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Introduction
A blockchain can be modeled as an ever-growing, large directed temporal network with 
more and more industries starting to adopt it for their businesses. In permissionless 
blockchains, interactions (also called as transactions) happen between different types of 
accounts. In Ethereum mainnet public blockchain, these accounts can be either Exter-
nally Owned Accounts (EOA) or Smart Contracts (SC). Here, transactions from an EOA 
(called as an external transaction) are recorded on the blockchain ledger whereas trans-
actions from an SC (called as an internal transaction) are not recorded on the ledger. 
Note that in Ethereum, SCs can issue external transactions by executing external calls 
also which would be recorded in the blockchain ledger.
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With actual money involved in most of the permissionless blockchains, an account 
must be able to perform secure transactions. Recently, many security threats to vari-
ous blockchain platforms have been identified (Bryk 2018). For some identified vulner-
abilities, counter-measures have been implemented. We do not delve into surveying all 
the security threats. In Chen et al. (2020), the authors survey security flaws that exist in 
the Ethereum blockchain. In many of the security vulnerabilities identified in Ethereum 
blockchain, hackers target other accounts by either hacking SCs or implementing 
malicious SCs for cyber-crimes such as ransomware, scams, phishing, and hacking of 
exchanges or wallets (Chainalysis 2019).

With an ever-increasing growth and adoption of the blockchain technology by the 
industry and the crypto-currency markets, permissionless blockchains are at the epi-
center of increased security vulnerabilities and attacks. Our motivation for this work is 
based on the fact that there is limited work on learning the behaviors of the accounts in 
permissionless blockchains which are malicious and potentially victimize other accounts 
in the future. We define malicious accounts as those accounts that have been founded 
to be involved in illegal activities such as phishing, hacking, scams, and Ponzi schemes. 
Benign accounts as those that perform only legitimate transactions. Although, these ille-
gal activities have different features, in this paper we assume that the transaction behav-
ior and features are consistent and are applicable to all types of malicious activities. The 
results seem to bear out such assumption. In short, in this paper, we aim to identify mali-
cious accounts so that the potential victims and blockchains can deploy counter-meas-
ures. In this paper, henceforth, the term blockchain is used to represent a permissionless 
blockchain. The techniques proposed in related studies classify accounts as malicious 
using either Machine Learning (ML) algorithms or motif-based (basic building block/
subgraphs of a network) methods. Nonetheless, the features used by the available tech-
niques are: (a) limited and not learned from the previous attacks on blockchains, and (b) 
extracted from the aggregated snapshot of time-dependent transaction graphs that do 
not consider the temporal evolution of the graphs.

The temporal aspects attached to the features are essential in understanding the actual 
behavior of an account before we can classify it as malicious. For example, inDegree and 
outDegree features are time-variant and should be considered a time series. Nonethe-
less, it has been proven that the aggregated node degree distribution for accounts fol-
lows a power-law in blockchains such as Ethereum (Chen et al. 2018a). Here, questions 
that we ask are: does such behavior exist in all accounts? Is there a burst of degree for cer-
tain accounts at certain instances and can the existence of such bursts be used to identify 
malicious activity? To answer these questions, we first identify the existence of bursts. 
Then, we introduce features such as temporal burst, degree burst, balance burst, and 
gasPrice burst to study the effect of bursts.

The fat-tailed nature of power-law degree distribution also gives rise to neighbor-
hood-based fitness preferential attachment in blockchains (Aspembitova et al. 2019). In 
Aspembitova et al. (2019) authors defined fitness as “the ability of a node to attract new 
connections” and showed that the accounts that have high fitness sometimes are short-
lived and indulge mostly in malicious activities while when they are long-lived they rep-
resent large organizations. Here, the authors define the fitness factor considering one 
previous time instance interactions. As it does not consider a temporal window, one 
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drawback of the method lies in its ability to correctly classify malicious transactions that 
appear at an interval of 2 time units or more. Inspired by this, we define a neighborhood-
based feature called attractiveness that takes into account a temporal window of size θa 
where (0 < θa < TDS) and TDS is the duration for which we collect the dataset (DS). Our 
attractiveness measure takes into account the stability of directed transactions that hap-
pened between two accounts in the past. Intuitively, a malicious account will have high 
attractiveness as it will tend to transact with new accounts while benign accounts will 
have high neighborhood stability or low attractiveness.

