA, increasing the threshold has the expected effect of reducing number, size 
and connectivity of network components—as expected (Fig. 7). However, the best fit 
power law exponents remain near -2, corresponding to rank-size slopes near -1, for 
all thresholds in both countries. Although numbers and sizes of network components 
vary by almost an order of magnitude over the range of thresholds, the slopes are 
relatively invariant, indicating that the scaling properties of both networks are not 
sensitive to the choice of threshold. The most conspicuous changes are apparent in 
the uppermost tail of largest components—particularly with the lowest threshold in 
each country. This is expected because the lowest threshold allows for the most inter-
connection among large adjacent components, thereby creating a very much larger 
component in the case of China as the Shanghai component connects to multiple oth-
ers on the Changjiang Delta and Yangtze River valley. Despite the consistency with 
a power law spanning 4+ orders of magnitude, we use the exponent estimates only 
to derive the slope of the rank-size distribution to confirm the uniform area scaling 
relationship suggesting a dynamic equilibrium between the processes of nucleation, 
growth and interconnection (Small and Sousa 2016). We emphasize the point made 
by Broido and Clauset (2019) that it can be very difficult to distinguish true power law 
scaling from other heavy tailed distributions. Hence, none of our conclusions depend 
on the scaling being specifically power law.

The much greater spatial resolution of the USA county data than the China city 
data clearly shows the presence of case density gradients within the larger network 
components. To quantify the effect of these intra-component gradients, we calculate 
the total number of confirmed cases within each network component for each low 
luminance threshold network for the USA. Figure 8 shows rank-size distributions of 
total cases per component for all three thresholds. The effect of increasing connec-
tivity with decreasing low luminance threshold is seen in the simultaneous growth 
of the upper tail and shrinkage of the lower tail. This is a result of the presence of 

Fig. 7  Varying spatial connectivity affects network size, with little effect on scaling (slope). Increasing the low 
luminance threshold reduces the size, number and connectivity of components, but does not change the 
slope of the rank-size distributions. For China, the lower threshold results in the interconnection of several 
large components to form a single very large component on the Changjiang delta and Yangtze River basin—
thereby disrupting the scaling of the upper tail. A similar effect is seen in ranks 30 to 100 for the USA
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high population density urban cores in the largest components contributing dispro-
portionate numbers of cases and introducing discontinuities between the upper and 
lower tails. This is seen most clearly with the lowest threshold (red) distribution as 
an offset between the ~ 30 components with the largest number of cases, and the 
remainder of the distribution.

Direct comparison of the intermediate threshold rank-size distributions of both 
component area and total number of area-adjusted cumulative case totals shows very 
similar scaling between China and the USA (Fig. 9). The most conspicuous difference 
is the dominance of Wuhan in China’s component confirmed case distribution. Aside 

Fig. 8  USA COVID-19 confirmed case network scales similarly regardless of low luminance threshold. High 
threshold (thin green) results in fewer, larger components than low threshold (thin orange). Intermediate 
threshold (thick blue) shows the emergence of the largest component (Northeast Corridor) but similar 
scaling to high threshold for other components in the upper tail. All thresholds show rank-size linearity 
suggesting scale-free behavior spanning 4+ orders of magnitude. Upper tail (gray box; enlarged at right) 
shows percolation-like behavior at low threshold, with the ~ 30 largest components disproportionately larger 
than the remainder of the distribution

Fig. 9  Rank-size distributions for network component areas and cases. As expected, both China and USA 
show a near-unity slope scaling of component area and rank, indicating a scale-free tradeoff in component 
number and area. In contrast, the distributions of component case total and rank are steeper, indicating 
the relatively greater contribution of larger components with higher density cores and lower contribution 
of small isolated components. Wuhan has disproportionally more cases than the largest components for 
obvious reasons, although the low numbers of cases of these largest components fall well below the number 
expected if the scaling were linear as it is in the USA
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from Wuhan’s dominance, the confirmed case totals mirror the component areas for 
China’s network, while the order is different between areas and case totals for the 
USA network.

