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Introduction
Complex networks occur in many aspects of life, from social systems to biological pro-
cesses. Despite their diversity, many networks share common properties and principles 
of organization (Boccaletti et al. 2006). One essential property that helps us to under-
stand complex networks is the idea of community structure. Finding these sets of nodes 
or communities provides us with three important capabilities: understanding the struc-
tures and functionalities, modeling the dynamic processes in networks, and predicting 
their future behaviors. Generally, algorithms for detecting communities are unsuper-
vised in nature. That is, they rely solely on the network topology during the detection 
process, rather than using any prior information or training data regarding the “correct” 
community structure. One common issue is that these algorithms can fail to uncover 
groupings that accurately reflect the ground truth in a specific domain, particularly 
when these communities highly overlap with one another (Ahn et al. 2010).
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Recent work has improved the effectiveness of such algorithms by employing ideas 
from semi-supervised learning (Alghamdi and Greene 2019). This involves harnessing 
existing background knowledge (e.g. from domain experts or crowdsourcing platforms), 
which can provide limited supervision for community detection. Often this information 
takes the form of pairwise constraints between nodes (Basu et al. 2004a). Typically, pair-
wise constraints are either must-link and cannot-link pairs, indicating that either two 
nodes should be assigned to the same community or should be in different communities. 
As an example, we might be interested in finding social groups based on common inter-
ests on social media platforms, such as Facebook or Twitter, in order to target the most 
influential member of each social group for marketing and recommendation purposes. 
To improve our ability to achieve this, and go beyond simply looking at connections, we 
could use a human annotator, to query whether two users should be in the same group 
or different groups and label them as must-link or cannot-link, then incorporate these 
labels as constraints into community detection algorithms. By using this kind of knowl-
edge, we can potentially uncover communities of nodes which are otherwise difficult to 
identify when analyzing complex networks.

Despite the promise of semi-supervised learning, in many real applications the super-
vision coming from human annotators will be unreliable or “noisy”. For instance, this 
might occur when using annotation acquired by crowdsourcing platforms (Howe 2008) 
such as Amazon Mechanical Turk (Kittur et  al. 2008). In general human oracles will 
often be “imperfect”, in the sense that they can make subjective decisions, they may disa-
gree with one another, they might only have limited knowledge of a domain, or they may 
simply complete a labeling task incorrectly due to the burden of annotation (Amini and 
Gallinari 2005; Du and Ling 2010; Sheng et al. 2008). Thus, when such judgements are 
encoded as pairwise constraints for semi-supervised community detection can be unre-
liable or conflicting, which can create problems when used to guide community finding 
algorithms (Zhu et al. 2015).

In this study, we explore the effect of noisy, incorrectly-labeled constraints on the per-
formance of semi-supervised community finding algorithms for overlapping networks. 
To mitigate such cases, we treat the noisy constraints as outliers, and use an outlier 
detection strategy to identify and remove them, which has the effect of “cleaning” the 
constraints coming from the human oracle. The primary contributions of the paper are 
as follows: 

1	 We introduce a general architecture for semi-supervised community finding which 
incorporates a cleaning methodology to reduce the presence of noisy pairwise con-
straints, using outlier detection. This architecture can be implemented with any 
semi-supervised community finding that might involve querying an imperfect ora-
cle. In this study, we focus the use of the AC-SLPA algorithm (Alghamdi and Greene 
2018).

2	 We propose alternative designs for cleaning methodology, based on different outlier 
detection models. Each design involves executing two parallel processes to separately 
reduce noise from must-link constraints and cannot-link constraints.

3	 We investigate the performance of combining conventional outlier detection models 
and deep learning models for identifying noisy constraints.



Page 3 of 36Alghamdi et al. Appl Netw Sci            (2020) 5:98 	

4	 We conduct comprehensive experiments to evaluate these alternative cleaning meth-
ods, as individual components, and when integrated within the proposed general 
architecture on a range of synthetic and real-world networks containing overlapping 
community structure.

The remainder of this paper is structured as follows. Section “Related work” provides a 
summary of relevant work in semi-supervised learning, in the context of both cluster 
analysis and community finding. In Section “Methods”, we describe the proposed general 
architecture for community detection which incorporates a cleaning process to reduce 
noise levels in pairwise constraints, and we propose multiple designs for implementing 
the cleaning process. In Section “Evaluation”, we discuss four experimental evaluations 
of these methods. Finally, we conclude our work in Section “Conclusion” with sugges-
tions for further extending this work in new directions.

Related work
To provide context for our work, this section describes related research of semi-super-
vised techniques in community finding, along with studies that address noisy pairwise 
constraints in both clustering and community finding.

Semi‑supervised learning in community finding

Several types of prior knowledge have been used in semi-supervised strategies to guide 
the community detection process. The most widely-used approach has been to employ 
pairwise constraints, either must-link or cannot-link, which indicate that either two 
nodes must be in the same community or must be in different communities. This strat-
egy has been implemented via several algorithms, including modularity-based methods 
(Li et al. 2014), spectral partitioning methods (Habashi et al. 2016; Zhang 2013), a spin-
glass model (Eaton and Mansbach 2012), matrix factorization methods (Shi et al. 2015), 
and various other methods (Yang et al. 2017; Zhang et al. 2019). Such approaches have 
often provided significantly better results on benchmark data, when compared to stand-
ard unsupervised algorithms.

Other authors have used different kinds of prior knowledge to provide supervision for 
community detection. For instance, Ciglan and Nørvåg (2010) developed an algorithm 
for finding communities with size constraints, where the upper limit size of communi-
ties is given as a user-specified input. This algorithm is based on standard label propa-
gation methods for finding disjoint communities. In Wu et  al. (2016) an optimization 
algorithm based on density constraints was proposed. This algorithm constructs an ini-
tial skeleton of the community structure by maximizing a criterion function that incor-
porates constraints to only find communities with intra-cluster densities above a given 
threshold. The remaining nodes are subsequently classified with respect to this skeleton. 
Other algorithms have used node labels as prior knowledge to improve the performance 
of community detection, using an approach which resembles traditional training data 
in classification (Leng et  al. 2013; Liu et  al. 2014; Wang et  al. 2015). Liu et  al. (2015) 
developed a method that uses a semi-supervised label propagation algorithm based on 
node labels and negative information, where a node is deemed not to belong to a specific 
community.
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The majority of algorithms in this area have been designed to only find non-over-
lapping communities, where each node can only belong to a single community. How-
ever, many real-world networks naturally contain overlapping community structure 
(Adamcsek et al. 2006). To the best of our knowledge, little work has been done in 
the context of finding overlapping communities from a semi-supervised perspective. 
Dreier et al. (2014) performed some initial work here, using supervision for the pur-
pose of algorithm initialization. Specifically, a small set of seed nodes was selected, 
whose affinities to a community was provided as prior knowledge in order to infer 
the rest of the nodes’ affinities in the network. On the other hand, Shang et al. (2017) 
used an expansion method that classifies edges into communities, where this model 
is trained on set of predefined seeds. However, there is no external human super-
vision used during the seed selection or expansion processes. In contrast, for our 
study, we focus on the problem of semi-supervised community detection based on 
the external supervision by human who are part of the networks or domain experts, 
and encode it as pairwise constraints since they have proven to be effective in a 
range of other learning contexts (Basu et al. 2004c; Greene and Cunningham 2007).

Noisy constraints in clustering and community finding

Various algorithms have been proposed for the general task of pairwise constrained 
clustering, based on a variety of different clustering paradigms (e.g. Basu et  al. 
2004d; Davidson and Ravi 2005; Li et  al. 2009). However, most assume the exist-
ence of “perfect” pairwise constraints which will be clean and will not contradict one 
another. Fewer studies have considered the requirement to handle noisy pairwise 
constraints. However, some relevant work in clustering has involved the develop-
ment of new algorithms which are robust to noisy or conflicting pairwise constraints 
(Basu et al. 2004b; Coleman et al. 2008; Liu et al. 2007; Pelleg and Baras 2007). Other 
studies have introduced new metrics to assess the quality of constraints, consider-
ing aspects such as their informativeness and coherence (Davidson et al. 2006; Wag-
staff et al. 2006). These can be used to filter or clean the pairwise constraints prior 
to clustering. A related study (Zhu et al. 2015) proposed an approach for handling 
noise by using a random forest classifier to identify incoherent constraints.