As the behavior of an account can change from malicious to benign or from benign 
to malicious over time, there is a need for continuous monitoring and analysis of the 
real-time transactions given the history of transactions performed by an account. We, 
thus, study the evolution of malicious behavior over different timescales by creating sub 
datasets and then answer the question: would a certain account show malicious behavior 
in the future? Towards this, we first apply different ML algorithms and identify the most 
suitable unsupervised ML algorithm for the entire dataset that is able to cluster accounts 
most accurately. Then we apply the identified algorithm to different sub datasets within a 
temporal scale to capture the behavior changes.

In summary, following are our main contributions:

•	 Feature engineering We identify feature vector for identifying malicious accounts 
based on previous attacks on blockchains and perform time series analysis. As new 
features, we propose temporal burst, degree burst, balance burst, gasPrice burst, and 
attractiveness.

•	 Comparative analysis We perform a comparative study with techniques proposed in 
the related studies and identify the best possible supervised and unsupervised ML 
algorithm with related hyperparameters when we use Ethereum transaction data.

•	 Results Our results demonstrate that for the supervised case, ExtraTreesClassifier 
performs the best with respect to balanced accuracy for the entire dataset while 
for the unsupervised case, we are able to identify 554 more suspect accounts using 
K-Means Clustering. Analysis of the behavioral changes reveal 814 suspects across 
different temporal granularities.

The rest of the paper is organized as follows. In Sect. 2, we present background and the 
state of the art techniques for identifying malicious accounts and compare them. In 
Sects.  3 and 4, we present a detailed description of our methodology and the feature 
vector, respectively.This is followed by an in-depth evaluation along with the results in 
Sect. 5. We finally conclude in Sect. 6 providing details on prospective future work. Fur-
ther, in Abbreviation section we provide a glossary of the acronyms used in the paper.

Background and related work
There are two types of blockchain technologies, permissionless and permissioned. The 
major difference between the two technologies is that in a permissioned blockchain 
prior access approval is needed for performing any action on the blockchain while in 
permissionless blockchain anyone can perform actions on the blockchain without any 
approval. Further, there is no way to censor anyone from permissionless blockchains. 



Page 4 of 30Agarwal et al. Appl Netw Sci             (2021) 6:9 

Such aspects lead to more frauds and malicious activities to prevail in permissionless 
blockchains. Ethereum and Bitcoin use permissionless technology.

Ethereum was developed by Buterin (2013) and allows users to run programs in its 
trusted virtual environment known as Ethereum Virtual Machine (EVM). These pro-
grams are called Smart Contracts (SC) and are stored on the ledger along with trans-
actions performed on a given fixed address. Ethereum uses “Ether” as its native 
crypto-currency for transfer and transaction fees. Smart Contracts (SC) can also send, 
store, and receive Ether. Once deployed, SC is a hard coded program that could only be 
fed with input to get output. SCs are also used by some applications for their processing. 
Such applications are called distributed applications or dapps. Although Ethereum is 
known for its security and trust, a small bug in a SC code can cause huge loss of crypto-
currency (Atzei et al. 2017). Ethereum manages a list of accounts along with the account 
balance. For a valid transaction usually amount is transferred from a sender to a receiver. 
If the receiver is an SC, its code is executed and the state of the SC is updated. Inter-
nally, a SC could send a message or perform internal transactions with other accounts. 
Ethereum currently uses a refined form of PoW (Proof of Work) consensus algorithm. 
PoW is computationally expensive and energy inefficient. Moreover, Appendix 1 pre-
sents a brief overview of PoW.

There are vast number of studies in fraud detection (Abdallah et al. 2016). Nonethe-
less, targeting Ethereum, Chen et al. (2020) base their survey on the attacks and defenses 
in Ethereum. We do not survey all the attacks and defense mechanisms in this work. 
However, we provide an in-depth understanding of different methods used to detect 
accounts involved in malicious activity. Several works have tried to identify or categorize 
malicious accounts and activities in different types of blockchains. As blockchains have a 
graph structure, most of these techniques study graph properties (such as node degree) 
to identify features before applying supervised or unsupervised learning.

