
Overlapping community finding with noisy
pairwise constraints
Elham Alghamdi*  , Ellen Rushe, Brian Mac Namee and Derek Greene

Introduction
Complex networks occur in many aspects of life, from social systems to biological pro-
cesses. Despite their diversity, many networks share common properties and principles
of organization (Boccaletti et al. 2006). One essential property that helps us to under-
stand complex networks is the idea of community structure. Finding these sets of nodes
or communities provides us with three important capabilities: understanding the struc-
tures and functionalities, modeling the dynamic processes in networks, and predicting
their future behaviors. Generally, algorithms for detecting communities are unsuper-
vised in nature. That is, they rely solely on the network topology during the detection
process, rather than using any prior information or training data regarding the “correct”
community structure. One common issue is that these algorithms can fail to uncover
groupings that accurately reflect the ground truth in a specific domain, particularly
when these communities highly overlap with one another (Ahn et al. 2010).

Abstract 

In many real applications of semi-supervised learning, the guidance provided by a
human oracle might be “noisy” or inaccurate. Human annotators will often be imper-
fect, in the sense that they can make subjective decisions, they might only have partial
knowledge of the task at hand, or they may simply complete a labeling task incorrectly
due to the burden of annotation. Similarly, in the context of semi-supervised commu-
nity finding in complex networks, information encoded as pairwise constraints may
be unreliable or conflicting due to the human element in the annotation process. This
study aims to address the challenge of handling noisy pairwise constraints in overlap-
ping semi-supervised community detection, by framing the task as an outlier detec-
tion problem. We propose a general architecture which includes a process to “clean”
or filter noisy constraints. Furthermore, we introduce multiple designs for the cleaning
process which use different type of outlier detection models, including autoencoders.
A comprehensive evaluation is conducted for each proposed methodology, which
demonstrates the potential of the proposed architecture for reducing the impact of
noisy supervision in the context of overlapping community detection.

Keywords:  Overlapping community finding, Community detection, Overlapping
communities, Semi-supervised learning, Noisy pairwise constraints, Autoencoder (AE),
Outlier detection, Deep learning

Open Access

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat​iveco​mmons​.org/licen​ses/by/4.0/.

RESEARCH

Alghamdi et al. Appl Netw Sci (2020) 5:98
https://doi.org/10.1007/s41109-020-00340-9 Applied Network Science

*Correspondence:
elham.
alghamdi@ucdconnect.ie
University College Dublin,
Dublin, Ireland

http://orcid.org/0000-0001-9487-1752
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-020-00340-9&domain=pdf

Page 2 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98

Recent work has improved the effectiveness of such algorithms by employing ideas
from semi-supervised learning (Alghamdi and Greene 2019). This involves harnessing
existing background knowledge (e.g. from domain experts or crowdsourcing platforms),
which can provide limited supervision for community detection. Often this information
takes the form of pairwise constraints between nodes (Basu et al. 2004a). Typically, pair-
wise constraints are either must-link and cannot-link pairs, indicating that either two
nodes should be assigned to the same community or should be in different communities.
As an example, we might be interested in finding social groups based on common inter-
ests on social media platforms, such as Facebook or Twitter, in order to target the most
influential member of each social group for marketing and recommendation purposes.
To improve our ability to achieve this, and go beyond simply looking at connections, we
could use a human annotator, to query whether two users should be in the same group
or different groups and label them as must-link or cannot-link, then incorporate these
labels as constraints into community detection algorithms. By using this kind of knowl-
edge, we can potentially uncover communities of nodes which are otherwise difficult to
identify when analyzing complex networks.

Despite the promise of semi-supervised learning, in many real applications the super-
vision coming from human annotators will be unreliable or “noisy”. For instance, this
might occur when using annotation acquired by crowdsourcing platforms (Howe 2008)
such as Amazon Mechanical Turk (Kittur et al. 2008). In general human oracles will
often be “imperfect”, in the sense that they can make subjective decisions, they may disa-
gree with one another, they might only have limited knowledge of a domain, or they may
simply complete a labeling task incorrectly due to the burden of annotation (Amini and
Gallinari 2005; Du and Ling 2010; Sheng et al. 2008). Thus, when such judgements are
encoded as pairwise constraints for semi-supervised community detection can be unre-
liable or conflicting, which can create problems when used to guide community finding
algorithms (Zhu et al. 2015).

In this study, we explore the effect of noisy, incorrectly-labeled constraints on the per-
formance of semi-supervised community finding algorithms for overlapping networks.
To mitigate such cases, we treat the noisy constraints as outliers, and use an outlier
detection strategy to identify and remove them, which has the effect of “cleaning” the
constraints coming from the human oracle. The primary contributions of the paper are
as follows:

1	 We introduce a general architecture for semi-supervised community finding which
incorporates a cleaning methodology to reduce the presence of noisy pairwise con-
straints, using outlier detection. This architecture can be implemented with any
semi-supervised community finding that might involve querying an imperfect ora-
cle. In this study, we focus the use of the AC-SLPA algorithm (Alghamdi and Greene
2018).

2	 We propose alternative designs for cleaning methodology, based on different outlier
detection models. Each design involves executing two parallel processes to separately
reduce noise from must-link constraints and cannot-link constraints.

3	 We investigate the performance of combining conventional outlier detection models
and deep learning models for identifying noisy constraints.

Page 3 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98 	

4	 We conduct comprehensive experiments to evaluate these alternative cleaning meth-
ods, as individual components, and when integrated within the proposed general
architecture on a range of synthetic and real-world networks containing overlapping
community structure.

The remainder of this paper is structured as follows. Section “Related work” provides a
summary of relevant work in semi-supervised learning, in the context of both cluster
analysis and community finding. In Section “Methods”, we describe the proposed general
architecture for community detection which incorporates a cleaning process to reduce
noise levels in pairwise constraints, and we propose multiple designs for implementing
the cleaning process. In Section “Evaluation”, we discuss four experimental evaluations
of these methods. Finally, we conclude our work in Section “Conclusion” with sugges-
tions for further extending this work in new directions.

Related work
To provide context for our work, this section describes related research of semi-super-
vised techniques in community finding, along with studies that address noisy pairwise
constraints in both clustering and community finding.

Semi‑supervised learning in community finding

Several types of prior knowledge have been used in semi-supervised strategies to guide
the community detection process. The most widely-used approach has been to employ
pairwise constraints, either must-link or cannot-link, which indicate that either two
nodes must be in the same community or must be in different communities. This strat-
egy has been implemented via several algorithms, including modularity-based methods
(Li et al. 2014), spectral partitioning methods (Habashi et al. 2016; Zhang 2013), a spin-
glass model (Eaton and Mansbach 2012), matrix factorization methods (Shi et al. 2015),
and various other methods (Yang et al. 2017; Zhang et al. 2019). Such approaches have
often provided significantly better results on benchmark data, when compared to stand-
ard unsupervised algorithms.

Other authors have used different kinds of prior knowledge to provide supervision for
community detection. For instance, Ciglan and Nørvåg (2010) developed an algorithm
for finding communities with size constraints, where the upper limit size of communi-
ties is given as a user-specified input. This algorithm is based on standard label propa-
gation methods for finding disjoint communities. In Wu et al. (2016) an optimization
algorithm based on density constraints was proposed. This algorithm constructs an ini-
tial skeleton of the community structure by maximizing a criterion function that incor-
porates constraints to only find communities with intra-cluster densities above a given
threshold. The remaining nodes are subsequently classified with respect to this skeleton.
Other algorithms have used node labels as prior knowledge to improve the performance
of community detection, using an approach which resembles traditional training data
in classification (Leng et al. 2013; Liu et al. 2014; Wang et al. 2015). Liu et al. (2015)
developed a method that uses a semi-supervised label propagation algorithm based on
node labels and negative information, where a node is deemed not to belong to a specific
community.

Page 4 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98

The majority of algorithms in this area have been designed to only find non-over-
lapping communities, where each node can only belong to a single community. How-
ever, many real-world networks naturally contain overlapping community structure
(Adamcsek et al. 2006). To the best of our knowledge, little work has been done in
the context of finding overlapping communities from a semi-supervised perspective.
Dreier et al. (2014) performed some initial work here, using supervision for the pur-
pose of algorithm initialization. Specifically, a small set of seed nodes was selected,
whose affinities to a community was provided as prior knowledge in order to infer
the rest of the nodes’ affinities in the network. On the other hand, Shang et al. (2017)
used an expansion method that classifies edges into communities, where this model
is trained on set of predefined seeds. However, there is no external human super-
vision used during the seed selection or expansion processes. In contrast, for our
study, we focus on the problem of semi-supervised community detection based on
the external supervision by human who are part of the networks or domain experts,
and encode it as pairwise constraints since they have proven to be effective in a
range of other learning contexts (Basu et al. 2004c; Greene and Cunningham 2007).

Noisy constraints in clustering and community finding

Various algorithms have been proposed for the general task of pairwise constrained
clustering, based on a variety of different clustering paradigms (e.g. Basu et al.
2004d; Davidson and Ravi 2005; Li et al. 2009). However, most assume the exist-
ence of “perfect” pairwise constraints which will be clean and will not contradict one
another. Fewer studies have considered the requirement to handle noisy pairwise
constraints. However, some relevant work in clustering has involved the develop-
ment of new algorithms which are robust to noisy or conflicting pairwise constraints
(Basu et al. 2004b; Coleman et al. 2008; Liu et al. 2007; Pelleg and Baras 2007). Other
studies have introduced new metrics to assess the quality of constraints, consider-
ing aspects such as their informativeness and coherence (Davidson et al. 2006; Wag-
staff et al. 2006). These can be used to filter or clean the pairwise constraints prior
to clustering. A related study (Zhu et al. 2015) proposed an approach for handling
noise by using a random forest classifier to identify incoherent constraints.