In contrast, in the field of semi-supervised community finding, the issue of noisy 
pairwise constraints has rarely been studied, and algorithms generally assume the 
veracity of any supervision supplied by an oracle. One related study from Li et  al. 
(2014) initiated the work of handling “conflicting” pairwise constraints in non-
overlapping community finding. That is, cases where ( vi, vj ) ∈ must-link, ( vi, vk ) ∈ 
must-link, and ( vj , vk ) ∈ cannot-link. Such cases of conflict were identified using a 
dissimilarity index metric to measure the reliability of constraint pairs. However, this 
type of constraint conflict is in fact legitimate in the context of overlapping commu-
nities, as shown in our previous work in Alghamdi and Greene (2018). Therefore, the 
challenge remains of handling noisy constraints for overlapping community finding 
in an appropriate manner, which we seek to address in the next section.
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Methods
Overview

Before describing our proposed architecture, we first provide a formal definition for the 
pairwise constraints which are used in this study. These definitions map to those which 
are widely adopted in the wider semi-supervised learning literature (Chapelle et  al. 
2006). Given a set of nodes V in a network, we define two constraint types: 

1	 A must-link constraint specifies that two nodes should be assigned to the same com-
munity. Let ML be the must-link constraint set: ∀ vi, vj ∈ V where i  = j, then the con-
straint ( vi, vj ) ∈ ML indicates that two nodes vi and vj must be assigned to the same 
community.

2	 A cannot-link constraint specifies that two nodes should not be assigned to the same 
community. Let CL be the cannot-link constraint set: ∀ vi, vj ∈ V where i  = j, then the 
constraint ( vi, vj ) ∈ CL indicates that vi and vj must be assigned to two different com-
munities.

As discussed in Alghamdi and Greene (2019), implementing pairwise constraints in the 
context of overlapping communities is challenging due to the lack of the transitive prop-
erty for must-link constraints in the context of overlapping communities. In the case of 
non-overlapping communities, must-link constraints have a transitive property, where 
a third must-link relationship can be inferred from two other associated must-link con-
straint pairs. For instance, if ( vi, vj ) ∈ ML, and ( vi, vk ) ∈ ML, then we can also infer that 
( vj , vk ) ∈ CL. This property does not hold for overlapping communities. For instance, 
node vi might be an overlapping node and in this case there are two possible scenarios 
for the pair ( vj , vk ): (1) ( vj , vk ) ∈ CL where node vi might be an overlapping node that have 
a must-link constraint with both vj and vk , yet these two nodes could belong to two dif-
ferent communities; (2) ( vj , vk ) ∈ ML where all three nodes are in fact in the same com-
munity. This problem has been addressed in detail in Alghamdi and Greene (2019) and 
therefore is not the main focus of this paper.

Now we describe our proposed general architecture for semi-supervised community 
detection which incorporates a methodology to reduce the presence of noisy pairwise 
constraints using an outlier detection model, as illustrated in Fig.  1. This architecture 
begins with a set of noisy pairwise constraints provided by a human oracle ( PC− ). The 
set of noisy pairwise constraints ( PC− ) is composed of must-link ( ML− ) and can-
not-link ( CL− ) constraints. These constraints are cleaned to produce a revised set of 

Fig. 1  An illustration of the overall pairwise constraint cleaning process
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constraints ( PC+ ) (composed of must-link ( ML+ ) and cannot-link ( CL+ ) constraints) 
which are fed into the community finding process. The proposed architecture consists of 
three distinct phases: 

1	 Phase 1: Feature extraction. After receiving a set of pairwise constraints ( PC− ) 
from a potentially-noisy oracle, features vectors are constructed to provide inputs to 
outlier detection models later, with one vector per constraint pair (for both must-link 
and cannot-link). These vectors encode various aspects of the relationship between a 
pair of nodes according to the underlying network topology. These features include 
standard measures based directly on the network, including: whether the pair of 
nodes share an edge, their number of common neighbors, the shortest path length 
between them, and their cosine similarity. We also include more complex features, 
such as their SimRank similarity (Jeh and Widom 2002), and their similarity as com-
puted on a node2vec embedding generated on the network (Grover and Leskovec 
2016).

2	 Phase 2: Identifying noisy constraints. This involves executing two parallel pro-
cesses that use two different outlier detection models to separately eliminate noise 
from the original must-link set ( ML− ) and cannot-link set ( CL− ). The constructed 
feature vectors are fed into each model for multiple iterations of cleaning, returning 
a score for each constraint that determines whether or not it is an outlier (i.e. a noisy 
constraint).

3	 Phase 3: Applying Semi-supervised Community Detection Process. The returned 
clean pairwise constraint set ( PC+ : ML+,CL+ ) is passed to a semi-supervised 
community detection algorithm to be used during the process of finding communi-
ties.

In the following sections, we describe the details of the proposed architecture in terms 
of the outlier detection methods used to identify potentially-noisy constraints (Section 
“Outlier detection methods”), the different variations of the second phase of the archi-
tecture shown in Fig. 1 (see Section “Process for identifying noisy constraints”), and the 
implementation of the proposed architecture in the context of the AC-SLPA community 
finding algorithm (see Section “AC-SLPA with noise identification”).

Outlier detection methods

Isolation Forests: This method, proposed by Liu et al. (2008), uses a tree-based ensem-
ble strategy for anomaly detection. The assumption underlying this method is that 
anomalies will be isolated earlier in their trees as these examples are not only rare, but 
also have feature values substantially different from the normal data. Random partitions 
are used in order to separate examples, with the number of partitions acting as the path 
length. Because anomalous feature values are assumed to significantly differ from that 
of normal examples, these features will more easily split anomalous examples from nor-
mal examples early on in the tree, leading to a shorter path. This shortening effect is 
compounded by the fact that these examples are also assumed to be rare. In order to 
compute an anomaly score, the average path length over multiple trees is computed, and 
normalized by the average path length over all paths. Scores close to 1 are said to be 
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anomalous and scores close to 0 are assumed normal. This algorithm fits the problem of 
noise detection when there are far fewer noisy labels than normal examples.

One-class SVM: One class Support Vector Machine (OCSVM) (Schölkopf et al. 2000, 
2001) is a commonly-used method for anomaly detection which extends support vec-
tor algorithms to one-class classification. The reference to “one class” here refers to the 
assumption that primarily data from the normal class (i.e. non-outliers) will be modeled 
during training. First, data is transformed by a map φ to a higher dimensional space by 
evaluating a kernel function. The algorithm then seeks to find the separating hyperplane 
in the kernel space between data and the origin with the largest margin. This is achieved 
by solving the following quadratic program for given training examples xxx1,xxx2, . . . ,xxxl:

subject to

where w and p solve the problem. Here, ξi refers to the slack variable for a given exam-
ple xxxi which softens the margin, allowing for some points to reside outside the margin, 
essentially relaxing the assumption of complete separability between normal and out-
lying data. The hyperparameter ν ∈ (0, 1) controls the number of outliers with smaller 
values allowing outliers to have a greater affect on the decision function. The decision 
function is given by

where sgn(z) outputs a value of +1 for z � 0 , indicating normal data and −1 otherwise, 
indicating an outlier.