In Pham and Lee (2016), authors used a bitcoin transaction network to detect mali-
cious activity. They were able to detect three malicious attacks using unsupervised ML 
algorithms with a limited amount of transaction data they had. In their followup work, 
they used a more comprehensive bitcoin transaction dataset (starting from genesis 
block until April 7th, 2013) (Pham and Lee 2017). They employed data in two types of 
graphs namely User Graph and Transaction Graph. In the user-graph, nodes represent 
accounts and edges represent transactions, whereas in the transaction-graph nodes rep-
resent transactions and edges represent the flow of bitcoins. They first studied the flow 
of bitcoins to prove the existence of anomalies and then performed clustering to identify 
different attacks. They were able to detect the existence of one attack using the Local 
Outlier Factor (LOF). Inspired by Pham and Lee (2017), in Monamo et al. (2016), Mon-
amo et al. also used bitcoin transaction data and proposed an update to counter scaling 
issues that are inherent in LOF. They validated their approach using trimmed K-Means, 
argued its usefulness in detecting anomalies, and detected 5 out of 30 fraudsters.

In another bitcoin-related malicious activity detection, authors studied the detection 
of addresses involved in the Ponzi scheme (Bartoletti et  al. 2018). They used super-
vised learning and validated their results after addressing the class imbalance that is 
inherent in any malicious activity related dataset. They identified that the Gini coeffi-
cient of outgoing Ethers and the ratio between incoming and total transactions are the 
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most important features for detecting Ponzi scheme related accounts. In another Ponzi 
scheme related study, in Chen et al. (2018b), authors use Ethereum data to extract fea-
tures from operation codes (opcodes) of the SC’s bytecode. Their motivation behind 
the study was based on the fact that the opcodes reflect the logic implemented in a SC 
and therefore provide useful features for identifying Ponzi and non-Ponzi SC. They 
also figured out that opcode based features are more efficient than account based fea-
tures while detecting Ponzi scheme accounts. In Ostapowicz and Zbikowski (2019), the 
authors use partial Ethereum transaction data to classify malicious accounts. They also 
performed a sensitivity analysis to study the effect of different classifiers on the feature 
set. In Singh (2019), to counter class imbalance, authors assumed that the accounts con-
nected to malicious accounts via incoming transactions are also malicious. They then 
studied various supervised ML algorithms to identify malicious accounts over this over-
sampled Ethereum dataset. In a followup study of Singh (2019), in Kumar et al. (2020), 
the authors used only those benign accounts that have never transacted with malicious 
accounts. Further, their feature vector had only transaction based properties but not the 
graph based properties.

N-motifs are frequently occurring subgraphs that serve as a basic building block 
of a network. The authors in Zola et al. (2019) defined N-motif as a path of length 2N 
between two entities. Here transactions were also considered as vertices. Using N-motifs 
that are present in the transaction graph, in Zola et al. (2019), the authors studied trans-
actions happening between entities (people or organizations with multiple accounts). 
They were able to correctly identify malicious accounts involved in gambling. In another 
study (Goldsmith et al. 2020), the authors analysed transfer of funds within a sub-net-
work and used temporal feature such as how quickly funds are cashed.

We present all the above-mentioned techniques in detail in Table 1 and present the 
features that the techniques use along with the studied ML algorithms, their hyperpa-
rameters, accounts considered in the dataset, and achieved performance score. Note 
that all these techniques use features that are based on some graph properties, transact-
ing amount, and active state to train the ML algorithm. However, several other stud-
ies, such as Chen et al. (2018a) and Cheng et al. (2019), use inferences drawn from the 
analysis of the transaction graph to mark malicious accounts. In Chen et al. (2018a), the 
authors try to identify accounts that indulge in DDos attacks and argue that accounts 
that create multiple rarely used contracts are malicious. A similar approach is followed 
in Jung et al. (2019) where the authors used only verified SC codes and introduced fea-
tures like SC size, lifetime, and average time between transactions (i.e. Inter-event time). 
In Cheng et al. (2019), the authors deploy honeypot and analyze remote procedure call 
(RPC) requests to identify malicious accounts. They then analyze transactions to mark 
accounts as suspicious that accept crypto-currency from malicious accounts.They per-
form behavior analysis to identify fisher accounts and attacks such as crypto-currency 
stealing.