In contrast, in the field of semi-supervised community finding, the issue of noisy
pairwise constraints has rarely been studied, and algorithms generally assume the
veracity of any supervision supplied by an oracle. One related study from Li et al.
(2014) initiated the work of handling “conflicting” pairwise constraints in non-
overlapping community finding. That is, cases where ( vi, vj ) ∈ must-link, ( vi, vk ) ∈
must-link, and ( vj , vk ) ∈ cannot-link. Such cases of conflict were identified using a
dissimilarity index metric to measure the reliability of constraint pairs. However, this
type of constraint conflict is in fact legitimate in the context of overlapping commu-
nities, as shown in our previous work in Alghamdi and Greene (2018). Therefore, the
challenge remains of handling noisy constraints for overlapping community finding
in an appropriate manner, which we seek to address in the next section.

Page 5 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98 	

Methods
Overview

Before describing our proposed architecture, we first provide a formal definition for the
pairwise constraints which are used in this study. These definitions map to those which
are widely adopted in the wider semi-supervised learning literature (Chapelle et al.
2006). Given a set of nodes V in a network, we define two constraint types:

1	 A must-link constraint specifies that two nodes should be assigned to the same com-
munity. Let ML be the must-link constraint set: ∀ vi, vj ∈ V where i = j, then the con-
straint ( vi, vj ) ∈ ML indicates that two nodes vi and vj must be assigned to the same
community.

2	 A cannot-link constraint specifies that two nodes should not be assigned to the same
community. Let CL be the cannot-link constraint set: ∀ vi, vj ∈ V where i = j, then the
constraint ( vi, vj ) ∈ CL indicates that vi and vj must be assigned to two different com-
munities.

As discussed in Alghamdi and Greene (2019), implementing pairwise constraints in the
context of overlapping communities is challenging due to the lack of the transitive prop-
erty for must-link constraints in the context of overlapping communities. In the case of
non-overlapping communities, must-link constraints have a transitive property, where
a third must-link relationship can be inferred from two other associated must-link con-
straint pairs. For instance, if ( vi, vj ) ∈ ML, and ( vi, vk ) ∈ ML, then we can also infer that
( vj , vk ) ∈ CL. This property does not hold for overlapping communities. For instance,
node vi might be an overlapping node and in this case there are two possible scenarios
for the pair ( vj , vk ): (1) ( vj , vk ) ∈ CL where node vi might be an overlapping node that have
a must-link constraint with both vj and vk , yet these two nodes could belong to two dif-
ferent communities; (2) ( vj , vk ) ∈ ML where all three nodes are in fact in the same com-
munity. This problem has been addressed in detail in Alghamdi and Greene (2019) and
therefore is not the main focus of this paper.

Now we describe our proposed general architecture for semi-supervised community
detection which incorporates a methodology to reduce the presence of noisy pairwise
constraints using an outlier detection model, as illustrated in Fig. 1. This architecture
begins with a set of noisy pairwise constraints provided by a human oracle ( PC− ). The
set of noisy pairwise constraints ( PC− ) is composed of must-link ( ML− ) and can-
not-link ( CL− ) constraints. These constraints are cleaned to produce a revised set of

Fig. 1  An illustration of the overall pairwise constraint cleaning process

Page 6 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98

constraints ( PC+ ) (composed of must-link ( ML+ ) and cannot-link ( CL+ ) constraints)
which are fed into the community finding process. The proposed architecture consists of
three distinct phases:

1	 Phase 1: Feature extraction. After receiving a set of pairwise constraints ( PC− )
from a potentially-noisy oracle, features vectors are constructed to provide inputs to
outlier detection models later, with one vector per constraint pair (for both must-link
and cannot-link). These vectors encode various aspects of the relationship between a
pair of nodes according to the underlying network topology. These features include
standard measures based directly on the network, including: whether the pair of
nodes share an edge, their number of common neighbors, the shortest path length
between them, and their cosine similarity. We also include more complex features,
such as their SimRank similarity (Jeh and Widom 2002), and their similarity as com-
puted on a node2vec embedding generated on the network (Grover and Leskovec
2016).

2	 Phase 2: Identifying noisy constraints. This involves executing two parallel pro-
cesses that use two different outlier detection models to separately eliminate noise
from the original must-link set ( ML− ) and cannot-link set ( CL− ). The constructed
feature vectors are fed into each model for multiple iterations of cleaning, returning
a score for each constraint that determines whether or not it is an outlier (i.e. a noisy
constraint).

3	 Phase 3: Applying Semi-supervised Community Detection Process. The returned
clean pairwise constraint set ( PC+ : ML+,CL+ ) is passed to a semi-supervised
community detection algorithm to be used during the process of finding communi-
ties.

In the following sections, we describe the details of the proposed architecture in terms
of the outlier detection methods used to identify potentially-noisy constraints (Section
“Outlier detection methods”), the different variations of the second phase of the archi-
tecture shown in Fig. 1 (see Section “Process for identifying noisy constraints”), and the
implementation of the proposed architecture in the context of the AC-SLPA community
finding algorithm (see Section “AC-SLPA with noise identification”).

Outlier detection methods

Isolation Forests: This method, proposed by Liu et al. (2008), uses a tree-based ensem-
ble strategy for anomaly detection. The assumption underlying this method is that
anomalies will be isolated earlier in their trees as these examples are not only rare, but
also have feature values substantially different from the normal data. Random partitions
are used in order to separate examples, with the number of partitions acting as the path
length. Because anomalous feature values are assumed to significantly differ from that
of normal examples, these features will more easily split anomalous examples from nor-
mal examples early on in the tree, leading to a shorter path. This shortening effect is
compounded by the fact that these examples are also assumed to be rare. In order to
compute an anomaly score, the average path length over multiple trees is computed, and
normalized by the average path length over all paths. Scores close to 1 are said to be

Page 7 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98 	

anomalous and scores close to 0 are assumed normal. This algorithm fits the problem of
noise detection when there are far fewer noisy labels than normal examples.

One-class SVM: One class Support Vector Machine (OCSVM) (Schölkopf et al. 2000,
2001) is a commonly-used method for anomaly detection which extends support vec-
tor algorithms to one-class classification. The reference to “one class” here refers to the
assumption that primarily data from the normal class (i.e. non-outliers) will be modeled
during training. First, data is transformed by a map φ to a higher dimensional space by
evaluating a kernel function. The algorithm then seeks to find the separating hyperplane
in the kernel space between data and the origin with the largest margin. This is achieved
by solving the following quadratic program for given training examples xxx1,xxx2, . . . ,xxxl:

subject to

where w and p solve the problem. Here, ξi refers to the slack variable for a given exam-
ple xxxi which softens the margin, allowing for some points to reside outside the margin,
essentially relaxing the assumption of complete separability between normal and out-
lying data. The hyperparameter ν ∈ (0, 1) controls the number of outliers with smaller
values allowing outliers to have a greater affect on the decision function. The decision
function is given by

where sgn(z) outputs a value of +1 for z � 0 , indicating normal data and −1 otherwise,
indicating an outlier.

Local Outlier Factor: This method is based on the concept of local density
in detecting outliers. Given a particular point p, we measure the density of p with
respect to the density of its k nearest neighbors. Intuitively, if the local density of p
is lower than the local densities of its neighbors, this indicates that p is an outlier. As
discussed in Breunig et al. (2000), for a given neighborhood size k, the k-distance(p)
for a point p is defined as the distance between p and its k-th neighbor o (i.e. the k-th
closest point to p). The k-distance neighborhood Nk(p) is the set of points whose dis-
tances do not exceed the k-distance(p). The reachability distance is then defined as:

This means that if p is o’s k-th nearest neighbor, this will be returned, otherwise, the true
distance between p and o will be returned. In order to calculate the densities of different
clusters of points, the “local reachability density” lrdk is calculated.

Finally, the local outlier factor (LOF) of point p is defined as:

(1)min
1

2
�w�2 +

1

νl

l∑

i

ξi − p

(2)(w · φ(xxxi)) � p− ξi, ξi � 0

(3)f (xxx) = sgn((w · φ(xxx))− p)

(4)reachdistk(p, o) = max{k − distance(o), d(p, o)}

(5)lrdk(p) = 1/

∑k
oi
reachdistk(p, o)

|Nk(p)|

Page 8 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98

Autoencoders: An autoencoder (AE) represents a type of neural network architecture
that attempts to reconstruct a given input in an effort to learn an informative latent fea-
ture representation. Formally, for an input vector x, an attempt is made to find a map-
ping from x to a reconstruction of itself x′ . By doing this, a latent representation of the
data is created in the hidden layer(s) of the network. The general form of a single hidden
layer autoencoder as follows:

where f(x) is the encoder function for input x, g(z) is decoder function for encoding z, σ
is a non-linear function, We and Wd are weight matrices for the encoder and decoder
respectively and x′ is the reconstruction of the input vector (Goodfellow et al. 2016).

These networks can use a “bottleneck” configuration where the hidden layer(s) of the
network compress the data (Goodfellow et al. 2016). The network is trained by minimiz-
ing the mean squared error (MSE) between the reconstruction and input. as shown in
formal (8):

Additionally, autoencoders can be constrained to enforce sparsity in the network and
therefore no longer require a compressed network capacity. One type of constrained
autoencoder adds a sparsity penalty to hidden representations by constraining their
absolute value. This penalty term is weighted and added to the cost function. The con-
strained cost is defined as.

where � is the sparsity penalty and h = f (x) (Goodfellow et al. 2016).
Autoencoders can be used in a number of capacities. In this work, we propose a num-

ber of techniques for noise detection from pairwise constraint sets which make use of
autoencoders in different ways. Firstly, we show that autoencoders can be used as an
effective outlier detection technique for noise detection in pairwise constraints. Sec-
ondly, we demonstrate that autoencoders can also be used as an embedding method to
support other outlier detection methods in the identification of noisy constraints.