Local Outlier Factor: This method is based on the concept of local density 
in detecting outliers. Given a particular point p, we measure the density of p with 
respect to the density of its k nearest neighbors. Intuitively, if the local density of p 
is lower than the local densities of its neighbors, this indicates that p is an outlier. As 
discussed in Breunig et al. (2000), for a given neighborhood size k, the k-distance(p) 
for a point p is defined as the distance between p and its k-th neighbor o (i.e. the k-th 
closest point to p). The k-distance neighborhood Nk(p) is the set of points whose dis-
tances do not exceed the k-distance(p). The reachability distance is then defined as:

This means that if p is o’s k-th nearest neighbor, this will be returned, otherwise, the true 
distance between p and o will be returned. In order to calculate the densities of different 
clusters of points, the “local reachability density” lrdk is calculated.

Finally, the local outlier factor (LOF) of point p is defined as:

(1)min
1

2
�w�2 +

1

νl

l∑

i

ξi − p

(2)(w · φ(xxxi)) � p− ξi, ξi � 0

(3)f (xxx) = sgn((w · φ(xxx))− p)

(4)reachdistk(p, o) = max{k − distance(o), d(p, o)}

(5)lrdk(p) = 1/

∑k
oi
reachdistk(p, o)

|Nk(p)|
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Autoencoders: An autoencoder (AE) represents a type of neural network architecture 
that attempts to reconstruct a given input in an effort to learn an informative latent fea-
ture representation. Formally, for an input vector x, an attempt is made to find a map-
ping from x to a reconstruction of itself x′ . By doing this, a latent representation of the 
data is created in the hidden layer(s) of the network. The general form of a single hidden 
layer autoencoder as follows:

where f(x) is the encoder function for input x, g(z) is decoder function for encoding z, σ 
is a non-linear function, We and Wd are weight matrices for the encoder and decoder 
respectively and x′ is the reconstruction of the input vector (Goodfellow et al. 2016).

These networks can use a “bottleneck” configuration where the hidden layer(s) of the 
network compress the data (Goodfellow et al. 2016). The network is trained by minimiz-
ing the mean squared error (MSE) between the reconstruction and input. as shown in 
formal (8):

Additionally, autoencoders can be constrained to enforce sparsity in the network and 
therefore no longer require a compressed network capacity. One type of constrained 
autoencoder adds a sparsity penalty to hidden representations by constraining their 
absolute value. This penalty term is weighted and added to the cost function. The con-
strained cost is defined as.

where � is the sparsity penalty and h = f (x) (Goodfellow et al. 2016).
Autoencoders can be used in a number of capacities. In this work, we propose a num-

ber of techniques for noise detection from pairwise constraint sets which make use of 
autoencoders in different ways. Firstly, we show that autoencoders can be used as an 
effective outlier detection technique for noise detection in pairwise constraints. Sec-
ondly, we demonstrate that autoencoders can also be used as an embedding method to 
support other outlier detection methods in the identification of noisy constraints.

Process for identifying noisy constraints

In this section, we describe a number of alternative cleaning processes for reducing noise 
in pairwise constraints, before passing them to a semi-supervised community detec-
tion algorithm. These cleaning processes employ some of the outlier detection models 
described in Section “Outlier detection methods”. It is important to note that pairwise 
constraints are of two distinct types: must-link and cannot-link. The differences in their 

(6)LOFk(p) =

∑k
oi
(
lrdk (o)
lrdk (p)

)

|Nk(p)|

(7)f (x) = σ(x,We), g(z) = σ(z,Wd), and x′ = g(f (x))

(8)MSE(x, x′) =
1

n

n∑

i=1

(xi − x′i)
2

(9)MSE(x, x′) =
1

n

n∑

i=1

(xi − x′i)
2 + �

∑

i

|hi|
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respective distributions, which can be seen in Fig. 2, motivates the use of two separate 
cleaning processes and exploring different outlier detection models for each. The selec-
tion of models is based on best performance in detecting noises in constraints as illus-
trated in the evaluation section.

In this study, we explore the implementation of the following cleaning processes which 
are classified into four categories based on the employed outlier detection model: 

1	 Traditional outlier detection: In this process, a stand-alone outlier detection 
method is selected (e.g. isolation forest, One-class SVM, local outlier factor) to iden-
tify noise in must-link and cannot-link sets separately. The input features are passed 
to these models, which then return a binary score for each constraint which deter-
mines whether or not it is a noisy constraint. See Fig. 3 for an illustration.

2	 Outlier detection via deep embedding: Here the neural network autoencoder (AE) 
is used as an additional component to provide an embedding function for a tradi-
tional outlier detection method. In this case, only the encoder function from the 
autoencoder model is used. After feeding the feature vectors into the encoder func-
tion, the model learns to effectively compress the input feature vector into an inform-
ative latent feature representation in the hidden layer. Then this latent representation 
is used as an input to an outlier detection method such as Isolation forest, One-class 
SVM, or local outlier factor, which return a binary score that identify the noisy con-
straints. See Fig.  4 for an illustration. This process is conducted for must-link and 
cannot-link pairs separately with different encoder functions and outlier detection 
methods. The selection of models is based on experimental results as illustrated in 
the evaluation section.

Fig. 2  An illustration of the differences between the distributions of must-link and cannot-link constraints, 
as viewed in a low-dimensional space, for a sample of small networks. The plots in the first row (a-1, b-1, c-1) 
show the must-link constraints of a sample set of small synthetic networks. The second row (a-2, b-2, c-2) 
shows the cannot-link constraints of the same set of networks
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3	 Deep learning approach: In this case, the neural network autoencoder (AE) is used 
as an outlier detection technique for identify noises in pairwise constraints. Differ-
ent autoencoder models is used for must-link and cannot-link pairs separately. The 
feature vectors are fed into the autoencoder model, which learns to reconstruct the 
original constraints from the latent representation. The reconstruction error is given 
by the difference between the original constraints and the reconstruction. A large 
error is indicative of an outlier (i.e. a noisy constraint), while a low error indicates a 
“normal” example (i.e. a correctly-labelled constraint). Finally, we sort the constraints 
in ascending order (lowest to highest error) in order to determine the top k con-
straints with the lowest level of error. The expectation is that, as the larger part of 
pairwise constraints are non-noisy, the autoencoder’s latent representation will be 

Fig. 3  An illustration of the process for identifying noisy pairwise constraints using traditional outlier 
detection

Fig. 4  An illustration of the process for identifying noisy pairwise constraints using outlier detection via deep 
embedding function
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biased towards these examples. This makes the model somewhat robust to outliers. 
Based on this property, it is then assumed that examples which are noisy will have a 
high reconstruction error. See Fig. 5 for an illustration of the process.

4	 Hybrid cleaning process: For each of the above described cleaning processes, we use 
separate processes of the same category to identify noises in must-link and cannot-
link pairs. However, in this process, we investigate a combination of different cat-
egories processes for must-link and cannot-link pairs. Based on initial experiments, 
a Neural Network based cleaning process performed better for must-link pairs than 
cannot-link. On the other hand, using Outlier Detection with Deep Embedding for 
cannot-link pairs is found to yield better noise detection performance, when com-
pared to using an autoencoder alone. See Fig. 6 for an illustration of the process.

We see from Fig. 2 that the distributions of correct labels and noisy constraints is more 
complex in the case of cannot-link constraints—i.e., there is a high overlap between both 

Fig. 5  An illustration of the process for identifying noisy pairwise constraints using deep learning approach 
(neural network autoencoder (AE))

Fig. 6  An illustration of the process for identifying noisy pairwise constraints using hybrid cleaning process. 
A combination of traditional models, and deep learning based outlier detection models
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the correct and noisy groups. Separating these groups requires a more complex func-
tion, as compared to the equivalent case for must-link constraints, which are relatively 
easy to separate.