All the above techniques either use a limited set of ML algorithms on a highly scaled-
down data inducing over-fitting or apply inferences on the graph structure to identify 
malicious activities and accounts. In most cases, the studies use features that do not cap-
ture temporal behavior and are approximated by the average (mean) behavior, thereby, 
further inducing a bias in their study thus having high accuracy. On the other hand, 
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techniques that use large datasets and have high class imbalance, either have high recall 
and low precision or low recall and high precision (Ostapowicz and Zbikowski 2019). 
Nonetheless, using our features, we identified the ML algorithm that provides not only 
the best precision but also the best recall. In brief, these measure are described next. Let 
C be the set of n distinct classes present in a dataset such that C = {C1,C2, ...,Cn}.

•	 Precision For a particular class i, the precision is defined as the ratio of correctly 
predicted observations of a class to the total observations that are predicted under 
that class. Let Pj,i represents the number of observations of class j that are predicted 
under class i such that j ∈ C . Formally, precision is defined as: 

•	 Recall For a particular class, recall is defined as the ratio of correctly predicted obser-
vations of a class to the total observations of that particular class. Let Ri,j represents 
the number of observations of class i that are predicted under class j. Formally, recall 
is defined as: 

•	 Balanced accuracy For an imbalanced dataset, accuracy can be deceiving. However, 
balanced accuracy gives well enough representation of the performance of the model. 
Balanced accuracy is defined as the average recall score obtained in each class. For-
mally, balanced accuracy is defined as: 

•	 F1 score It is represented by the harmonic mean of precision and recall. It can also be 
described as a weighted average of precision and recall. Formally, F1 score is defined 
as: 

•	 MCC score Mathews Correlation Coefficient (MCC) is the correlation between the 
ground truth and the predicted results. It is defined as: 

Methodology
We use Ethereum mainnet blockchain transaction data and first validate our assump-
tions and approach. We segment the transaction data into sub-datasets (SD) to capture 
the behavioral changes. We create the SDs using different temporal granularities ( Tg 

(1)Precisioni =
Pi,i

∑

j∈C Pj,i

(2)Recalli =
Ri,i

∑

j∈C Ri,j

(3)Balanced_Accuracy =
1

n

∑

j∈C

Recallj

(4)F1_Scorei =
2 ∗ Precisioni ∗ Recalli

Precisioni + Recalli

(5)
MCC =

∏

i∈C Pi,i −
∏

j∈C−{i} Pj,i
√

∏

i∈C

[(

∑

j∈C Pj,i

)

×

(

∑

j∈C Pi,j

)]
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such that Tg ∈ TG ) where TG = {Day , Week, Month, Quarter, HalfYearly, Year, All} . A 
granularity becomes coarser as we move from Day to Year. Here, a SD in a Day consists 
of transactions of 6000 blocks. The choice of 6000 blocks is based on the fact that in 
Ethereum approx. 6000 blocks are created every day. At a coarser Tg , a SD in a Week con-
sists of 7 Days data. Similarly, a SD in a Month consists of 30 Days data, a SD in a Quar-
ter consists of 3 Months data, a SD in a HalfYearly consists of 6 Months data, and a SD in 
a Year consists of 12 Months of data.

On all the features that are time series based (features described in Sect. 4), we per-
form time series analysis of all the SDs at different Tg to quantify them. To perform such 
task, we use tsfresh that “extracts characteristics from a time series” (Christ et al. 2016, 
2018). The analysis reveals that features such as quantile and median best describe the 
time series for most of the features we have. We observe this behavior not only in the 
entire dataset but also in different SDs at different Tgs.

We first apply the AutoML pipeline using TPOT (Olson et al. 2016) to identify the best 
ML classifier on the entire dataset and validate state of the art techniques. From a given 
set of ML pipelines, TPOT reports the ML pipeline that produces the best results, in 
our case the best balanced accuracy. We configure TPOT with not only the state of the 
art supervised ML algorithms and their hyperparameters but also with other hyperpa-
rameters to identify best results and to be sure that related studies did identify hyper-
parameters for which the balanced accuracy was the best. Note that TPOT internally 
performs imputation and feature scaling also. A detailed explanation of TPOT is out of 
scope of this work, thus we do not present the internal architecture of TPOT. Besides 
supervised learning, as our aim is to detect malicious accounts, we also apply cluster-
ing to identify accounts that show similar behavior to that of malicious accounts. Note 
that for training purposes, we use 80% of the dataset while we test on the remaining 
20% of the dataset. For the entire dataset, we find that K-Means provides best silhouette 
score for k = 9 when we consider both EOAs and SCs while k = 10 when we consider 
only EOAs. For the clusters identified as malicious, we use cosine similarity to quantify 
the similarity among the accounts within a cluster. We acknowledge that there are other 
methods as well to identify similarity, but for this work we use cosine similarity. Assum-
ing that K-Means with hyperparameter k = 9 identified for entire dataset (both EOAs 
and SCs) performs the best for all temporal sub-datasets at different temporal granu-
larities, we determine a probability for an account to be malicious at different temporal 
granularities.