Component-specific comparison of component area and case total reveal a key lim-
itation of using spatially aggregated observations. The disparity between the widely 
varying administrative unit areas, in both China and the USA, and the more detailed 
and uniform sampling of the VIIRS sensor. Figure  10 shows the expected increase 
in number of confirmed cases with component area, but also shows a wide range of 
cases for all but the largest components (of which there are many fewer). While this 
is partly a result of the geographic gradient in cases with distance from Wuhan in 
China, a similar pattern of decreasing dispersion with increasing component area is 
observed in the USA. In part, this reflects the transition from many small components 
within larger individual counties to fewer larger components encompassing multiple 
(sometimes many) counties. This artifact of the varying administrative unit area and 
the aggregation process is an illustration of the Modifiable Areal Unit Problem (https​
://en.wikip​edia.org/wiki/Modif​iable​_areal​_unit_probl​em) that is unavoidable when 
using observations aggregated to variable size and shape domains. However, as the 
range of cases shrinks relative to component area going to larger components encom-
passing multiple counties, some variation in cases within similarly sized components 
is still apparent. This illustrates the importance of different temporal trajectories in 
different regions (network components) of the USA.

The distributions of temporal trajectories of confirmed cases are very different 
between China and the USA. While the primary principal component of each corre-
sponds to the total number of cases, the second principal components differ consider-
ably. China shows a strong gradient in total number of cases decreasing with distance 
from Wuhan in PC1 with an orthogonal limb of 8 large cities showing multiple 

Fig. 10  Component case totals versus component areas for China and the USA. The regional scale gradient 
in case distribution in China results in a wider range, and generally lower number, of cases relative to 
component area compared to USA. The wide range of cases in smaller components in the USA is a result of 
small components within larger counties with different numbers of cases. As components become larger 
than individual counties, this effect is reduced and a consistent trend emerges. Nonetheless, even for large 
components, considerable variability persists because of both intra-component case density gradients and 
because of different temporal trajectories leading to differences in total number of cases

https://en.wikipedia.org/wiki/Modifiable_areal_unit_problem
https://en.wikipedia.org/wiki/Modifiable_areal_unit_problem
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distinct waves of infections/detections in PC2 (Fig. 11). In contrast, the temporal fea-
ture space of the US shows a continuum of total number of cases in PC1 and timing 
of onset and recovery in PC2 (Fig. 12). The example time series shown in Figs. 11 and 
12 illustrate the stark difference between temporal trajectories in China and the USA. 
Whereas China shows a distinct difference between a few large cities with multiple 
waves and many cities with single waves of varying duration, the USA shows a much 
wider variety of temporal trajectories with varying dates and rates of onset and recov-
ery. The first two principal components of the China and USA time series comprise 
57% and 65% of their respective total variance, suggesting considerable heterogeneity 
of trajectories in both countries.

The geographic nature of the spatiotemporal evolution of confirmed cases in China is 
captured by the map of total cases shown in Fig. 4, but the variation in timing and num-
ber of cases in the USA is more complex than the map of total cases shown in Fig. 5. The 
geographic variation in number and timing of cases in the USA is shown by projecting 
PC1 and PC2 onto the spatial network and depicting their relative contributions with 
color. Figure 13 illustrates the contrast between network component size and geography 

Fig. 11  Spatiotemporal analysis of case trajectories in China. The first Principal Component (PC1) clearly 
corresponds to total number of cases, while the second (PC2) distinguishes larger cities with multiple waves 
of cases lasting far longer than those observed for Wuhan and other cities in Hubei—which had much larger 
numbers of cases, albeit in single waves lasting 50 to 75 days
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Fig. 12  Spatiotemporal analysis of case trajectories in the USA. The first Principal Component also 
corresponds to total number of cases, while the second corresponds to timing and trend—distinguishing 
rapid early onset, later decreasing counties from slower, later onset, continued increasing counties