AC‑SLPA with noise identification

Now we discuss the implementation of the general architecture discussed in Section 
“Overview” in the context of the existing AC-SLPA algorithm (Alghamdi and Greene 
2018) in order to create a robust active semi-supervised SLPA algorithm that can handle 
the presence of noisy pairwise constraints. The new modified AC-SLPA consists of three 
stages. The first two stages include the pairwise constraints cleaning process, which are 
executed iteratively as follows:

Stage 1: Detecting noises in constraints during selection and annotation. At each 
iteration of AC-SLPA, informative pair of nodes are selected using Node Pair Selection 
method (Alghamdi and Greene 2019) and passed to the noisy oracle to be labelled as 
pairwise constraints. After generating a set of noisy pairwise constraints ( PC− ), this set 
is passed to the process of identifying noisy constraints for multiple sub-iterations of 
cleaning. As a new set of constraints is introduced at each iteration, the outlier detec-
tors are retrained at each one of these iterations and reapplied to the remaining set of 
constraints. The output constraints of this process are then used to apply PC-SLPA algo-
rithm. At the end of each run of AC-SLPA, the cleaned pairwise constraint set ( PC+ ) is 
accumulated and mixed with the new chunk of noisy pairwise constraints ( PC− ) in the 
next iteration. The larger the constraints set passed to the outlier detection model, the 
better the performance.

Stage 2. Rechecking discarded pairwise constraints. The previous stage of cleaning 
may result in a number of non-noisy constraints being labelled as noisy. This is more 
likely to happen when the distribution of noisy constraints is highly overlapped with 
non-noisy constraints. The second stage is designed to recheck the discarded pairwise 
constraints set ( PC− ) that were potentially mislabelled as noises, by passing them to the 
process of identifying noisy constraints for another multiple iterations of cleaning, thus 
reducing any wastage of the annotation budget. The returned set of constraints from this 
process is added to the accumulated cleaned pairwise constraints set ( PC+ ) from stage 
1.

Stage 3. Apply PC-SLPA. The final stage involves applying the semi-supervised com-
munity detection process PC-SLPA using the final accumulated cleaned pairwise con-
straints ( PC+ ) obtained from the previous two stages, thus producing a final set of 
communities. The complete architecture is summarized in Algorithm 1. 
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Evaluation
In this section, we describe the datasets and experimental configuration used to vali-
date our proposed method for handling noisy constraints. We conduct four experi-
ments to show its effectiveness, which are applied to synthetic benchmark networks 
of different sizes with overlapping communities, and real-world networks. Our objec-
tives are as follows: (1) to quantify the ability of each constraint cleaning process to 
detect noisy constraints prior to community finding; (2) to choose the best architec-
tures of autoencoder to use as a deep embedding function for outlier detection mod-
els; (3) to compare all types of constraint cleaning processes after integration with 
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AC-SLPA, in order to evaluate the end-to-end performance of the complete architec-
ture; (4) to examine the performance of the method on real-world data.

Datasets

Synthetic data. We constructed a diverse set of 64 benchmark synthetic networks using 
the widely-used LFR generator (Lancichinetti et al. 2008). These networks vary in terms 
of number of nodes N ∈ [1000, 5000] , communities per node (overlapping diversity) 
Om ∈ [2, 8] , and the fraction of nodes belonging to multiple communities (overlapping 
density) On ∈ {10%, 50%} . These networks contain either small communities ( 10− 50 
nodes), or large communities ( 20− 100 nodes). The mixing parameter µ varies from 0.1 
to 0.3, which controls the level of community overlap. Details of the network generation 
parameters are in Table 1.

Real-world data. We use three real-world networks which contain annotated ground 
truth overlapping communities. These are: (1) a co-purchasing network from Amazon.
com; (2) a friendship network from YouTube; (3) a scientific collaboration network from 
DBLP. These networks have previously been used in the community finding literature 
(Leskovec and Krevl 2015). For each network, we include only the 5000 largest commu-
nities, as performed in Yang and Leskovec (2015). We then conduct a filtering process 
as per Harenberg et al. (2014). The remaining communities are ranked based on their 
internal densities and the bottom quartile is discarded, along with any duplicate com-
munities. As an additional step, we remove extremely small communities. For the Ama-
zon and YouTube networks, communities of size < 5 nodes are discarded, while for the 
DBLP network communities with < 10 nodes are discarded. Details of the final networks 
are summarized in Table 2.

Table 1  Parameter ranges used for the generation of LFR synthetic networks

Parameter Description Value Parameter Description Value

N Number of nodes 1000–5000 t1 Degree exponent 2

k Average degree 10 t2 Community exponent 1

Kmax Max degree 50 µ Mixing parameter 0.1–0.3

Cmin Min community size 10/20 On Num. overlapping nodes 10%/50%

Cmax Max community size 50/100 Om Communities per node 1–8

Table 2  Details of real-world networks

Real-world Networks Amazon YouTube DBLP

#Nodes-# Edges-#Communities 7411-21214-876 6426-23226-1058 7233-33045-613

Average degree 5 7 9

Maximum community size 27 31 38

Minimum community size 5 5 10

Average community size 10 7 12

Maximum communities per node §(Om) 4 11 5

Number of overlapping nodes ( On) 1394 (18%) 865 (13%) 214 (3.3%)

Clustering coefficient 0.74 0.33 0.90



Page 15 of 36Alghamdi et al. Appl Netw Sci            (2020) 5:98 	

Constraint noise. In all of our experiments we mimic the presence of an oracle by 
using pairwise node co-assignment information in the ground truth communities for 
each network. We use this information to create pairwise constraints, according to the 
definition of constraints given in Section “Overview”. We subsequently add noise to 
these constraints by flipping the labels of a randomly-selected subset of must-link and 
cannot-link pairs. The level of noise is fixed at 10% of the smallest constraint set, either 
must-link or cannot-link.

Evaluation metrics. To compare the ability of autoencoders variants to detect noisy 
constraints before their use in community finding, we calculate the AUC (Area Under 
the ROC Curve) over the reconstruction error. This provides an estimate of the number 
of constraints that were successfully detected in the absence of a threshold. After inte-
grating this step into the community finding process, performance is assessed using the 
overlapping form of Normalized Mutual Information (NMI) (Lancichinetti et al. 2009), 
which has been widely adopted in the literature (Xie et  al. 2013). For this measure, a 
value close to 1 indicates a high level of agreement with the ground truth communities, 
while a value close to 0 indicates that the communities generated by an algorithm are no 
better than random.

Several alternative validation metrics have been proposed in the literature to capture 
the topological properties of a network. These are used to assess the quality of a set of 
communities when no ground truth communities are available, and include metrics such 
as modularity (Newman 2004) and its overlapping counterpart (Lázár et al. 2010).

Some studies have suggested measuring the topological features of communities 
generated by an algorithm, and then comparing the outputs to the ground truth com-
munities in the network (Dao et al. 2020; Orman et al. 2012). This can be seen as a com-
plementary evaluation to the more widely-adopted external metrics. These approaches 
involve considering factors such as community size distributions, average distance 
between all pairs of nodes within a community, and scaled community density. Later 
in Section “Experiment 4: Real-world networks”, we consider the analysis of commu-
nity size distributions to provide an additional evaluation perspective on our proposed 
approach.

Experiment 1: Comparing Outlier Detection Models

In this experiment, the objective is to find the best models for detecting noisy con-
straints in must-link and cannot-link sets in Phase 2 (identifying noisy constraints) of the 
proposed general architecture in Fig. 1. As described in Section “Process for identifying 
noisy constraints”, there are four categories of cleaning processes that can be used in 
Phase 2. This experiment is designed to find the best model for each category. There are 
three main aspects of this experiment: 

1	 In Section “Evaluating outlier detection methods” we seek to find the best autoen-
coder architectures as outlier detection models for must-link and cannot-link con-
straints separately. These will be used to investigate the deep learning approach as 
a cleaning processes in Experiment 2, Section “Experiment 2: Evaluation of noise 
removal methods”
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2	 Also in Section “Evaluating outlier detection methods” we identify the best perform-
ing conventional outlier detection method (from Isolation forest, One-class SVM, 
and local outlier factor) for must-link and cannot-link constraints. This outcome will 
also be used in Experiment 2, Section “Experiment 2: Evaluation of noise removal 
methods”.