In summary, Fig.  1 presents an overview of our methodology. Here, for the data-
set we have, we first pre-process the data to generate necessary graph structure and 
segment the it based on different Tgs . On the full dataset, we then identify distribu-
tions and generate necessary heat maps. All the data segments are then passed to the 
feature constructor which captures all the needed features. As there are two types 
of features: time series based and non-time series based features, for all the time 
series based features in each data segment we ran tsfresh. The results, depending 
on the data segment, are then integrated with the non-time series based features in 
that data segment. Once we obtain the needed features, we further segment the data 
based on EOAs and SCs and perform PCA (Principal Component Analysis) to reduce 
the dimensionality of our dataset. We then execute supervised ML algorithm on the 
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derived datasets using AutoML tool to identify the best ML algorithm. Further, we 
also apply different unsupervised ML algorithms, for example K-means, to identify 
the number of clusters for which the silhouette score is the best, then perform cosine 
similarity to identify potential benign accounts that may seem malicious. Once the 
best setting for clusters is identified, we use it for the temporal analysis on different 
SDs and generate probability distribution for an account to be deemed malicious.

Feature engineering
A typical blockchain is a temporal-directed graph. Let Gt(V t ,Et) be the temporal 
snapshot of the blockchain graph, where V t is a set of accounts at time t and Et is the 
set of directed edges or the transactions that happen between two accounts in Vt at 
time t. Figure  2 shows 3 temporal snapshots of blockchain graph where 5 accounts 
interact with each other at different epochs. Here, at time t0 , 3 accounts ‘A’, ‘B’, and 
‘C’ interact where one account (account ‘B’) sends crypto-currency to the other 2 
accounts. Similarly, at t1 and t2 , 2 and 3 accounts interact, respectively. The figure also 
shows corresponding aggregated graph where the edges with more than one occur-
rences are weighted with the number of occurrences.

Fig. 1  Overview of our methodology

Fig. 2  Sample blockchain temporal graphs and corresponding aggregated graph
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We used both temporal and aggregated graph structure of blockchain to extract fea-
tures. The set of features (F) defined in the related work is limited and, in most cases, 
does not convey correct temporal behavior. We extend the feature set and introduce 
new features to detect malicious accounts. We follow a two-fold methodology to 
identify the relevant features. First, we study different attacks that have happened in 
the past to understand what features malicious accounts revealed after engaging in 
malicious activity. Second, as most of the account features (for example, inDegree) 
are time series based, we perform time series analysis to identify features that best 
represent the salient properties of the relevant time series. Below we provide a list of 
all the features we use:

•	 Non Time Series based (set Fn|Fn ⊂ F)
•	 Active state (AS) malicious activities are usually short-lived (Aspembitova et al. 

2019) and remain, for example, until remediation is introduced. It is thus essen-
tial that we consider features such as when the account first transacted (transact-
edFirst), last transacted (transactedLast), how long it has been active (duration-
Active), and since when the account is continuously transacting (activeSinceLast).

•	 Time series based (set Ft |Ft ⊂ F  ) We analyze each of the following time series 
based features using tsfresh (Christ et  al. 2016, 2018) and select 3 top features 
identified for each of the following attributes. Nonetheless, as inter-event time 
(IET) itself is a time series, we use it as a feature as well.

•	 inDegree (iD) it represents the number of transactions in which the account 
under consideration is a receiver at a particular instant. Most of the mali-
cious activities involve transfer of money to a malicious account. Thus, it is 
one of the most important features used to understand the behavior of a mali-
cious account. In Singh (2019), the author found uniqueInDegree (defined as 
unique accounts from which the account under consideration has ever received 
money) to be one of the most critical features for identification of malicious 
accounts. On top, we also use aggregated inDegreeAgg as a feature.