Fig. 13  Geographic distribution of number and timing of confirmed cases of COVID-19 for the USA. Principal 
component loadings from Fig. 12 projected onto spatial network of lighted development show stark 
contrast between the most distinct temporal trajectories. The Northeast Corridor and Great Lakes Industrial 
Belt components contrast strongly with larger network components in the south and west and smaller 
components throughout the country. Note the gradient in case number and timing within the Northeast 
Corridor component (red box)
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with (1) the early onset and recovery of the high density urban cores in the Northeast 
Corridor and Great Lakes regions, (2) the later onset and sustained increase in the larger 
cities in the south and west of the country and (3) the consistently lower number of 
cases in counties with more dispersed populations in larger numbers of smaller network 
components.

Discussion
The similarity of the unity slope network scaling in both China and the USA is consist-
ent with continental to global scaling of night light networks (Small 2020; Small et al. 
2011)—even when compared for two strongly contrasting economies and cultures at 
sub-continental scales. The invariance of spatial network scaling to low luminance 
threshold for both China and the USA further suggests that the network structure is not 
sensitive to the size of the network or degree of spatial connectivity for networks span-
ning almost an order of magnitude difference in size and number of components. The 
implication is that the spatial network depiction of population distribution on the land-
scape may offer some degree of predictability of future network growth characteristics.

Despite the similarity of network scaling properties in China and the USA, the geo-
graphic distributions and spatiotemporal trajectories of confirmed cases suggest very 
different transmission/detection dynamics. In China the regional localization within 
medium sized components near Wuhan and teleconnection to larger network com-
ponents where transmission/detection appears to have been largely contained within 
the high density urban cores. In contrast, in the USA pervasive propagation through-
out the network before mobility restrictions were in place appears to have resulted in a 
much wider range of temporal trajectories of transmission/detection. This is supported 
by comparisons of network propagation rates with mobility reduction observations in 
March 2020 (Small et  al. 2020). The conspicuously lower numbers of confirmed cases 
in China, compared to the USA, is consistent with either underreporting and/or more 
effective containment. While we are not in a position to speculate about the veracity of 
the confirmed case data from China, we do note that underreporting and effective con-
tainment are not mutually exclusive.

We acknowledge a fundamental ambiguity in the interpretation of confirmed case 
counts. Absent reliable data on testing frequency in space and time, it is not known to 
what degree confirmed case data represent disease transmission or testing frequency. 
This ambiguity can be seen as an example of a phenomenon which could occur in any 
scenario involving the dispersion of an entity within a spatial network. That is, the ambi-
guity between the propagation of the entity itself (e.g. SARS-CoV-2 pathogen) or the 
propagation of the detection effort (e.g. COVID-19 testing). Spatial observations of prop-
agation within a network can be considered a spatiotemporal convolution of two func-
tions representing (1) propagation of the entity and (2) propagation of detection efforts. 
While the propagation of confirmed cases through the network is consistent with trans-
mission driven by spatial proximity and population density, it is also conceivable that 
dense urban cores in larger network components could be the focus of earlier testing 
efforts which only later may have propagated to smaller, more isolated, less densely pop-
ulated components.
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The use of the spatial network depiction for modeling transmission is clearly only 
valid for the phase of the pandemic after mobility reductions occurred. The date of 
initial onset of case increases clearly show that in the USA transmission had already 
occurred to many of the largest network components by mid-March 2020 when 
mobility began to decrease in much of the country (Small et al. 2020). Time-lapse car-
tography of the spatiotemporal evolution of the daily confirmed case counts clearly 
depicts the slow growth of cases in a small number of network components on the 
west coast, followed by the appearance of isolated clusters in Phoenix, Chicago and 
Boston, with an abrupt jump to several other network components in the eastern US 
in the second week of March. A daily animation is available at: https​://www.youtu​
be.com/watch​?v=DA-U5XCq​LO4.