3	 In Section “Evaluating autoencoders for deep embeddings” we explore different 
autoencoder architectures as deep embedding technique integrated with conven-
tional outlier detection models for each must-link and cannot-link constraints.

This experiment is designed to assess the performance of Phase 2 detached from the 
general architecture in Fig. 1. Specifically, constraints are selected over 10 independent 
iterations of the existing AC-SLPA algorithm and then split into must-link and cannot-
link sets to be processed separately.

Evaluating outlier detection methods

Methodology. This experiment compares two different strategies for cleaning constraint 
sets, evaluated on the synthetic LFR networks described previously in Section “Data-
sets”. This experiment proceeds in the following steps: 

1	 We consider autoencoder models for constraint cleaning. For each selected set at 
each iteration, a separate autoencoder is trained on this set until the reconstruc-
tion error reaches a near-zero value (functionally a maximum number of epochs 
is selected). The set is then passed through the autoencoder once again in order to 
obtain a reconstruction for each constraint. The reconstruction error is then calcu-
lated for each constraint. The number of layers in each autoencoder model is also 
varied in order to examine whether this task benefits from a deeper model. Both 
compression-based autoencoders and sparse autoencoders are considered for this. 
In the case of the compression autoencoders, the nodes in the encoder are gradu-
ally decreased until the bottleneck layer is reached and then gradually increased in 
the decoder. For the L1 constrained autoencoders, compression in the encoder is not 
necessary, and therefore the dimensionality is kept the same as the input throughout 
the network. In the case of the constrained autoencoders, the sparsity weight is kept 
at 10−3 . All models were trained with a batch size of 256. The full list of parameter 
combinations used in our experiments is given in Table 3. In the remainder of this 
paper we denote these autoencoder architectures with the prefix AE*.

2	 As baseline alternatives, we consider traditional outlier detection methods for this 
task: Isolation Forest (IF) (Liu et al. 2008), One-class SVM (Schölkopf et al. 2000), 
and local outlier factor (Breunig et al. 2000). We conduct experiments in the same 
way as for the autoencoders described above. For each selected set at each iteration, a 
separate model is fit on this set, which then returns a binary score for each constraint 
that determines whether or not it is a noisy constraint. After removing noisy con-
straints, the same set is then passed through the model once again in order to obtain 
a re-calculated score for each constraint. We use the code released by Pedregosa et al. 
(2011), with the default parameter settings, including the contamination parameter 
at 10%.
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Results. Tables 4 and 6 present the results for the two alternative strategies (autoen-
coders and standard outlier detection methods). Each table is divided into two parts that 
represent the average AUC scores of each model on small and large networks respec-
tively. Results for must-link and cannot-link constraint sets are listed separately. Each 
table entry shows the average AUC score of the model (on the rows) for networks with 
certain size, overlapping density and the type of constraints used (on the columns). The 
highest average AUC score is highlighted in bold.

In terms of the autoencoder models, for both small and large network the most con-
strained AE models tend to perform better than the unconstrained ones when detecting 
noises on must-link constraints, as illustrated in Table 4. For instance on small networks, 
the average AUC score of AE2 is 0.625 and increases to 0.657 with the constrained ver-
sion AE2_l1. Similarly, on large networks, AE2_l1 show a higher average score than AE2, 
with AUC = 0.470 and AUC = 0.442 respectively. In contrast, we see the opposite trend 
for cannot-link constraints, where constrained models show lower average scores than 
unconstrained ones, except for AE3_l1 which presents consistently higher score com-
pared to AE3 in all cases.

When comparing shallow to deep models on small and large networks, the general 
trend of AUC scores on must-link constraints shows a decrease as more layers are added 
to AE models, except for AE2_l1 on large networks. On the other hand, we can see a 
contrasting trend on cannot-link constraints, where the highest AUC scores on all net-
works are achieved by the deep model AE3_l1.

Interestingly, for both types of constraint, the AE models tend to perform significantly 
better on networks with low overlapping density. For instance, the average AUC scores 
for AE models is 0.694 for must-link constraints and 0.826 for cannot-link constraints 
on small networks with On = 10% , which are higher than AUC = 0.590 and AUC = 
0.743 on On = 50% for must-link and cannot-link constraints respectively. However, this 
excludes the results of AE models on must-link constraints for large networks, which 
show slightly higher scores.

Table 5 summarizes the average ranks of all AE models on must-link and cannot-link 
constraints separately for small networks and large networks. Each table entry shows the 
average rank (lower values are better) of a model (on the rows) over each constraint type 
and networks size (on the columns). The ranking scores indicate that, for must-link con-
straints, the best approaches for detecting noise are the shallow model AE1_l1 on small 

Table 3  Details of  autoencoder architectures. Here AE* indicates the  number 
of  layers in  compression autoencoders, and  AE*_L1 indicates the  number of  layers 
in L1-constrained autoencoders

Architecture Nodes per layer Small networks Large networks

Epochs Learning rate Epochs Learning rate

AE1 dim:(7,3,7) 100 0.01 30 0.001

AE1_L1 dim:(7,7,7) 100 0.01 30 0.001

AE2 dim:(7,5,3,5,7) 100 0.01 30 0.001

AE2_L1 dim:(7,7,7,7,7) 100 0.01 30 0.001

AE3 dim:(7,6,5,3,5,6,7) 100 0.01 30 0.001

AE3_L1 dim:(7,7,7,7,7,7,7) 100 0.01 30 0.001
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networks, and the constrained model with moderate depth AE2_l1 on large networks. 
For cannot-link constraints, the deep constrained model AE3_l1 is the top-ranked model 
on both small and large networks. Generally, a deeper network leads to a greater repre-
sentational capacity (Goodfellow et al. 2016). Though it is difficult to know the reason for 
one architecture outperforming another with a high degree of certainty, the increased 
number of data points for must-link constraints in the large network compared to small 
network most likely requires the network to have an increased representational capacity. 
Thus, for must-link constraints, AE1_L1 is top-ranked on small networks, while on large 
networks a deeper version (AE2_L1) is the best performing.

We turn now to the results for the traditional outlier detection methods, which are 
listed in Table  6. As can be seen for both small and large network, the SVM model 
achieves the highest scores on must-link constraints, while the IF model shows the 
best performance on cannot-link constraints. Generally, most models performed bet-
ter in detecting noisy must-link constraints in small networks compared to large net-
works. However, the opposite trend is seen for cannot-link constraints, where we 
observe considerably higher scores on larger networks, except in the case of LOF model. 
Another trend that can be seen in Table 6 is significantly higher scores on networks with 
On = 10 % compared to networks with On = 50 % by most models, except for the IF and 
LOF models on must-link constraints in large networks. In summary, these results sug-
gest that SVM and IF are the best performing models on must-link constraints and can-
not-link constraints respectively across all networks. This can also be seen in Table 7, 
which reports the average ranking scores for the three alternative outlier detection 
models.

Evaluating autoencoders for deep embeddings

Methodology. In this section we address the objective of finding the best autoencoder 
architectures for use as a deep embedding technique in combination with other outlier 
detection methods. The best candidates will be used later in Experiment 2 in section 
“Experiment 2: Evaluation of noise removal methods”. Specifically, we assess the perfor-
mance of different autoencoder architectures with One-Class SVM and Isolation Forest 
(IF) models, which were the best performed conventional outlier detection models on 
must-link and cannot-link constraints respectively as described previously.