Process for identifying noisy constraints

In this section, we describe a number of alternative cleaning processes for reducing noise
in pairwise constraints, before passing them to a semi-supervised community detec-
tion algorithm. These cleaning processes employ some of the outlier detection models
described in Section “Outlier detection methods”. It is important to note that pairwise
constraints are of two distinct types: must-link and cannot-link. The differences in their

(6)LOFk(p) =

∑k
oi
(
lrdk (o)
lrdk (p)

)

|Nk(p)|

(7)f (x) = σ(x,We), g(z) = σ(z,Wd), and x′ = g(f (x))

(8)MSE(x, x′) =
1

n

n∑

i=1

(xi − x′i)
2

(9)MSE(x, x′) =
1

n

n∑

i=1

(xi − x′i)
2 + �

∑

i

|hi|

Page 9 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98 	

respective distributions, which can be seen in Fig. 2, motivates the use of two separate
cleaning processes and exploring different outlier detection models for each. The selec-
tion of models is based on best performance in detecting noises in constraints as illus-
trated in the evaluation section.

In this study, we explore the implementation of the following cleaning processes which
are classified into four categories based on the employed outlier detection model:

1	 Traditional outlier detection: In this process, a stand-alone outlier detection
method is selected (e.g. isolation forest, One-class SVM, local outlier factor) to iden-
tify noise in must-link and cannot-link sets separately. The input features are passed
to these models, which then return a binary score for each constraint which deter-
mines whether or not it is a noisy constraint. See Fig. 3 for an illustration.

2	 Outlier detection via deep embedding: Here the neural network autoencoder (AE)
is used as an additional component to provide an embedding function for a tradi-
tional outlier detection method. In this case, only the encoder function from the
autoencoder model is used. After feeding the feature vectors into the encoder func-
tion, the model learns to effectively compress the input feature vector into an inform-
ative latent feature representation in the hidden layer. Then this latent representation
is used as an input to an outlier detection method such as Isolation forest, One-class
SVM, or local outlier factor, which return a binary score that identify the noisy con-
straints. See Fig. 4 for an illustration. This process is conducted for must-link and
cannot-link pairs separately with different encoder functions and outlier detection
methods. The selection of models is based on experimental results as illustrated in
the evaluation section.

Fig. 2  An illustration of the differences between the distributions of must-link and cannot-link constraints,
as viewed in a low-dimensional space, for a sample of small networks. The plots in the first row (a-1, b-1, c-1)
show the must-link constraints of a sample set of small synthetic networks. The second row (a-2, b-2, c-2)
shows the cannot-link constraints of the same set of networks

Page 10 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98

3	 Deep learning approach: In this case, the neural network autoencoder (AE) is used
as an outlier detection technique for identify noises in pairwise constraints. Differ-
ent autoencoder models is used for must-link and cannot-link pairs separately. The
feature vectors are fed into the autoencoder model, which learns to reconstruct the
original constraints from the latent representation. The reconstruction error is given
by the difference between the original constraints and the reconstruction. A large
error is indicative of an outlier (i.e. a noisy constraint), while a low error indicates a
“normal” example (i.e. a correctly-labelled constraint). Finally, we sort the constraints
in ascending order (lowest to highest error) in order to determine the top k con-
straints with the lowest level of error. The expectation is that, as the larger part of
pairwise constraints are non-noisy, the autoencoder’s latent representation will be

Fig. 3  An illustration of the process for identifying noisy pairwise constraints using traditional outlier
detection

Fig. 4  An illustration of the process for identifying noisy pairwise constraints using outlier detection via deep
embedding function

Page 11 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98 	

biased towards these examples. This makes the model somewhat robust to outliers.
Based on this property, it is then assumed that examples which are noisy will have a
high reconstruction error. See Fig. 5 for an illustration of the process.

4	 Hybrid cleaning process: For each of the above described cleaning processes, we use
separate processes of the same category to identify noises in must-link and cannot-
link pairs. However, in this process, we investigate a combination of different cat-
egories processes for must-link and cannot-link pairs. Based on initial experiments,
a Neural Network based cleaning process performed better for must-link pairs than
cannot-link. On the other hand, using Outlier Detection with Deep Embedding for
cannot-link pairs is found to yield better noise detection performance, when com-
pared to using an autoencoder alone. See Fig. 6 for an illustration of the process.

We see from Fig. 2 that the distributions of correct labels and noisy constraints is more
complex in the case of cannot-link constraints—i.e., there is a high overlap between both

Fig. 5  An illustration of the process for identifying noisy pairwise constraints using deep learning approach
(neural network autoencoder (AE))

Fig. 6  An illustration of the process for identifying noisy pairwise constraints using hybrid cleaning process.
A combination of traditional models, and deep learning based outlier detection models

Page 12 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98

the correct and noisy groups. Separating these groups requires a more complex func-
tion, as compared to the equivalent case for must-link constraints, which are relatively
easy to separate.

AC‑SLPA with noise identification

Now we discuss the implementation of the general architecture discussed in Section
“Overview” in the context of the existing AC-SLPA algorithm (Alghamdi and Greene
2018) in order to create a robust active semi-supervised SLPA algorithm that can handle
the presence of noisy pairwise constraints. The new modified AC-SLPA consists of three
stages. The first two stages include the pairwise constraints cleaning process, which are
executed iteratively as follows:

Stage 1: Detecting noises in constraints during selection and annotation. At each
iteration of AC-SLPA, informative pair of nodes are selected using Node Pair Selection
method (Alghamdi and Greene 2019) and passed to the noisy oracle to be labelled as
pairwise constraints. After generating a set of noisy pairwise constraints ( PC− ), this set
is passed to the process of identifying noisy constraints for multiple sub-iterations of
cleaning. As a new set of constraints is introduced at each iteration, the outlier detec-
tors are retrained at each one of these iterations and reapplied to the remaining set of
constraints. The output constraints of this process are then used to apply PC-SLPA algo-
rithm. At the end of each run of AC-SLPA, the cleaned pairwise constraint set ( PC+ ) is
accumulated and mixed with the new chunk of noisy pairwise constraints ( PC− ) in the
next iteration. The larger the constraints set passed to the outlier detection model, the
better the performance.

Stage 2. Rechecking discarded pairwise constraints. The previous stage of cleaning
may result in a number of non-noisy constraints being labelled as noisy. This is more
likely to happen when the distribution of noisy constraints is highly overlapped with
non-noisy constraints. The second stage is designed to recheck the discarded pairwise
constraints set ( PC− ) that were potentially mislabelled as noises, by passing them to the
process of identifying noisy constraints for another multiple iterations of cleaning, thus
reducing any wastage of the annotation budget. The returned set of constraints from this
process is added to the accumulated cleaned pairwise constraints set ( PC+ ) from stage
1.

Stage 3. Apply PC-SLPA. The final stage involves applying the semi-supervised com-
munity detection process PC-SLPA using the final accumulated cleaned pairwise con-
straints ( PC+ ) obtained from the previous two stages, thus producing a final set of
communities. The complete architecture is summarized in Algorithm 1.

Page 13 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98 	

Evaluation
In this section, we describe the datasets and experimental configuration used to vali-
date our proposed method for handling noisy constraints. We conduct four experi-
ments to show its effectiveness, which are applied to synthetic benchmark networks
of different sizes with overlapping communities, and real-world networks. Our objec-
tives are as follows: (1) to quantify the ability of each constraint cleaning process to
detect noisy constraints prior to community finding; (2) to choose the best architec-
tures of autoencoder to use as a deep embedding function for outlier detection mod-
els; (3) to compare all types of constraint cleaning processes after integration with

Page 14 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98

AC-SLPA, in order to evaluate the end-to-end performance of the complete architec-
ture; (4) to examine the performance of the method on real-world data.

Datasets

Synthetic data. We constructed a diverse set of 64 benchmark synthetic networks using
the widely-used LFR generator (Lancichinetti et al. 2008). These networks vary in terms
of number of nodes N ∈ [1000, 5000] , communities per node (overlapping diversity)
Om ∈ [2, 8] , and the fraction of nodes belonging to multiple communities (overlapping
density) On ∈ {10%, 50%} . These networks contain either small communities ( 10− 50
nodes), or large communities ( 20− 100 nodes). The mixing parameter µ varies from 0.1
to 0.3, which controls the level of community overlap. Details of the network generation
parameters are in Table 1.

Real-world data. We use three real-world networks which contain annotated ground
truth overlapping communities. These are: (1) a co-purchasing network from Amazon.
com; (2) a friendship network from YouTube; (3) a scientific collaboration network from
DBLP. These networks have previously been used in the community finding literature
(Leskovec and Krevl 2015). For each network, we include only the 5000 largest commu-
nities, as performed in Yang and Leskovec (2015). We then conduct a filtering process
as per Harenberg et al. (2014). The remaining communities are ranked based on their
internal densities and the bottom quartile is discarded, along with any duplicate com-
munities. As an additional step, we remove extremely small communities. For the Ama-
zon and YouTube networks, communities of size < 5 nodes are discarded, while for the
DBLP network communities with < 10 nodes are discarded. Details of the final networks
are summarized in Table 2.

Table 1  Parameter ranges used for the generation of LFR synthetic networks

Parameter Description Value Parameter Description Value

N Number of nodes 1000–5000 t1 Degree exponent 2

k Average degree 10 t2 Community exponent 1

Kmax Max degree 50 µ Mixing parameter 0.1–0.3

Cmin Min community size 10/20 On Num. overlapping nodes 10%/50%

Cmax Max community size 50/100 Om Communities per node 1–8

Table 2  Details of real-world networks

Real-world Networks Amazon YouTube DBLP

#Nodes-# Edges-#Communities 7411-21214-876 6426-23226-1058 7233-33045-613

Average degree 5 7 9

Maximum community size 27 31 38

Minimum community size 5 5 10

Average community size 10 7 12

Maximum communities per node §(Om) 4 11 5

Number of overlapping nodes ( On) 1394 (18%) 865 (13%) 214 (3.3%)

Clustering coefficient 0.74 0.33 0.90

Page 15 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98 	

Constraint noise. In all of our experiments we mimic the presence of an oracle by
using pairwise node co-assignment information in the ground truth communities for
each network. We use this information to create pairwise constraints, according to the
definition of constraints given in Section “Overview”. We subsequently add noise to
these constraints by flipping the labels of a randomly-selected subset of must-link and
cannot-link pairs. The level of noise is fixed at 10% of the smallest constraint set, either
must-link or cannot-link.