•	 outDegree (oD) represents the number of transactions in which the account 
under consideration has sent money at a particular instant. In some attacks 
such as Bitpoint Hack (O’Neal 2020), after the attacker has received amount of 
sum from the victims in an alias account, they transferred the received sum to 
another account they hold or to an exchange. Such attacks increase the impor-
tance of outDegree as a potential feature. Similar to the case above, we also use 
aggregated outDegreeAgg as a feature.

•	 Balance (Bal) our motivation to use it as a feature is based on the fact that 
most malicious activities in a permissionless blockchains are finance based. For 
example, in one of the famous Parity Multisig wallets (Palladino 2020) attack, 
the malicious account drained more than 150k Ethers. Thus, the currency held 
by an account as well as its flow are important features. We identify balance 
time series for both in/out case. Besides balance, we identify for each instance, 
max balance for both in and out cases (maxInBalance and maxOutBalance), 
zeroBalanceTransactions (transactions where no money was transferred either 
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to or from an account), totalBalance (final balance held with the account), and 
averagePerInBalance (average of received balance) as features.

•	 Transaction Fees (TF) In crypto-currency based blockchains, a transaction 
is marked by transaction fees that a sender is willing to spend on a particular 
transaction. In the Ethereum blockchain, TF = Gas × GasPrice where Gas is 
the measure of the amount of computation required to perform the transac-
tion by a miner and GasPrice is the amount of Ethers a user is willing to pay 
per unit Gas. Operations like transferring of Ethers require a fixed sequence 
of instructions i.e. fixed amount of computation so it consumes fixed amount 
of Gas (21000). Therefore, if a high transaction fee is paid, it suggests that the 
user is willingly setting a higher GasPrice, since, for a transaction, unit of Gas is 
a fixed. Several attackers put higher gas price to bribe the miner so that a par-
ticular transaction of interest to them is included in the next block (Cheng et al. 
2019). Nonetheless, in DDos attack (Buterin 2020), an attacker created multiple 
accounts at very low gas price to increase synchronization and processing time. 
Thus, it is also a feature.

•	 Attractiveness (A) mostly, malicious accounts tend to interact with accounts 
that they have not interacted with before. The probability of interacting with 
the same account that they have interacted before is very low. Attractiveness 
can be understood as the change in the neighborhood of an account over 
time. This can be modeled using the stability of the neighborhood. Consider 
5 accounts in the blockchain that interact with each other and perform trans-
actions with each other as shown in Fig.  3. From the figure, we can see that 
account ‘A’ received crypto-currency from accounts that change almost in every 
time slot. On the other hand, account ‘B’ only received crypto-currency from 
account ‘C’. This stability of incoming transactions deem account ‘B’ as more 
stable and less attractive than account ‘A’ which is more unstable and attrac-
tive to other accounts. Consider, Nt

i  to be the neighborhood (accounts from 
whom the account i has received crypto-currency) of account i at time t, 
T = {t, t − 1, · · · , t − θa} , and θa the time window size. Based on this, we define 
attractiveness ( At

i ) for account i at time t as shown in Eq. 6. 

Fig. 3  Sample graph depicting the most attractive and least attractive accounts
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 In the Eq. 6, the numerator represents the number of unique accounts that the 
account i has received crypto-currency from that were present in past θa − 1 
blocks/times. While the denominator represents the total number of unique 
accounts from which the account has received crypto-currency from, in the last θa 
blocks. To get the attractiveness value, we subtracted this ratio from 1. Note that 
we specifically considered in-degree and not the degree of the account because we 
were motivated by the fact that most of the malicious activities involve extracting 
crypto-currency from a benign account.

	 As the blockchain graph is a temporal graph where interactions are intermit-
tent, an account’s neighborhood is highly dynamic and changes at each epoch. 
Thus, the attractiveness also changes with respect to time (as new accounts can 
be added to the neighborhood at the epoch under consideration). Therefore, we 
define attractiveness as a temporal feature.

•	 Burst (BB) (set Fb|Fb ⊂ F  ) bursty behavior is defined as temporal non-homogene-
ous sequence of events (Karsai et al. 2012) and has been characterized by a fat-tailed 
inter-event time ( �t ) distribution. In one of the bitcoin blockchain attacks (Allin-
vain Theft 2020), a malicious account generated a large number of transactions to 
taint the bitcoin platform. Motivated by this incident, we define four types of bursts 
(temporal, degree, balance and gasPrice) that occur in the network under considera-
tion. As an account can either be a sender or a receiver, the following burst types are 
defined for cases (a) when the account acts as a sender, (b) when the account acts as a 
receiver, and (c) when the account acts as both a sender as well as a receiver.