Table 5  Average rank of autoencoder architectures over all small and large LFR networks, 
for must-link and cannot-link constraints

Architecture Small networks Large networks

Must-link constraints Cannot-link 
constraints

Must-link constraints Cannot-link 
constraints

AE1 3.0 4.5 2.5 4.0

AE1_L1 1.0 6.0 2.5 5.0

AE2 5.0 3.0 4.0 2.0

AE2_L1 2.0 4.5 1.0 6.0

AE3 6.0 2.0 6.0 3.0

AE3_L1 4.0 1.0 5.0 1.0
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Results. Table 8 reports the average ranks achieved by different autoencoders (on the 
rows) in conjunction with the SVM and IF methods for detecting noise in must-link and 
cannot-link sets (on the columns). As can be seen from the results, unconstrained AE 
models outperform constrained ones as deep embedding technique in all cases. In par-
ticular, the deep unconstrained models AE3 shows the best scores, except for the case of 
SVMs on large networks, where the unconstrained model with moderate depth AE2 is 
the top-ranked model.

Experiment 2: Evaluation of noise removal methods

Methodology. In the previous experiment, we focused on Phase 2 in Fig. 1 as a separate 
component. Now we evaluate the performance of the proposed architecture incorporat-
ing Phase 2. Given the best-performing outlier detection models and deep embedding 
functions identified in Experiment 1, we assess the performance of AC-SLPA commu-
nity finding using each category of constraint cleaning process described in Section 
“Process for identifying noisy constraints” to identify the best option. Table 9 summarize 
the types of cleaning processes and models that are used in this experiment. Again we 
make use of 64 synthetic LFR networks.

Results. Tables 10 and 11 provide an overview of how the performance of AC-SLPA 
with various cleaning methods changes on synthetic networks. Recall that these net-
works vary in terms of mixing parameter µ , overlapping diversity Om , overlapping 
density On , and the size of both the networks themselves and their ground truth com-
munities. Each table entry includes the average NMI score of AC-SLPA combined with 
each cleaning methods (on the rows) over networks with specific parameters (on the 

Table 7  Average ranks of  Isolation Forest (IF), One-class SVM, and  Local Outlier Factor 
(LOF) over all small and large LFR networks, for must-link and cannot-link constraints

Dataset Must-link constraints Cannot-link constraints

Small networks IF SVM LOF IF SVM LOF

2.3(2) 1.3(1) 2.4(3) 1.0(1) 2.0(2) 3.0(3)

Large networks IF SVM LOF IF SVM LOF

3.0(3) 1.1(1) 1.9(2) 1.0(1) 2.0(2) 3.0(3)

Average Rank 2.5 1 2.5 1 2 3

Table 8  Average ranks for  autoencoder architectures when  used as  deep embeddings 
wit one-class SVM (on must-link constraints) and  for  Isolation Forest (on cannot-link 
constraints)

Architecture Small networks Large networks

Encoder + SVM Encoder + IF Encoder + SVM Encoder + IF

AE1 3 2 2 3

AE1_L1 4 4 4 4

AE2 2 3 1 2

AE2_L1 5.5 5.5 5.5 5.5

AE3 1 1 3 1
AE3_L1 5.5 5.5 5.5 5.5
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columns). The best score is highlighted in bold. The detailed NMI scores are shown in 
Figs. 7 and 8, which indicate the agreement between the obtained communities in each 
case and the corresponding ground truth.

Generally, increasing the value of µ results in lower NMI scores for all algorithms, due 
to the increased proportion of inter-community edges that lead to weakly-defined com-
munity structure. As can be seen from Tables 10 and 11, compared to the case of µ = 0.1 , 
the average NMI scores of all algorithms considerably decreased on small networks with 
µ = 0.3 . In both cases of µ , we can see that AC-SLPA with the Hybrid method outper-
formed other methods on small and large networks. As for examining the performance 
on networks with small and large communities, we can see that all algorithms show 

Table 9  Different variations of  the  cleaning process using the  best performing models 
from the Experiment 1, on must-link and cannot-link constraints respectively

Cleaning models Must-link constraints Cannot-link 
constraints

Small networks

 Hybrid (Autoencoder–Encoder Func.+IF) AE1_L1 AE3+IF

 Autoencoders(AE) AE1_L1 AE3_L1

 Encoder Func. + Outlier detection (SVM-IF) AE3+SVM AE3+IF

 Outlier detection only (SVM-IF) SVM IF

Large networks

 Hybrid (Autoencoder–Encoder Func.+IF) AE2_L1 AE3+IF

 Autoencoders(AE) AE2_L1 AE3_L1

 Encoder Func. + Outlier detection (SVM-IF) AE2+SVM AE3+IF

 Outlier detection only (SVM-IF) SVM IF

Table 10  Average NMI scores of  AC-SLPA achieved using different cleaning processes 
on small synthetic networks with different network parameters

Cleaning process Network parameters

µ Comm. Size On Om

0.1 0.3 Small Large 10% 50% 2 4 6 8

Hybrid 0.565 0.483 0.538 0.51 0.810 0.239 0.710 0.538 0.448 0.401
AE 0.506 0.440 0.497 0.449 0.728 0.218 0.631 0.485 0.416 0.361

AE_SVM_IF 0.553 0.463 0.525 0.49 0.800 0.215 0.701 0.522 0.432 0.376

SVM_IF 0.547 0.458 0.522 0.483 0.797 0.208 0.701 0.517 0.424 0.369

Table 11  Average NMI scores of  AC-SLPA achieved using different cleaning processes 
on large synthetic networks with different network parameters

Cleaning Process Network Parameters

µ Comm. Size On Om

0.1 0.3 Small Large 10% 50% 2 4 6 8

Hybrid 0.566 0.530 0.567 0.529 0.768 0.328 0.763 0.552 0.469 0.408
AE 0.474 0.426 0.464 0.435 0.618 0.281 0.6 0.453 0.39 0.357

AE_SVM_IF 0.544 0.503 0.539 0.508 0.757 0.290 0.726 0.559 0.44 0.369

SVM_IF 0.559 0.527 0.543 0.543 0.785 0.301 0.748 0.572 0.464 0.388
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higher average NMI scores for small community networks compared to large commu-
nity networks. In addition, we notice that AC-SLPA with the hybrid method shows the 
best performance on all networks, except for large networks with large communities.

Now we investigate the effect of two network properties, overlapping diversity Om 
and overlapping density On , on the performance of all algorithms. As we can see from 
Tables  10 and 11, the quality of obtained communities of all algorithms consistently 

Fig. 7  Performance of AC-SLPA using different constraint cleaning methods on small synthetic networks, 
containing both small and large communities, where the mixing parameter µ varies from 0.1 to 0.3. NMI 
values are plotted against the number of communities per node (Om)
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decreases as the overlapping diversity and overlapping density increase. In most of the 
cases of Om and On , AC-SLPA with the Hybrid method outperform other methods except 
cases on On = 10% and Om = 4 shows the second best scores after SVM_IF. Overall, in 
most cases of network parameters, the algorithms show higher average NMI scores on 

Fig. 8  Performance of AC-SLPA using different constraint cleaning methods on large synthetic networks, 
containing both small and large communities, where the mixing parameter µ varies from 0.1 to 0.3. NMI 
values are plotted against the number of communities per node (Om)
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large networks compared to small networks, excluding AC-SLPA with AE method which 
shows a contrasting trend.

Table 12 summarizes the average ranks based on NMI scores for all algorithms on the 
synthetic networks. Each table entry shows the average rank of AC-SLPA with a clean-
ing method (on the columns) for different sizes of synthetic networks (on the rows). The 
average ranks based on NMI scores for each individual network is shown in Figs. 7 and 8. 
As we can see, AC-SLPA with the Hybrid method achieved the best rank on both small 
and large networks. The second-best algorithms with AE_SVM_IF method on small 
networks and with SVM_IF method on large networks. AE_SVM_IF and SVM_IF show 
approximately comparable performance on small networks, however the difference in 
performance between both methods grows higher on large networks.