Evaluation metrics. To compare the ability of autoencoders variants to detect noisy
constraints before their use in community finding, we calculate the AUC (Area Under
the ROC Curve) over the reconstruction error. This provides an estimate of the number
of constraints that were successfully detected in the absence of a threshold. After inte-
grating this step into the community finding process, performance is assessed using the
overlapping form of Normalized Mutual Information (NMI) (Lancichinetti et al. 2009),
which has been widely adopted in the literature (Xie et al. 2013). For this measure, a
value close to 1 indicates a high level of agreement with the ground truth communities,
while a value close to 0 indicates that the communities generated by an algorithm are no
better than random.

Several alternative validation metrics have been proposed in the literature to capture
the topological properties of a network. These are used to assess the quality of a set of
communities when no ground truth communities are available, and include metrics such
as modularity (Newman 2004) and its overlapping counterpart (Lázár et al. 2010).

Some studies have suggested measuring the topological features of communities
generated by an algorithm, and then comparing the outputs to the ground truth com-
munities in the network (Dao et al. 2020; Orman et al. 2012). This can be seen as a com-
plementary evaluation to the more widely-adopted external metrics. These approaches
involve considering factors such as community size distributions, average distance
between all pairs of nodes within a community, and scaled community density. Later
in Section “Experiment 4: Real-world networks”, we consider the analysis of commu-
nity size distributions to provide an additional evaluation perspective on our proposed
approach.

Experiment 1: Comparing Outlier Detection Models

In this experiment, the objective is to find the best models for detecting noisy con-
straints in must-link and cannot-link sets in Phase 2 (identifying noisy constraints) of the
proposed general architecture in Fig. 1. As described in Section “Process for identifying
noisy constraints”, there are four categories of cleaning processes that can be used in
Phase 2. This experiment is designed to find the best model for each category. There are
three main aspects of this experiment:

1	 In Section “Evaluating outlier detection methods” we seek to find the best autoen-
coder architectures as outlier detection models for must-link and cannot-link con-
straints separately. These will be used to investigate the deep learning approach as
a cleaning processes in Experiment 2, Section “Experiment 2: Evaluation of noise
removal methods”

Page 16 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98

2	 Also in Section “Evaluating outlier detection methods” we identify the best perform-
ing conventional outlier detection method (from Isolation forest, One-class SVM,
and local outlier factor) for must-link and cannot-link constraints. This outcome will
also be used in Experiment 2, Section “Experiment 2: Evaluation of noise removal
methods”.

3	 In Section “Evaluating autoencoders for deep embeddings” we explore different
autoencoder architectures as deep embedding technique integrated with conven-
tional outlier detection models for each must-link and cannot-link constraints.

This experiment is designed to assess the performance of Phase 2 detached from the
general architecture in Fig. 1. Specifically, constraints are selected over 10 independent
iterations of the existing AC-SLPA algorithm and then split into must-link and cannot-
link sets to be processed separately.

Evaluating outlier detection methods

Methodology. This experiment compares two different strategies for cleaning constraint
sets, evaluated on the synthetic LFR networks described previously in Section “Data-
sets”. This experiment proceeds in the following steps:

1	 We consider autoencoder models for constraint cleaning. For each selected set at
each iteration, a separate autoencoder is trained on this set until the reconstruc-
tion error reaches a near-zero value (functionally a maximum number of epochs
is selected). The set is then passed through the autoencoder once again in order to
obtain a reconstruction for each constraint. The reconstruction error is then calcu-
lated for each constraint. The number of layers in each autoencoder model is also
varied in order to examine whether this task benefits from a deeper model. Both
compression-based autoencoders and sparse autoencoders are considered for this.
In the case of the compression autoencoders, the nodes in the encoder are gradu-
ally decreased until the bottleneck layer is reached and then gradually increased in
the decoder. For the L1 constrained autoencoders, compression in the encoder is not
necessary, and therefore the dimensionality is kept the same as the input throughout
the network. In the case of the constrained autoencoders, the sparsity weight is kept
at 10−3 . All models were trained with a batch size of 256. The full list of parameter
combinations used in our experiments is given in Table 3. In the remainder of this
paper we denote these autoencoder architectures with the prefix AE*.

2	 As baseline alternatives, we consider traditional outlier detection methods for this
task: Isolation Forest (IF) (Liu et al. 2008), One-class SVM (Schölkopf et al. 2000),
and local outlier factor (Breunig et al. 2000). We conduct experiments in the same
way as for the autoencoders described above. For each selected set at each iteration, a
separate model is fit on this set, which then returns a binary score for each constraint
that determines whether or not it is a noisy constraint. After removing noisy con-
straints, the same set is then passed through the model once again in order to obtain
a re-calculated score for each constraint. We use the code released by Pedregosa et al.
(2011), with the default parameter settings, including the contamination parameter
at 10%.

Page 17 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98 	

Results. Tables 4 and 6 present the results for the two alternative strategies (autoen-
coders and standard outlier detection methods). Each table is divided into two parts that
represent the average AUC scores of each model on small and large networks respec-
tively. Results for must-link and cannot-link constraint sets are listed separately. Each
table entry shows the average AUC score of the model (on the rows) for networks with
certain size, overlapping density and the type of constraints used (on the columns). The
highest average AUC score is highlighted in bold.

In terms of the autoencoder models, for both small and large network the most con-
strained AE models tend to perform better than the unconstrained ones when detecting
noises on must-link constraints, as illustrated in Table 4. For instance on small networks,
the average AUC score of AE2 is 0.625 and increases to 0.657 with the constrained ver-
sion AE2_l1. Similarly, on large networks, AE2_l1 show a higher average score than AE2,
with AUC = 0.470 and AUC = 0.442 respectively. In contrast, we see the opposite trend
for cannot-link constraints, where constrained models show lower average scores than
unconstrained ones, except for AE3_l1 which presents consistently higher score com-
pared to AE3 in all cases.

When comparing shallow to deep models on small and large networks, the general
trend of AUC scores on must-link constraints shows a decrease as more layers are added
to AE models, except for AE2_l1 on large networks. On the other hand, we can see a
contrasting trend on cannot-link constraints, where the highest AUC scores on all net-
works are achieved by the deep model AE3_l1.

Interestingly, for both types of constraint, the AE models tend to perform significantly
better on networks with low overlapping density. For instance, the average AUC scores
for AE models is 0.694 for must-link constraints and 0.826 for cannot-link constraints
on small networks with On = 10% , which are higher than AUC = 0.590 and AUC =
0.743 on On = 50% for must-link and cannot-link constraints respectively. However, this
excludes the results of AE models on must-link constraints for large networks, which
show slightly higher scores.

Table 5 summarizes the average ranks of all AE models on must-link and cannot-link
constraints separately for small networks and large networks. Each table entry shows the
average rank (lower values are better) of a model (on the rows) over each constraint type
and networks size (on the columns). The ranking scores indicate that, for must-link con-
straints, the best approaches for detecting noise are the shallow model AE1_l1 on small

Table 3  Details of autoencoder architectures. Here AE* indicates the number
of layers in compression autoencoders, and AE*_L1 indicates the number of layers
in L1-constrained autoencoders

Architecture Nodes per layer Small networks Large networks

Epochs Learning rate Epochs Learning rate

AE1 dim:(7,3,7) 100 0.01 30 0.001

AE1_L1 dim:(7,7,7) 100 0.01 30 0.001

AE2 dim:(7,5,3,5,7) 100 0.01 30 0.001

AE2_L1 dim:(7,7,7,7,7) 100 0.01 30 0.001

AE3 dim:(7,6,5,3,5,6,7) 100 0.01 30 0.001

AE3_L1 dim:(7,7,7,7,7,7,7) 100 0.01 30 0.001

Page 18 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98

Ta
bl

e 
4 

A
ve

ra
ge

 A
U

C
sc

or
es

 f
or

 d
iff

er
en

t
au

to
en

co
de

r
ar

ch
it

ec
tu

re
s.

 W
e

re
po

rt
 o

ve
ra

ll
sc

or
es

,
an

d
sc

or
es

 o
n

ne
tw

or
ks

 w
it

h
di

ff
er

in
g

ov
er

la
p

de
ns

it
y
O
n
 ,

fo
r m

us
t-

lin
k

an
d

ca
nn

ot
-li

nk
 s

et
s

se
pa

ra
te

ly

A
rc

hi
te

ct
ur

e
Sm

al
l N

et
w

or
ks

La
rg

e
N

et
w

or
ks

M
us

t-
lin

k
co

ns
tr

ai
nt

s
Ca

nn
ot

-li
nk

 c
on

st
ra

in
ts

M
us

t-
lin

k
co

ns
tr

ai
nt

s
Ca

nn
ot

-li
nk

 c
on

st
ra

in
ts

O
ve

ra
ll

O
n
=

1
0

%
O
n
=

5
0

%
O

ve
ra

ll
O
n
=

1
0

%
O
n
=

5
0

%
O

ve
ra

ll
O

n=
10

%
O
n
=

5
0

%
O

ve
ra

ll
O
n
=

1
0

%
O
n
=

5
0

%

A
E1

0.
63

4
0.

65
1

0.
61

6
0.

77
9

0.
82

0
0.

73
9

0.
45

6
0.

45
2

0.
46

0
0.

84
4

0.
90

6
0.

78
2

A
E2

0.
62

5
0.

65
2

0.
59

7
0.

78
5

0.
82

8
0.

74
2

0.
44

2
0.

44
3

0.
44

2
0.

84
9

0.
90

6
0.

79
1

A
E3

0.
62

4
0.

66
7

0.
58

0
0.

79
6

0.
84

3
0.

74
8

0.
42

2
0.

41
6

0.
42

9
0.

84
9

0.
90

5
0.

79
4

A
E1

_l
0.

65
9

0.
70

5
0.

61
4

0.
73

7
0.

77
7

0.
69

7
0.

45
3

0.
44

5
0.

46
1

0.
78

9
0.