•	 Temporal Burst for an account i, non-homogeneous occurrences of events (in 
our case transactions) lead to some transactions occurring where �t is less than 
a threshold, θ it , while for other transactions �t is large. If a transaction happens 
when �t < θ it , we assume that it is a burst. Some burst can be long lived while 
some burst can be short lived, meaning, some event can happen continuously for 
long time intervals before going dormant. As features, we identify number of such 
temporal bursts (numberOfTemporalBursts) and the duration of the longest burst 
(longestBurstDuration) for both in and out transactions separately.

•	 Degree Burst it has been proven that the degree (also inDegree and outDegree) 
distribution of the aggregated transactions in blockchain such as Ethereum follows 
a power-law (fat tailed) distribution (Chen et  al. 2018a) with α ∈ [−2.8,−2.6] . 
This suggests that many accounts do not transact often while there are very few 
accounts that act as hubs (for example, exchanges). Nonetheless, when con-
sidering the temporal aspects, we believe such behavior also exists where some 
accounts have a very high degree for some instant while for other instants they 
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have a low degree. Thus, we define a degree burst when at a given instant of time 
the degree of an account, i, is greater than θ id . Similar to the temporal case, for 
degree bursts we also identify number of degree bursts (numberOfDegreeBursts) 
that happened for an account over time, number of instances where the degree 
burst happened (numberOfDegreeBurstInstances), and the time at which the larg-
est burst of degree happened (largestBurstAt). Note that these features except for 
numberOfDegreeBurstInstances are defined for both in and out transactions sep-
arately as well.

•	 Balance Burst in some cases transactions happen from accounts i to account j 
where the involved sum of crypto-currency was very large (more than a threshold 
value θ ib ). For example, some accounts associated to Silk Road (Spagnuolo et  al. 
2014) or involved in money laundering, sometimes transact large sum for illegal 
activities. Bursty behavior of transaction amount could be helpful in identify-
ing potential malicious activities and accounts. Similar to the above cases, for an 
account i, we identify number of unique instances where balance is more than θ ib 
(numberOfBalanceBurstyInstances), and number transactions more than θ ib (num-
berOfBalanceBursts). Note that, we define these factors for both in and out cases, 
separately.

•	 GasPrice Burst: As described before, an attacker can put higher gas price (more 
than a threshold value θ ig ) to bribe the miner so that the transaction is included 
in the block. This activity although abnormal is useful in understanding account’s 
behavior. Towards this, similar to previous cases, we define numberOfGasPrice-
BurstyInstances as number of instances where the gasPrice was set more than θ ig . 
This is only defined for senders as gasPrice is only set by the sender.

Note that features such as in/outDegree, burst, attractiveness are some graph-based tem-
poral features. Besides these features, other graph-based properties that we use as fea-
tures include clustering-coefficient (CC) (Watts and Strogatz 1998). For an account i, let 
Nt,in
i  be the neighborhood of account i at time t from which the account has received the 

crypto-currency, Nt,out
i  be the neighborhood of account i at time t to which the account 

has paid the crypto-currency. Thus, the total account degree is degtoti = |Nt,in
i | + |Nt,out

i | . 
Let Nt,↔

i = Nt,in
i

⋂

Nt,out
i  and air = 1 if there is a transaction between i and r, otherwise 

0. We similarly define ais , ari , asi , ars , asr . For a directed graph, CC of account i ( CCt
i  ) at 

time t is defined by Eq. 7 (Fagiolo 2007).
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Results and evaluation
We evaluate the effectiveness of our method using Ethereum’s external transactions data 
which is publicly available for download using the Etherscan APIs (Etherscan 2020a). 
Note that the APIs do not provide any information about the account (such as the name 
and the account type). Nonetheless, as the hash of the accounts is available, one can 
check the associated information using the Ethereum Blockchain Explorer (Bitfly Gmbh 
2020). We perform all our evaluations using Python version 3.7. Within the Python 
environment, we use supporting libraries such as TPOT version 0.10.2, tsfresh version 
0.13.0, scikit-learn version 0.21.3, pandas version 0.25.1, and numpy version 1.16.5. All 
the result plots are generated using matplotlib version 3.1.1.