To further understand the performance differences, we perform a Friedman aligned 
rank test with the Finner p value correction (García et al. 2010) to compare the above 
methods. The critical difference plots with a significance value α = 0.05 of the test 
results are shown in Fig.  9, where the vertical lines indicate the corresponding algo-
rithm’s rank. The algorithms which are not connected with the black horizontal line are 
significantly different with the mentioned significance level. In the case of the small syn-
thetic networks, the Hybrid method was found to be significantly better than the other 
three methods. On the other hand, for big networks, this method was found to be sig-
nificantly better than AE_SVM_IF and AE.

Experiment 3: End‑to‑end evaluation

Methodology. In the previous section, we compared different cleaning methods as 
they were integrated into the overall architecture as can be seen in Fig.  1.The best 
performing cleaning process identified was the Hybrid method. We term this overall 
architecture AC-SLPA with Hybrid cleaning. In the following sections, we compare 
this architecture to the baseline algorithms, SLPA and AC-SLPA, without any con-
straint cleaning on both small and large synthetic networks.

1 2 3 4

AE_SVM_IF

SVM_IF

AE

a Small synthetic network

1 2 3 4

SVM_IF

AE_SVM_IF

AE

b Big synthetic network

Fig. 9  Critical difference plots from Friedman aligned rank test with Finner p value correction with 
significance level α = 0.05 comparing Hybrid, AE_SVM_IF, SVM_IF and AE algorithms on the small and 
big synthetic networks. Algorithms which are not connected with the horizontal dark line are significantly 
different than each other. Lower rank indicates an overall better performance
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Results. We assess the quality of the obtained communities by AC-SLPA with hybrid 
(top-ranked cleaning process) compared to AC-SLPA and SLPA from the perspective of 
different network parameters as illustrated in Tables 13 and 14. The NMI scores of each 
network are reported in Figs. 10 and 11 on small and large networks respectively.

As can be seen from the Tables 13 and 14, AC-SLPA with Hybrid cleaning significantly 
outperformed other algorithms in most cases of networks parameters. For instance, in 
high mixing parameters large networks, AC-SLPA with the Hybrid method shows signif-
icantly higher score with NMI=0.530 compared to AC-SLPA and SLPA with NMI=0.343 
and NMI=0.451 respectively. Similarly, AC-SLPA with the Hybrid method beats the 
other algorithms in most overlapping density ( On ) and overlapping diversity ( Om ) cases, 

Table 12  Average ranks of  NMI scores for  AC-SLPA achieved using different cleaning 
methods on small and large synthetic networks

Network category Hybrid AE AE_SVM_IF SVM_IF

Small networks 1.6(1) 3.2(4) 2.6(2) 2.7(3)

Large networks 1.6(1) 3.8(4) 2.7(3) 2.0(2)

Table 13  Average NMI scores of AC-SLPA using Hybrid cleaning method compared to SLPA 
and  AC-SLPA with  noisy pairwise constraints on  small synthetic networks with  different 
parameters

Algorithm Network parameters

µ Comm. Size On Om

0.1 0.3 Small Large 10% 50% 2 4 6 8

Hybrid 0.565 0.483 0.538 0.510 0.809 0.239 0.709 0.538 0.448 0.401
AC-SLPA 0.484 0.43 0.475 0.438 0.691 0.223 0.602 0.472 0.402 0.351

SLPA 0.527 0.388 0.474 0.441 0.737 0.178 0.634 0.458 0.396 0.342

Table 14  Average NMI scores of  AC-SLPA using the  hybrid cleaning process, SLPA 
and  AC-SLPA with  noisy pairwise constraints on  large synthetic networks with  different 
parameters

Algorithm Network parameters

µ Comm. Size On Om

0.1 0.3 Small Large 10% 50% 2 4 6 8

Hybrid 0.566 0.530 0.567 0.529 0.768 0.328 0.763 0.552 0.469 0.408
AC-SLPA 0.316 0.343 0.364 0.295 0.429 0.231 0.390 0.353 0.301 0.357

SLPA 0.533 0.451 0.497 0.488 0.777 0.208 0.686 0.484 0.421 0.369

Table 15  Average ranks of NMI scores of AC-SLPA using the hybrid cleaning process, SLPA 
and AC-SLPA with noisy pairwise constraints on small and large synthetic networks

Network category SLPA AC-SLPA Hybrid

Small networks 2.2(2) 2.5(3) 1.3(1)
Large networks 2.6(3) 2.1(2) 1.3(1)
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except on large networks with low overlapping density. SLPA shows slightly better aver-
age NMI score than AC-SLPA with cleaning process, with NMI=0.777 and NMI=0.768 
respectively. In addition, we notice that the AC-SLPA with hybrid cleaning and SLPA 
show higher average NMI scores on large networks compared to small networks.

Fig. 10  Performance of AC-SLPA using the hybrid cleaning process compared to SLPA and AC-SLPA with 
noisy pairwise constraints on small synthetic networks, containing both small and large communities, where 
the mixing parameter µ varies from 0.1 to 0.3. NMI values are plotted against the number of communities per 
node (Om)
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On the small networks, the performance of AC-SLPA without any cleaning process 
shows slightly better than SLPA in most cases. In contrast, the performance of AC-
SLPA is significantly affected by noisy pairwise constraints on the large networks, 

Fig. 11  Performance of AC-SLPA using Hybrid cleaning method compared to SLPA and AC-SLPA with noisy 
pairwise constraints on large synthetic networks, containing both small and large communities, where the 
mixing parameter µ varies from 0.1 to 0.3. NMI values are plotted against the number of communities per 
node (Om)
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where the average NMI score is consistently lower compared to SLPA. Overall, the 
best NMI scores across all algorithms are shown on networks with low overlapping 
density, as we might expect. For instance, we can see from Figs. 10 and 11 that the 
Hybrid method achieves higher NMI scores on most networks with low overlapping 
density compared to other algorithms, and the scores drop in high overlapping den-
sity case, in particular on small networks. On the large networks, the performance 
of the Hybrid method is considerably higher and more stable as the overlapping 
diversity increases, when compared to AC-SLPA and SLPA. Table 15 lists the average 
ranks of NMI scores of all algorithms on small and large networks, which shows the 
average ranks (lower values are better) of an algorithm (on the columns) over differ-
ent size of synthetic networks (on the rows). The best scores are shown in boldface. 
As we see in Table  15, AC-SLPA with Hybrid cleaning method achieved the best 
rank score on both small and large networks, followed by SLPA on small networks 
and AC-SLPA on large networks.

As in Section “Experiment 2: Evaluation of noise removal methods”, we perform 
a Friedman aligned rank test with the Finner p value correction to support a multiple 
comparison test between the three methods above. The critical difference plots of the 
results with a significance level of α = 0.05 are shown in Fig. 12. In the case of both the 
small and large networks, the AC-SLPA with Hybrid method performed significantly 
better than the other two methods.

Experiment 4: Real‑world networks

Methodology. We now discuss our final experiment on three real-world networks 
(Amazon, YouTube, DBLP). We use the same setup employed in Sections “Experiment 
2: Evaluation of noise removal methods” and “Experiment 3: End-to-end evaluation” 
to examine the performance of each cleaning method after integration with AC-SLPA. 
Note that we employ the same models used with large synthetic networks, see Table 9. 

1 2 3

SLPA

AC-SLPA SLPA

a Small synthetic network

1 2 3

AC-SLPA

b Bigsyntheticnetwork
Fig. 12  Critical difference plots from Friedman aligned rank test with Finner p value correction with 
significance level α = 0.05 comparing Hybrid (the best performing variant from the previous experiment), 
SLPA and AL-SLPA algorithms on small and large synthetic networks. Algorithms which are not connected 
with the horizontal dark line are significantly different than each other. Lower ranks indicate better overall 
performance
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As baselines we consider AC-SLPA without cleaning (i.e. keeping noisy constraints), 
and the purely unsupervised algorithm SLPA. We also compare AC-SLPA with the best 
cleaning method to other baseline algorithms which are OSLOM (Lancichinetti et  al. 
2011), MOSES (McDaid and Hurley 2010), COPPRA (Adamcsek et  al. 2006) on real-
world networks in Table 20.