84
2

0.
73

5

A
E2

_l
0.

65
7

0.
71

8
0.

59
7

0.
77

6
0.

81
2

0.
73

9
0.

47
0

0.
44

4
0.

49
6

0.
78

0
0.

84
7

0.
71

4

A
E3

_l
0.

65
4

0.
77

3
0.

53
4

0.
83

5
0.

87
7

0.
79

3
0.

42
4

0.
40

7
0.

44
0

0.
87

9
0.

91
9

0.
83

9
A

ll
A

E
0.

64
2

0.
69

4
0.

59
0

0.
78

5
0.

82
6

0.
74

3
0.

44
4

0.
43

4
0.

45
0.

83
2

0.
88

7
0.

77
5

Page 19 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98 	

networks, and the constrained model with moderate depth AE2_l1 on large networks.
For cannot-link constraints, the deep constrained model AE3_l1 is the top-ranked model
on both small and large networks. Generally, a deeper network leads to a greater repre-
sentational capacity (Goodfellow et al. 2016). Though it is difficult to know the reason for
one architecture outperforming another with a high degree of certainty, the increased
number of data points for must-link constraints in the large network compared to small
network most likely requires the network to have an increased representational capacity.
Thus, for must-link constraints, AE1_L1 is top-ranked on small networks, while on large
networks a deeper version (AE2_L1) is the best performing.

We turn now to the results for the traditional outlier detection methods, which are
listed in Table 6. As can be seen for both small and large network, the SVM model
achieves the highest scores on must-link constraints, while the IF model shows the
best performance on cannot-link constraints. Generally, most models performed bet-
ter in detecting noisy must-link constraints in small networks compared to large net-
works. However, the opposite trend is seen for cannot-link constraints, where we
observe considerably higher scores on larger networks, except in the case of LOF model.
Another trend that can be seen in Table 6 is significantly higher scores on networks with
On = 10 % compared to networks with On = 50 % by most models, except for the IF and
LOF models on must-link constraints in large networks. In summary, these results sug-
gest that SVM and IF are the best performing models on must-link constraints and can-
not-link constraints respectively across all networks. This can also be seen in Table 7,
which reports the average ranking scores for the three alternative outlier detection
models.

Evaluating autoencoders for deep embeddings

Methodology. In this section we address the objective of finding the best autoencoder
architectures for use as a deep embedding technique in combination with other outlier
detection methods. The best candidates will be used later in Experiment 2 in section
“Experiment 2: Evaluation of noise removal methods”. Specifically, we assess the perfor-
mance of different autoencoder architectures with One-Class SVM and Isolation Forest
(IF) models, which were the best performed conventional outlier detection models on
must-link and cannot-link constraints respectively as described previously.

Table 5  Average rank of autoencoder architectures over all small and large LFR networks,
for must-link and cannot-link constraints

Architecture Small networks Large networks

Must-link constraints Cannot-link
constraints

Must-link constraints Cannot-link
constraints

AE1 3.0 4.5 2.5 4.0

AE1_L1 1.0 6.0 2.5 5.0

AE2 5.0 3.0 4.0 2.0

AE2_L1 2.0 4.5 1.0 6.0

AE3 6.0 2.0 6.0 3.0

AE3_L1 4.0 1.0 5.0 1.0

Page 20 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98

Ta
bl

e 
6 

A
ve

ra
ge

 A
U

C
sc

or
es

 f
or

 I
so

la
ti

on
 F

or
es

t
(IF

),
O

ne
-c

la
ss

 S
V

M
,

an
d

Lo
ca

l
O

ut
lie

r
Fa

ct
or

 (
LO

F)
 o

n
LF

R
ne

tw
or

ks
. W

e
re

po
rt

 o
ve

ra
ll

sc
or

es
,

an
d

sc
or

es

on
 n

et
w

or
ks

 w
it

h
di

ff
er

in
g

ov
er

la
p

de
ns

it
y
O
n
 , f

or
 m

us
t-

lin
k

an
d

ca
nn

ot
-li

nk
 s

et
s

se
pa

ra
te

ly

O
ut

lie
r

m
et

ho
ds

Sm
al

l n
et

w
or

ks
La

rg
e

ne
tw

or
ks

M
us

t-
lin

k
co

ns
tr

ai
nt

s
Ca

nn
ot

-li
nk

 c
on

st
ra

in
ts

M
us

t-
lin

k
co

ns
tr

ai
nt

s
Ca

nn
ot

-li
nk

 c
on

st
ra

in
ts

O
ve

ra
ll

O
n
=

1
0

%
O
n
=

5
0

%
O

ve
ra

ll
O
n
=

1
0

%
O
n
=

5
0

%
O

ve
ra

ll
O
n
=

1
0

%
O
n
=

5
0

%
O

ve
ra

ll
O
n
=

1
0

%
O
n
=

5
0

%

IF
0.

62
3

0.
72

0
0.

52
6

0.
86

8
0.

91
5

0.
82

0
0.

21
3

0.
16

3
0.

26
2

0.
93

2
0.

96
8

0.
89

6
SV

M
0.

69
1

0.
75

1
0.

63
1

0.
76

5
0.

82
7

0.
70

2
0.

55
4

0.
57

2
0.

53
6

0.
88

6
0.

91
7

0.
85

4

LO
F

0.
62

1
0.

71
1

0.
53

2
0.

67
0

0.
69

9
0.

64
1

0.
48

0
0.

47
8

0.
48

2
0.

59
6

0.
62

8
0.

56
4

Page 21 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98 	

Results. Table 8 reports the average ranks achieved by different autoencoders (on the
rows) in conjunction with the SVM and IF methods for detecting noise in must-link and
cannot-link sets (on the columns). As can be seen from the results, unconstrained AE
models outperform constrained ones as deep embedding technique in all cases. In par-
ticular, the deep unconstrained models AE3 shows the best scores, except for the case of
SVMs on large networks, where the unconstrained model with moderate depth AE2 is
the top-ranked model.

Experiment 2: Evaluation of noise removal methods

Methodology. In the previous experiment, we focused on Phase 2 in Fig. 1 as a separate
component. Now we evaluate the performance of the proposed architecture incorporat-
ing Phase 2. Given the best-performing outlier detection models and deep embedding
functions identified in Experiment 1, we assess the performance of AC-SLPA commu-
nity finding using each category of constraint cleaning process described in Section
“Process for identifying noisy constraints” to identify the best option. Table 9 summarize
the types of cleaning processes and models that are used in this experiment. Again we
make use of 64 synthetic LFR networks.

Results. Tables 10 and 11 provide an overview of how the performance of AC-SLPA
with various cleaning methods changes on synthetic networks. Recall that these net-
works vary in terms of mixing parameter µ , overlapping diversity Om , overlapping
density On , and the size of both the networks themselves and their ground truth com-
munities. Each table entry includes the average NMI score of AC-SLPA combined with
each cleaning methods (on the rows) over networks with specific parameters (on the

Table 7  Average ranks of Isolation Forest (IF), One-class SVM, and Local Outlier Factor
(LOF) over all small and large LFR networks, for must-link and cannot-link constraints

Dataset Must-link constraints Cannot-link constraints

Small networks IF SVM LOF IF SVM LOF

2.3(2) 1.3(1) 2.4(3) 1.0(1) 2.0(2) 3.0(3)

Large networks IF SVM LOF IF SVM LOF

3.0(3) 1.1(1) 1.9(2) 1.0(1) 2.0(2) 3.0(3)

Average Rank 2.5 1 2.5 1 2 3

Table 8  Average ranks for autoencoder architectures when used as deep embeddings
wit one-class SVM (on must-link constraints) and for Isolation Forest (on cannot-link
constraints)

Architecture Small networks Large networks

Encoder + SVM Encoder + IF Encoder + SVM Encoder + IF

AE1 3 2 2 3

AE1_L1 4 4 4 4

AE2 2 3 1 2

AE2_L1 5.5 5.5 5.5 5.5

AE3 1 1 3 1
AE3_L1 5.5 5.5 5.5 5.5

Page 22 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98

columns). The best score is highlighted in bold. The detailed NMI scores are shown in
Figs. 7 and 8, which indicate the agreement between the obtained communities in each
case and the corresponding ground truth.

Generally, increasing the value of µ results in lower NMI scores for all algorithms, due
to the increased proportion of inter-community edges that lead to weakly-defined com-
munity structure. As can be seen from Tables 10 and 11, compared to the case of µ = 0.1 ,
the average NMI scores of all algorithms considerably decreased on small networks with
µ = 0.3 . In both cases of µ , we can see that AC-SLPA with the Hybrid method outper-
formed other methods on small and large networks. As for examining the performance
on networks with small and large communities, we can see that all algorithms show

Table 9  Different variations of the cleaning process using the best performing models
from the Experiment 1, on must-link and cannot-link constraints respectively

Cleaning models Must-link constraints Cannot-link
constraints

Small networks

 Hybrid (Autoencoder–Encoder Func.+IF) AE1_L1 AE3+IF

 Autoencoders(AE) AE1_L1 AE3_L1

 Encoder Func. + Outlier detection (SVM-IF) AE3+SVM AE3+IF

 Outlier detection only (SVM-IF) SVM IF

Large networks

 Hybrid (Autoencoder–Encoder Func.+IF) AE2_L1 AE3+IF

 Autoencoders(AE) AE2_L1 AE3_L1

 Encoder Func. + Outlier detection (SVM-IF) AE2+SVM AE3+IF

 Outlier detection only (SVM-IF) SVM IF

Table 10  Average NMI scores of AC-SLPA achieved using different cleaning processes
on small synthetic networks with different network parameters

Cleaning process Network parameters

µ Comm. Size On Om

0.1 0.3 Small Large 10% 50% 2 4 6 8

Hybrid 0.565 0.483 0.538 0.51 0.810 0.239 0.710 0.538 0.448 0.401
AE 0.506 0.440 0.497 0.449 0.728 0.218 0.631 0.485 0.416 0.361

AE_SVM_IF 0.553 0.463 0.525 0.49 0.800 0.215 0.701 0.522 0.432 0.376

SVM_IF 0.547 0.458 0.522 0.483 0.797 0.208 0.701 0.517 0.424 0.369

Table 11  Average NMI scores of AC-SLPA achieved using different cleaning processes
on large synthetic networks with different network parameters

Cleaning Process Network Parameters

µ Comm. Size On Om

0.1 0.3 Small Large 10% 50% 2 4 6 8

Hybrid 0.566 0.530 0.567 0.529 0.768 0.328 0.763 0.552 0.469 0.408
AE 0.474 0.426 0.464 0.435 0.618 0.281 0.6 0.453 0.39 0.357

AE_SVM_IF 0.544 0.503 0.539 0.508 0.757 0.290 0.726 0.559 0.44 0.369

SVM_IF 0.559 0.527 0.543 0.543 0.785 0.301 0.748 0.572 0.464 0.388

Page 23 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98 	

higher average NMI scores for small community networks compared to large commu-
nity networks. In addition, we notice that AC-SLPA with the hybrid method shows the
best performance on all networks, except for large networks with large communities.