Mapping confirmed COVID-19 case counts onto the night light-derived map pro-
vides a framework for understanding epidemic flow through the human settlement 
network. A number of interesting features emerge from this analysis. Figures 7 and 8 
illustrate two such features, both of which are consistent with previous non-epidemic 
spatial network analyses. First, increasing/decreasing the low luminance threshold 
shrinks/grows the network, but the spatial scaling remains remarkably invariant, 
retaining its power law-like form. That being said, at low threshold the ~ 30 segments 
with the largest number of cases in Fig. 8 begin to exhibit percolation-like behavior, 
accommodating a disproportionately large fraction of cases relative to the remainder 
of the distribution. Second, even though segments split/join when the threshold is 
raised/lowered, the largest segments generally retain their place near the upper tail of 
the distribution. These observations further underscore the important of large con-
urbations in epidemic spread, as disproportionate numbers of humans are impacted 
by the epidemic, even relative to their higher population densities. This is consistent 
with epidemiological expectations due to greater crowding and more frequent rare 
individuals from the tails of behavior distributions (e.g. superspreaders).

Close examination of the fused night light + COVID-19 network yields additional 
insights into the structure of the epidemic. For instance, as shown in Figs. 6 and 13, 
the northeastern US was impacted particularly early and intensely by COVID-19. The 
major population centers of Boston, New York, Philadelphia, and Baltimore/Wash-
ington DC all showed relatively large case counts early in the epidemic. This illus-
trates two more general features of the analysis framework. First, all of these cities 
are connected by major highways and commercial development alongside those high-
ways. The bright, spatially extensive lighting associated with these features results in 
connectivity in the night light image, capturing a real feature of human settlement, 
mobility and flow which is clearly important in the context of epidemic modeling and 
control. Second, several major air transit hubs are present in the northeast corridor 
alone, and at least one major airport is present in each of the segments in the upper 
tail of the global distribution. Obviously, spatial connectivity of a night light network 
cannot capture air transit. However, the colocation of major airports and major popu-
lation centers means that at least some of this information is implicitly captured by 
the analysis framework. Furthermore, the analysis framework is sufficiently flexible 
that future studies could explicitly add airport location and activity as a weighting 
function to investigate the improvement in model behavior.

https://www.youtube.com/watch?v=DA-U5XCqLO4
https://www.youtube.com/watch?v=DA-U5XCqLO4
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Several potentially informative avenues exist for future work. A number of addi-
tional socioeconomic drivers of health (demographics, income, etc.) could be incor-
porated as additional spatially explicit network layers. Mobility information from cell 
networks could be further incorporated to provide spatial constraints on location-
specific changes in human behavior. In some instances, temporally variable informa-
tion can be extracted from the night light signal—with important caveats regarding 
the potential for challenges due to atmospheric and sensor artifacts.

Finally, appropriate interpretation of the capabilities and limitations of this type of 
analysis requires an appreciation for the fundamental scale of the analysis. In some 
instances, spatially targeted analyses with detailed ancillary data may provide local-
ized, neighborhood-level information—but these are the exception. The fixed spatial 
resolution of the VIIRS sensor is beneficial in providing information with the same 
level of detail everywhere on Earth—but is also a fundamental limit on the level of 
detail that can be achieved in complex urban environments. In our opinion, the data 
used here are best used for understanding epidemic flow at regional to continental 
scales. Such macroscale analysis is important in its own right for pragmatic purposes, 
such as resource allocation, logistics, and preparation, as well as theoretical under-
standing. But we caution against interpretation of these data—or any remotely sensed 
data—at the pixel level unless additional contextual information is available. That 
being said, the spatial network framework we propose appears to be scale invariant. It 
is possible that future sensing capabilities will significantly exceed those of VIIRS and 
allow for inference at much finer spatial scales. If and when such data are available, 
the conceptual and analytic approach used here could easily be applied for finer scale 
analyses.
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