Results. Table 19 lists the NMI scores for each algorithm (columns) on each network 
(rows). The last row reports the average rank score of each algorithm. When compar-
ing the performance of AC-SLPA with different cleaning methods to the baseline algo-
rithms, we can see AC-SLPA with the Hybrid method achieves the best NMI scores 
on YouTube and DBLP networks (with NMI=0.818 and NMI=0.921 respectively). On 
the YouTube network, the performance of the AC-SLPA with Hybrid cleaning method 
increases significantly with a small amount of supervision. The next best performer is 
the AC-SLPA with the AE method, followed by SLPA and AC-SLPA with noisy pairwise 
constraints. All algorithms achieve their highest NMI scores on the YouTube dataset.

However, the cleaning methods fail to lead to any improvement over the baselines 
in the case of the Amazon network. After investigating these results in more detail, we 
notice two behaviors which frequently occur. Firstly, far more must-link constraints than 
cannot-link constraints are selected by AC-SLPA. For example, the number of must-link 
constraints often exceed 2,000 pairs, while the selected cannot-link constraint set can 
contain fewer than 100 pairs. Secondly, all of the noisy constraints are in the cannot-
link set, and the number of incorrectly-labelled pairs exceeds the number of correctly-
labelled pairs. This situation renders noisy detection almost impossible using most 
outlier detection methods.

Now we compare the performance of AC-SLPA with the Hybrid method to an addi-
tional set of baseline algorithms: OSLOM (Lancichinetti et al. 2011), MOSES (McDaid 
and Hurley 2010), and COPRA (Adamcsek et  al. 2006). From the results shown in 
Table 20, we see that OSLOM achieves the highest NMI score on the Amazon network. 
However, AC-SLPA with Hybrid cleaning achieves the highest NMI score on the You-
Tube and DBLP networks. Table 20 also reports the average ranks for NMI scores across 
all algorithms on the real-world networks. This shows the average rank (lower values are 
better) of an algorithm (columns) over networks (rows). As can be seen, AC-SLPA with 
Hybrid cleaning achieved the best overall rank score, with SLPA and OSLOM next best.

Topological evaluation. Finally, we explore the obtained communities’ topological 
properties for the methods AC-SLPA with Hybrid cleaning, AC-SLPA with and without 

Table 19  Average NMI scores of  AC-SLPA using different cleaning methods (Hybrid, AE, 
AE_SVM_IF, and SVM_IF), SLPA and AC-SLPA with noisy pairwise constraints on three real-
world networks. Average ranks across the networks are also reported

Network SLPA AC-SLPA AC-SLPA_Hybrid AC-SLPA_AE AC-SLPA_
AE_SVM_IF

AC-SLPA_SVM_IF

Amazon 0.957 0.956 0.956 0.952 0.951 0.955

YouTube 0.627 0.778 0.818 0.778 0.751 0.751

DBLP 0.897 0.892 0.921 0.906 0.889 0.893

Avg. Ranks 3.3 3.7 1.3 3.0 5.3 4.3
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noisy constraints, and SLPA. Specifically, we look at the community size distributions, as 
shown in Figs. 13, 14, and 15. We compare the size distribution of the communities pro-
duced by each algorithm against the distribution for the ground truth communities for 
each network (i.e., the reference distribution). Since all of these algorithms include a ran-
dom component and were run 10 times, we focus on the run with the highest NMI score 
in each case. To compare distributions, we use a two-sample Kolmogorov–Smirnov test 
(KS) (Massey 1951). This is a non-parametric statistical test to compare two cumula-
tive distributions, which calculates the maximum difference between them. We can 
then compute a p value based on this maximum distance and the sample sizes. The null 
hypothesis is that both distributions are identical. This hypothesis is rejected when the p 
value is small (< 0.05), and the distance value is high.

Table 21 reports the KS results for all the algorithms on the real-world networks. We 
observe that the p values for all variants of AC-SLPA on the Amazon network indicate 
that their size distributions are the same as the reference distribution, unlike SLPA. In 
term of the distance values, we can see that the distribution for AC-SLPA without noisy 
constraints is closest to the reference distribution. On the YouTube network we observe 
that, according to the p values, all algorithms’ distributions are not the same as the refer-
ence. However, when we inspect the distance values, again AC-SLPA without noisy con-
straints has the lowest score. We can also see that using Hybrid method with AC-SLPA 
reduces the distance value significantly. The same observation also applies for the DBLP 
network, although the p value for AC-SLPA without noisy constraints on this network is 
above 0.05.

Overall, we see that the semi-supervised approaches can successfully identify het-
erogeneously-sized communities present in the real-world networks as illustrated 
in Figs.  13, 14, and 15. Also, we notice that using the Hybrid method with AC-SLPA 
reduces the difference between the obtained communities and the ground-truth com-
munities in terms of their size distributions, which results from the presence of noisy 
constraints.

Table 20  Average NMI scores of  AC-SLPA using Hybrid cleaning methods compared 
to other baseline methods (SLPA, OSLOM, MOSES, COPRA) on three real-world networks. 
Average ranks across the networks are also reported

Network AC-SLPA_Hybrid SLPA OSLOM MOSES COPRA

Amazon 0.956 0.957 0.967 0.908 0.962

YouTube 0.818 0.627 0.449 0.421 0.191

DBLP 0.921 0.897 0.849 0.771 0.914

Avg. Ranks 2.0(1) 2.7(2.5) 2.7(2.5) 4.7(5) 3.0(4)
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Conclusion
In this study, we have addressed the problem of handling noisy constraints in overlap-
ping semi-supervised community detection, by treating them as outliers and use out-
lier detection models to find and remove them. Our primary contributions are four-fold: 
(1) a general architecture for semi-supervised community finding with noisy constraint 

Table 21  Kolmogorov-Smirnov distance between  the  community size distribution 
of the obtained results of SLPA, ACSLPA with and without noisy constraints, and ACSLPA_
Hybrid on  real-world networks against  the  community size distribution of  the  ground 
truth communities

Network SLPA ACSLPA with noise ACSLPA_Hybrid ACSLPA 
without noise

Distance p value Distance p value Distance p value Distance p value

Amazon 0.076 0.016 0.059 0.113 0.050 0.252 0.033 0.772

YouTube 0.086 0.017 0.250 0.000 0.099 0.000 0.073 0.005

DBLP 0.222 0.000 0.222 0.000 0.141 0.000 0.032 0.899

a b

c d
Fig. 13  Community size distribution for communities produced by SLPA, AC-SLPA with noisy pairwise 
constraints, and AC-SLPA with Hybrid cleaning on the YouTube network, compared to the ground truth 
community size distribution
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filtering; (2) multiple designs of cleaning methodologies; (3) an investigation of outlier 
detection models for filtering, including deep learning models; (4) a comprehensive eval-
uation for each proposed cleaning methodology integrated in the context of community 
detection.Based on the experimental results, we found that the most effective approach 
was to employ a hybrid design of conventional and deep learning-based outlier detec-
tion models, in conjunction with the AC-SLPA algorithm. Using this approach makes 
the application of semi-supervised community finding approaches to real-world network 
scenarios more feasible as real annotations are always likely to be noisy which leads to 
poor performance when approaches that assume they will be clean are used. As future 
work, we will aim to explore the use of multiple noisy oracles (e.g a committee of human 
annotators), and how to resolve the disagreements which might arise between them.

a b

c d
Fig. 14  Community size distribution for communities produced by SLPA, AC-SLPA with noisy pairwise 
constraints, and AC-SLPA with Hybrid cleaning on the Amazon network, compared to the ground truth 
community size distribution
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