Now we investigate the effect of two network properties, overlapping diversity Om
and overlapping density On , on the performance of all algorithms. As we can see from
Tables 10 and 11, the quality of obtained communities of all algorithms consistently

Fig. 7  Performance of AC-SLPA using different constraint cleaning methods on small synthetic networks,
containing both small and large communities, where the mixing parameter µ varies from 0.1 to 0.3. NMI
values are plotted against the number of communities per node (Om)

Page 24 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98

decreases as the overlapping diversity and overlapping density increase. In most of the
cases of Om and On , AC-SLPA with the Hybrid method outperform other methods except
cases on On = 10% and Om = 4 shows the second best scores after SVM_IF. Overall, in
most cases of network parameters, the algorithms show higher average NMI scores on

Fig. 8  Performance of AC-SLPA using different constraint cleaning methods on large synthetic networks,
containing both small and large communities, where the mixing parameter µ varies from 0.1 to 0.3. NMI
values are plotted against the number of communities per node (Om)

Page 25 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98 	

large networks compared to small networks, excluding AC-SLPA with AE method which
shows a contrasting trend.

Table 12 summarizes the average ranks based on NMI scores for all algorithms on the
synthetic networks. Each table entry shows the average rank of AC-SLPA with a clean-
ing method (on the columns) for different sizes of synthetic networks (on the rows). The
average ranks based on NMI scores for each individual network is shown in Figs. 7 and 8.
As we can see, AC-SLPA with the Hybrid method achieved the best rank on both small
and large networks. The second-best algorithms with AE_SVM_IF method on small
networks and with SVM_IF method on large networks. AE_SVM_IF and SVM_IF show
approximately comparable performance on small networks, however the difference in
performance between both methods grows higher on large networks.

To further understand the performance differences, we perform a Friedman aligned
rank test with the Finner p value correction (García et al. 2010) to compare the above
methods. The critical difference plots with a significance value α = 0.05 of the test
results are shown in Fig. 9, where the vertical lines indicate the corresponding algo-
rithm’s rank. The algorithms which are not connected with the black horizontal line are
significantly different with the mentioned significance level. In the case of the small syn-
thetic networks, the Hybrid method was found to be significantly better than the other
three methods. On the other hand, for big networks, this method was found to be sig-
nificantly better than AE_SVM_IF and AE.

Experiment 3: End‑to‑end evaluation

Methodology. In the previous section, we compared different cleaning methods as
they were integrated into the overall architecture as can be seen in Fig. 1.The best
performing cleaning process identified was the Hybrid method. We term this overall
architecture AC-SLPA with Hybrid cleaning. In the following sections, we compare
this architecture to the baseline algorithms, SLPA and AC-SLPA, without any con-
straint cleaning on both small and large synthetic networks.

1 2 3 4

AE_SVM_IF

SVM_IF

AE

a Small synthetic network

1 2 3 4

SVM_IF

AE_SVM_IF

AE

b Big synthetic network

Fig. 9  Critical difference plots from Friedman aligned rank test with Finner p value correction with
significance level α = 0.05 comparing Hybrid, AE_SVM_IF, SVM_IF and AE algorithms on the small and
big synthetic networks. Algorithms which are not connected with the horizontal dark line are significantly
different than each other. Lower rank indicates an overall better performance

Page 26 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98

Results. We assess the quality of the obtained communities by AC-SLPA with hybrid
(top-ranked cleaning process) compared to AC-SLPA and SLPA from the perspective of
different network parameters as illustrated in Tables 13 and 14. The NMI scores of each
network are reported in Figs. 10 and 11 on small and large networks respectively.

As can be seen from the Tables 13 and 14, AC-SLPA with Hybrid cleaning significantly
outperformed other algorithms in most cases of networks parameters. For instance, in
high mixing parameters large networks, AC-SLPA with the Hybrid method shows signif-
icantly higher score with NMI=0.530 compared to AC-SLPA and SLPA with NMI=0.343
and NMI=0.451 respectively. Similarly, AC-SLPA with the Hybrid method beats the
other algorithms in most overlapping density ( On ) and overlapping diversity ( Om ) cases,

Table 12  Average ranks of NMI scores for AC-SLPA achieved using different cleaning
methods on small and large synthetic networks

Network category Hybrid AE AE_SVM_IF SVM_IF

Small networks 1.6(1) 3.2(4) 2.6(2) 2.7(3)

Large networks 1.6(1) 3.8(4) 2.7(3) 2.0(2)

Table 13  Average NMI scores of AC-SLPA using Hybrid cleaning method compared to SLPA
and AC-SLPA with noisy pairwise constraints on small synthetic networks with different
parameters

Algorithm Network parameters

µ Comm. Size On Om

0.1 0.3 Small Large 10% 50% 2 4 6 8

Hybrid 0.565 0.483 0.538 0.510 0.809 0.239 0.709 0.538 0.448 0.401
AC-SLPA 0.484 0.43 0.475 0.438 0.691 0.223 0.602 0.472 0.402 0.351

SLPA 0.527 0.388 0.474 0.441 0.737 0.178 0.634 0.458 0.396 0.342

Table 14  Average NMI scores of AC-SLPA using the hybrid cleaning process, SLPA
and AC-SLPA with noisy pairwise constraints on large synthetic networks with different
parameters

Algorithm Network parameters

µ Comm. Size On Om

0.1 0.3 Small Large 10% 50% 2 4 6 8

Hybrid 0.566 0.530 0.567 0.529 0.768 0.328 0.763 0.552 0.469 0.408
AC-SLPA 0.316 0.343 0.364 0.295 0.429 0.231 0.390 0.353 0.301 0.357

SLPA 0.533 0.451 0.497 0.488 0.777 0.208 0.686 0.484 0.421 0.369

Table 15  Average ranks of NMI scores of AC-SLPA using the hybrid cleaning process, SLPA
and AC-SLPA with noisy pairwise constraints on small and large synthetic networks

Network category SLPA AC-SLPA Hybrid

Small networks 2.2(2) 2.5(3) 1.3(1)
Large networks 2.6(3) 2.1(2) 1.3(1)

Page 27 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98 	

except on large networks with low overlapping density. SLPA shows slightly better aver-
age NMI score than AC-SLPA with cleaning process, with NMI=0.777 and NMI=0.768
respectively. In addition, we notice that the AC-SLPA with hybrid cleaning and SLPA
show higher average NMI scores on large networks compared to small networks.

Fig. 10  Performance of AC-SLPA using the hybrid cleaning process compared to SLPA and AC-SLPA with
noisy pairwise constraints on small synthetic networks, containing both small and large communities, where
the mixing parameter µ varies from 0.1 to 0.3. NMI values are plotted against the number of communities per
node (Om)

Page 28 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98

On the small networks, the performance of AC-SLPA without any cleaning process
shows slightly better than SLPA in most cases. In contrast, the performance of AC-
SLPA is significantly affected by noisy pairwise constraints on the large networks,

Fig. 11  Performance of AC-SLPA using Hybrid cleaning method compared to SLPA and AC-SLPA with noisy
pairwise constraints on large synthetic networks, containing both small and large communities, where the
mixing parameter µ varies from 0.1 to 0.3. NMI values are plotted against the number of communities per
node (Om)

Page 29 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98 	

where the average NMI score is consistently lower compared to SLPA. Overall, the
best NMI scores across all algorithms are shown on networks with low overlapping
density, as we might expect. For instance, we can see from Figs. 10 and 11 that the
Hybrid method achieves higher NMI scores on most networks with low overlapping
density compared to other algorithms, and the scores drop in high overlapping den-
sity case, in particular on small networks. On the large networks, the performance
of the Hybrid method is considerably higher and more stable as the overlapping
diversity increases, when compared to AC-SLPA and SLPA. Table 15 lists the average
ranks of NMI scores of all algorithms on small and large networks, which shows the
average ranks (lower values are better) of an algorithm (on the columns) over differ-
ent size of synthetic networks (on the rows). The best scores are shown in boldface.
As we see in Table 15, AC-SLPA with Hybrid cleaning method achieved the best
rank score on both small and large networks, followed by SLPA on small networks
and AC-SLPA on large networks.

As in Section “Experiment 2: Evaluation of noise removal methods”, we perform
a Friedman aligned rank test with the Finner p value correction to support a multiple
comparison test between the three methods above. The critical difference plots of the
results with a significance level of α = 0.05 are shown in Fig. 12. In the case of both the
small and large networks, the AC-SLPA with Hybrid method performed significantly
better than the other two methods.

Experiment 4: Real‑world networks

Methodology. We now discuss our final experiment on three real-world networks
(Amazon, YouTube, DBLP). We use the same setup employed in Sections “Experiment
2: Evaluation of noise removal methods” and “Experiment 3: End-to-end evaluation”
to examine the performance of each cleaning method after integration with AC-SLPA.
Note that we employ the same models used with large synthetic networks, see Table 9.

1 2 3

SLPA

AC-SLPA SLPA

a Small synthetic network

1 2 3

AC-SLPA

b Bigsyntheticnetwork
Fig. 12  Critical difference plots from Friedman aligned rank test with Finner p value correction with
significance level α = 0.05 comparing Hybrid (the best performing variant from the previous experiment),
SLPA and AL-SLPA algorithms on small and large synthetic networks. Algorithms which are not connected
with the horizontal dark line are significantly different than each other. Lower ranks indicate better overall
performance

Page 30 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98

As baselines we consider AC-SLPA without cleaning (i.e. keeping noisy constraints),
and the purely unsupervised algorithm SLPA. We also compare AC-SLPA with the best
cleaning method to other baseline algorithms which are OSLOM (Lancichinetti et al.
2011), MOSES (McDaid and Hurley 2010), COPPRA (Adamcsek et al. 2006) on real-
world networks in Table 20.

Results. Table 19 lists the NMI scores for each algorithm (columns) on each network
(rows). The last row reports the average rank score of each algorithm. When compar-
ing the performance of AC-SLPA with different cleaning methods to the baseline algo-
rithms, we can see AC-SLPA with the Hybrid method achieves the best NMI scores
on YouTube and DBLP networks (with NMI=0.818 and NMI=0.921 respectively). On
the YouTube network, the performance of the AC-SLPA with Hybrid cleaning method
increases significantly with a small amount of supervision. The next best performer is
the AC-SLPA with the AE method, followed by SLPA and AC-SLPA with noisy pairwise
constraints. All algorithms achieve their highest NMI scores on the YouTube dataset.

However, the cleaning methods fail to lead to any improvement over the baselines
in the case of the Amazon network. After investigating these results in more detail, we
notice two behaviors which frequently occur. Firstly, far more must-link constraints than
cannot-link constraints are selected by AC-SLPA. For example, the number of must-link
constraints often exceed 2,000 pairs, while the selected cannot-link constraint set can
contain fewer than 100 pairs. Secondly, all of the noisy constraints are in the cannot-
link set, and the number of incorrectly-labelled pairs exceeds the number of correctly-
labelled pairs. This situation renders noisy detection almost impossible using most
outlier detection methods.

Now we compare the performance of AC-SLPA with the Hybrid method to an addi-
tional set of baseline algorithms: OSLOM (Lancichinetti et al. 2011), MOSES (McDaid
and Hurley 2010), and COPRA (Adamcsek et al. 2006). From the results shown in
Table 20, we see that OSLOM achieves the highest NMI score on the Amazon network.
However, AC-SLPA with Hybrid cleaning achieves the highest NMI score on the You-
Tube and DBLP networks. Table 20 also reports the average ranks for NMI scores across
all algorithms on the real-world networks. This shows the average rank (lower values are
better) of an algorithm (columns) over networks (rows). As can be seen, AC-SLPA with
Hybrid cleaning achieved the best overall rank score, with SLPA and OSLOM next best.

Topological evaluation. Finally, we explore the obtained communities’ topological
properties for the methods AC-SLPA with Hybrid cleaning, AC-SLPA with and without

Table 19  Average NMI scores of AC-SLPA using different cleaning methods (Hybrid, AE,
AE_SVM_IF, and SVM_IF), SLPA and AC-SLPA with noisy pairwise constraints on three real-
world networks. Average ranks across the networks are also reported

Network SLPA AC-SLPA AC-SLPA_Hybrid AC-SLPA_AE AC-SLPA_
AE_SVM_IF

AC-SLPA_SVM_IF

Amazon 0.957 0.956 0.956 0.952 0.951 0.955

YouTube 0.627 0.778 0.818 0.778 0.751 0.751

DBLP 0.897 0.892 0.921 0.906 0.889 0.893

Avg. Ranks 3.3 3.7 1.3 3.0 5.3 4.3

Page 31 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98 	

noisy constraints, and SLPA. Specifically, we look at the community size distributions, as
shown in Figs. 13, 14, and 15. We compare the size distribution of the communities pro-
duced by each algorithm against the distribution for the ground truth communities for
each network (i.e., the reference distribution). Since all of these algorithms include a ran-
dom component and were run 10 times, we focus on the run with the highest NMI score
in each case. To compare distributions, we use a two-sample Kolmogorov–Smirnov test
(KS) (Massey 1951). This is a non-parametric statistical test to compare two cumula-
tive distributions, which calculates the maximum difference between them. We can
then compute a p value based on this maximum distance and the sample sizes. The null
hypothesis is that both distributions are identical. This hypothesis is rejected when the p
value is small (< 0.05), and the distance value is high.

Table 21 reports the KS results for all the algorithms on the real-world networks. We
observe that the p values for all variants of AC-SLPA on the Amazon network indicate
that their size distributions are the same as the reference distribution, unlike SLPA. In
term of the distance values, we can see that the distribution for AC-SLPA without noisy
constraints is closest to the reference distribution. On the YouTube network we observe
that, according to the p values, all algorithms’ distributions are not the same as the refer-
ence. However, when we inspect the distance values, again AC-SLPA without noisy con-
straints has the lowest score. We can also see that using Hybrid method with AC-SLPA
reduces the distance value significantly. The same observation also applies for the DBLP
network, although the p value for AC-SLPA without noisy constraints on this network is
above 0.05.

Overall, we see that the semi-supervised approaches can successfully identify het-
erogeneously-sized communities present in the real-world networks as illustrated
in Figs. 13, 14, and 15. Also, we notice that using the Hybrid method with AC-SLPA
reduces the difference between the obtained communities and the ground-truth com-
munities in terms of their size distributions, which results from the presence of noisy
constraints.

Table 20  Average NMI scores of AC-SLPA using Hybrid cleaning methods compared
to other baseline methods (SLPA, OSLOM, MOSES, COPRA) on three real-world networks.
Average ranks across the networks are also reported

Network AC-SLPA_Hybrid SLPA OSLOM MOSES COPRA

Amazon 0.956 0.957 0.967 0.908 0.962

YouTube 0.818 0.627 0.449 0.421 0.191

DBLP 0.921 0.897 0.849 0.771 0.914

Avg. Ranks 2.0(1) 2.7(2.5) 2.7(2.5) 4.7(5) 3.0(4)

Page 32 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98

Conclusion
In this study, we have addressed the problem of handling noisy constraints in overlap-
ping semi-supervised community detection, by treating them as outliers and use out-
lier detection models to find and remove them. Our primary contributions are four-fold:
(1) a general architecture for semi-supervised community finding with noisy constraint

Table 21  Kolmogorov-Smirnov distance between the community size distribution
of the obtained results of SLPA, ACSLPA with and without noisy constraints, and ACSLPA_
Hybrid on real-world networks against the community size distribution of the ground
truth communities

Network SLPA ACSLPA with noise ACSLPA_Hybrid ACSLPA
without noise

Distance p value Distance p value Distance p value Distance p value

Amazon 0.076 0.016 0.059 0.113 0.050 0.252 0.033 0.772

YouTube 0.086 0.017 0.250 0.000 0.099 0.000 0.073 0.005

DBLP 0.222 0.000 0.222 0.000 0.141 0.000 0.032 0.899

a b

c d
Fig. 13  Community size distribution for communities produced by SLPA, AC-SLPA with noisy pairwise
constraints, and AC-SLPA with Hybrid cleaning on the YouTube network, compared to the ground truth
community size distribution

Page 33 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98 	

filtering; (2) multiple designs of cleaning methodologies; (3) an investigation of outlier
detection models for filtering, including deep learning models; (4) a comprehensive eval-
uation for each proposed cleaning methodology integrated in the context of community
detection.Based on the experimental results, we found that the most effective approach
was to employ a hybrid design of conventional and deep learning-based outlier detec-
tion models, in conjunction with the AC-SLPA algorithm. Using this approach makes
the application of semi-supervised community finding approaches to real-world network
scenarios more feasible as real annotations are always likely to be noisy which leads to
poor performance when approaches that assume they will be clean are used. As future
work, we will aim to explore the use of multiple noisy oracles (e.g a committee of human
annotators), and how to resolve the disagreements which might arise between them.

a b

c d
Fig. 14  Community size distribution for communities produced by SLPA, AC-SLPA with noisy pairwise
constraints, and AC-SLPA with Hybrid cleaning on the Amazon network, compared to the ground truth
community size distribution

Page 34 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98

Abbreviations
AC-SLPA: Active semi-supervised SLPA; NMI: Normalized mutual information; SLPA: Speaker-listener label propagation
algorithm; PC−: Noisy pairwise constraints; PC+: Clean pairwise constraints; ML+: Clean must-link constraints; ML−:
Noisy must-link constraints; CL+: Clean cannot-link constraints; CL−: Noisy cannot-link constraints; IF: Isolation forest;
SVM: One class support vector machine; LOF: Local outlier factor; AE: Autoencoders.

Acknowledgements
We thank Dr. Arjun Pakrashi for his invaluable help with the statistical analyses.

Authors’ contributions
EA and ER implemented the code, EA performed and analyzed the experiments. All authors read and approved the final
manuscript..

Funding
This research was supported by Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289_P2, and by The
Ministry of Higher Education in Saudi Arabia.

Availability of data and materials
The datasets generated and analyzed during the current study are available online: https​://githu​b.com/elham​algha​
mdiUC​D/Semi-Super​vised​-SLPA.

Competing interests
The authors declare that they have no competing interests.

Received: 2 July 2020 Accepted: 24 November 2020

References
Adamcsek B, Palla G, Farkas IJ, Derényi I, Vicsek T (2006) Cfinder: locating cliques and overlapping modules in biological

networks. Bioinformatics 22(8):1021–1023

a b

c d
Fig. 15  Community size distribution for communities produced by SLPA, AC-SLPA with noisy pairwise
constraints, and AC-SLPA with Hybrid cleaning on the DBLP network, compared to the ground truth
community size distribution

https://github.com/elhamalghamdiUCD/Semi-Supervised-SLPA
https://github.com/elhamalghamdiUCD/Semi-Supervised-SLPA

Page 35 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98 	

Ahn YY, Bagrow JP, Lehmann S (2010) Link communities reveal multiscale complexity in networks. Nature
466(7307):761–764

Alghamdi E, Greene D (2018) Semi-supervised overlapping community finding based on label propagation with pairwise
constraints. In: Proceedings of 7th international conference on complex networks and their applications. Springer,
Berlin

Alghamdi E, Greene D (2019) Active semi-supervised overlapping community finding with pairwise constraints. Appl
Netw Sci (4):1–63

Amini MR, Gallinari P (2005) Semi-supervised learning with an imperfect supervisor. Knowl Inf Syst 8(4):385–413
Basu S, Banerjee A, Mooney R (2004a) Active semi-supervision for pairwise constrained clustering. In: Proceeding of 4th

SIAM international conference on data mining, pp 333–344
Basu S, Banerjee A, Mooney RJ (2004b) Active semi-supervision for pairwise constrained clustering. In: Proceedings of the

2004 SIAM international conference on data mining. SIAM, pp 333–344
Basu S, Bilenko M, Mooney RJ (2004c) A probabilistic framework for semi-supervised clustering. In: Proc. 10th ACM SIG-

KDD international conference on knowledge discovery and data mining, pp 59–68
Basu S, Bilenko M, Mooney RJ (2004d) A probabilistic framework for semi-supervised clustering. In: Proceedings of the

tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pp 59–68
Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex networks: structure and dynamics. Phys Rep

424(4–5):175–308
Breunig MM, Kriegel HP, Ng RT, Sander J (2000) Lof: identifying density-based local outliers. In: Proceedings of ACM

SIGMOD international conference on management of data, pp 93–104
Chapelle O, Schölkopf B, Zien A (eds) (2006) Semi-supervised learning. MIT Press, Cambridge
Ciglan M, Nørvåg K (2010) Fast detection of size-constrained communities in large networks. In: International conference

on web information systems engineering. Springer, Berlin, pp 91–104
Coleman T, Saunderson J, Wirth A (2008) Spectral clustering with inconsistent advice. In: Proceedings of the 25th interna-

tional conference on machine learning, pp 152–159
Dao VL, Bothorel C, Lenca P (2020) Community structure: a comparative evaluation of community detection methods.

Netw Sci 8(1):1–41
Davidson I, Ravi S (2005) Agglomerative hierarchical clustering with constraints: theoretical and empirical results. In:

European conference on principles of data mining and knowledge discovery. Springer, Berlin, pp 59–70
Davidson I, Wagstaff KL, Basu S (2006) Measuring constraint-set utility for partitional clustering algorithms. In: European

conference on principles of data mining and knowledge discovery. Springer, Berlin, pp 115–126
Dreier J, Kuinke P, Przybylski R, Reidl F, Rossmanith P, Sikdar S (2014) Overlapping communities in social networks. arXiv

preprint arXiv:1412.4973
Du J, Ling CX (2010) Active learning with human-like noisy oracle. In: 2010 IEEE international conference on data mining.

IEEE, pp 797–802
Eaton E, Mansbach R (2012) A spin-glass model for semi-supervised community detection. In: Proceedings of AAAI’12, pp

900–906
García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the

design of experiments in computational intelligence and data mining: Experimental analysis of power. Inf Sci
180(10):2044–2064

Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press, Cambridge
Greene D, Cunningham P (2007) Constraint selection by committee: an ensemble approach to identifying informative

constraints for semi-supervised clustering. In: Proceedings of 18th European conference on machine learning
(ECML’07). Springer, Berlin, pp 140–151

Grover A, Leskovec J (2016) Node2vec: Scalable feature learning for networks. In: Proceedings of SIGKDD’16. ACM, pp
855–864

Habashi S, Ghanem NM, Ismail MA (2016) Enhanced community detection in social networks using active spectral clus-
tering. In: Proceedings 31st annual ACM symposium on applied computing, pp 1178–1181

Harenberg S, Bello G, Gjeltema L, Ranshous S, Harlalka J, Seay R, Padmanabhan K, Samatova N (2014) Community detec-
tion in large-scale networks: a survey and empirical evaluation. Wiley Interdiscip Rev Comput Stat 6(6):426–439

Howe J (2008) Crowdsourcing: how the power of the crowd is driving the future of business. Random House, New York
Jeh G, Widom J (2002) Simrank: a measure of structural-context similarity. In: Proceedings of SIGKDD’02. ACM, pp

538–543
Kittur A, Chi EH, Suh B (2008) Crowdsourcing user studies with mechanical turk. In: Proceedings of the SIGCHI conference

on human factors in computing systems, pp 453–456
Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs for testing community detection algorithms. Phys Rev

E 78(4):046110
Lancichinetti A, Fortunato S, Kertész J (2009) Detecting the overlapping and hierarchical community structure in

complex networks. New J Phys 11(3):033015
Lancichinetti A, Radicchi F, Ramasco J, Fortunato S, Ben-Jacob E (2011) Finding statistically significant communities in

networks. PLoS ONE 6(4):e18961
Lázár A, Abel D, Vicsek T (2010) Modularity measure of networks with overlapping communities. Europhys Lett

90(1):18001
Leng M, Yao Y, Cheng J, Lv W, Chen X (2013) Active semi-supervised community detection algorithm with label

propagation. In: International conference on database systems for advanced applications. Springer, Berlin, pp
324–338

Leskovec J, Krevl A (2015) SNAP datasets: Stanford–large network dataset collection
Li Z, Liu J, Tang X (2009) Constrained clustering via spectral regularization. In: 2009 IEEE conference on computer

vision and pattern recognition. IEEE, pp 421–428
Li L, Du M, Liu G, Hu X, Wu G (2014) Extremal optimization-based semi-supervised algorithm with conflict pairwise

constraints for community detection. In: Proceedings of ASONAM’14, pp 180–187

Page 36 of 36Alghamdi et al. Appl Netw Sci (2020) 5:98

Liu Y, Jin R, Jain AK (2007) Boostcluster: boosting clustering by pairwise constraints. In: Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining, pp 450–459

Liu FT, Ting KM, Zhou ZH (2008) Isolation forest. In: Proceedings of 8th IEEE international conference on data mining
(ICDM’08). IEEE, pp 413–422

Liu D, Liu X, Wang W, Bai H (2014) Semi-supervised community detection based on discrete potential theory. Physica
A 416:173–182

Liu D, Duan D, Sui S, Song G (2015) Effective semi-supervised community detection using negative information.
Math Probl Eng 2015:8

Massey FJ Jr (1951) The kolmogorov-smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78
McDaid A, Hurley N (2010) Detecting highly overlapping communities with model-based overlapping seed expan-

sion. In: Proceedings of ASONAM’10, pp 112–119
Newman ME (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69(6):066133
Orman GK, Labatut V, Cherifi H (2012) Comparative evaluation of community detection algorithms: a topological

approach. J Stat Mech Theory Exp 2012(08):P08001
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V,

Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in
Python. J Mach Learn Res 12:2825–2830

Pelleg D, Baras D (2007) K-means with large and noisy constraint sets. In: European conference on machine learning.
Springer, Berlin, pp 674–682

Schölkopf B, Williamson RC, Smola AJ, Shawe-Taylor J, Platt JC (2000) Support vector method for novelty detection.
In: Advances in neural information processing systems, pp 582–588

Schölkopf B, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC (2001) Estimating the support of a high-dimensional
distribution. Neural Comput 13(7):1443–1471

Shang C, Feng S, Zhao Z, Fan J (2017) Efficiently detecting overlapping communities using seeding and semi-super-
vised learning. Int J Mach Learn Cybernet 8(2):455–468

Sheng VS, Provost F, Ipeirotis PG (2008) Get another label? improving data quality and data mining using multiple,
noisy labelers. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and
data mining, pp 614–622

Shi X, Lu H, He Y, He S (2015) Community detection in social network with pairwisely constrained symmetric non-
negative matrix factorization. In: Proceedings ASONAM’15, pp 541–546

Wagstaff KL, Basu S, Davidson I (2006) When is constrained clustering beneficial, and why? Ionosphere 58(60.1):62–63
Wang Z, Wang W, Xue G, Jiao P, Li X (2015) Semi-supervised community detection framework based on non-negative

factorization using individual labels. In: International conference in swarm intelligence. Springer, Berlin, pp
349–359

Wu J, Wang F, Xiang P (2016) Automatic network clustering via density-constrained optimization with grouping
operator. Appl Soft Comput 38:606–616

Xie J, Kelley S, Szymanski BK (2013) Overlapping community detection in networks: the state-of-the-art and com-
parative study. ACM Comput Surv 45(4):43

Yang J, Leskovec J (2015) Defining and evaluating network communities based on ground-truth. Knowl Inf Syst
42(1):181–213

Yang L, Ge M, Jin D, He D, Fu H, Wang J, Cao X (2017) Exploring the roles of cannot-link constraint in community
detection via multi-variance mixed gaussian generative model. PLoS ONE 12(7):e0178029

Zhang ZY (2013) Community structure detection in complex networks with partial background information. EPL
(Europhys Lett) 101(4):48005

Zhang S, Wu J, Li J, Gu J, Tang X, Xu X (2019) Semi-supervised community detection via constraint matrix construction
and active node selection. IEEE Access 8:39078–39090

Zhu X, Loy CC, Gong S (2015) Constrained clustering with imperfect oracles. IEEE Trans Neural Netw Learn Syst
27(6):1345–1357

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Overlapping community finding with noisy pairwise constraints
	Abstract
	Introduction
	Related work
	Semi-supervised learning in community finding
	Noisy constraints in clustering and community finding

	Methods
	Overview
	Outlier detection methods
	Process for identifying noisy constraints
	AC-SLPA with noise identification

	Evaluation
	Datasets
	Experiment 1: Comparing Outlier Detection Models
	Evaluating outlier detection methods
	Evaluating autoencoders for deep embeddings

	Experiment 2: Evaluation of noise removal methods
	Experiment 3: End-to-end evaluation
	Experiment 4: Real-world networks

	Conclusion
	Acknowledgements
	References