Dataset

Ethereum as on 20th December 2019 had ≈79M accounts. Out of these accounts, 3362 
accounts were already tagged to be involved in malicious activities. The tags mainly include 
Phishing (3168 accounts), Gambling (8 accounts), Cryptopia-Hack (6 accounts), Heist (16 
accounts), Suspicious (4), Bitpoint Hack (2 accounts), Compromised (21 accounts), Spam 
(10 accounts), Upbit-Hack (123 accounts), Unsafe (1 account), Scam (1 account) and Bugs 
(2 accounts). Note that to get such ground truth about the accounts, we explicitly browsed 
through all the tags available in Etherscan and marked those accounts as malicious where 
the associated tags had caution warnings. Moreover, we chose the accounts associated 
with the tag Gambling as this type of activity is illegal in most countries. We look for other 
sources such as Cryptoscam.db (MyCrypto Inc 2019) as well to know the ground truth 
about the accounts as only some of the accounts are tagged as malicious. As a result, we find 
329 more malicious accounts with a total of 3691 unique malicious EOAs and SCs. Upon 
further investigation, we find that out of these 3691 EOAs and SCs, 746 never transacted 
and were mostly involved in the token trade until 7th December 2019. We, thus, remove 
them from our malicious accounts dataset. In these remaining set of malicious accounts, 
there are 158 SCs and 2 marked compromised exchanges. Note that for these accounts we 
collect only-but-all external transactions (transactions from EOAs to SCs, and between 
different EOAs). Also note that at the time of this study Etherscan had removed most of 
the malicious tags. But recently Etherscan provided new tags and marked more accounts 
as malicious. As of 27th May 2020, there were 4708 malicious accounts out of which 2019 
were newly tagged accounts. Out of these 2019 accounts only 1252 accounts ever trans-
acted. Out of these 1252 accounts 1029 were created before 7th December 2019 in which 
only 3 are present in our dataset. As the number of malicious accounts is constantly evolv-
ing, we take this opportunity to cross validate accounts that our analysis found malicious.

There is a high class imbalance in the dataset as the number of benign accounts is 
large. Thus, we perform random under-sampling to uniformly sample 697K benign 
accounts from the 79M Ethereum accounts. In the total ≈700K accounts we have, there 
are 7 exchanges and 23,141 SCs while the remaining accounts are EOAs.

A unique external transaction, Tx, retrieved using Etherscan API contains information 
like blockHash, blockNumber, source, destination, gas, gasPrice, Transaction hash, bal-
ance, and timestamp of the block. A typical Tx is shown in Fig. 4. Here,

•	 blockNumber is the number associated with a block in which the transaction (rep-
resented by a 32-byte long transaction hash stored in hash) is stored by the miner 
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at index represented by transactionIndex. A block is also uniquely identified by a 
32-byte long hash (i.e. blockHash) . The timestamp represents the epoch timestamp, 
in seconds, at which the transaction was mined.

•	 The from and to fields are both 20-byte long hashes of public keys of sender and 
receiver accounts. These accounts can be either EOAs or SCs. In a transaction, if the 
to field is empty, then it represents that the transaction is a contract creation transac-
tion. In this case the input field contains the SC code. However, if to field is a hash of 
a SC, then input field may contain a function call. In other cases, the input field is an 
arbitrary message or Null.

•	 In a transaction, nonce represents the number of outgoing transactions performed 
by an EOA sender before that particular transaction. This nonce, in the case of SC, 
represents the number of secondary SCs created by it. Nonce along with the sender’s 
address is used to calculate the address of the SC.

•	 The value field represents Ethers transferred (in Wei). 1 Ether is equal to 1018 Wei.
•	 The maximum amount of gas provided for the transaction is specified using gas. The 

gas is the upper limit of computation work that sender allows a miner to perform the 
transaction. Whereas gasUsed is the actual amount of computation performed. The 
cost per unit of gas that the sender is willing to pay for a transaction is represented 
by gasPrice (in GWei = 109 Wei). An attacker can set a higher gasPrice for better 
chances of his transaction being included in the block.

Note that the Tx data does not include the actual timestamp of when a transaction was 
performed by the account. The available timestamp is the time when the miner added 
the Tx to the block. The only time related information, we are able to extract is the infor-
mation about when a block is mined. However, currently we do not use this information. 
We assume a time bin of 1 block for our study. We assign respective blockNumber as a 
timestamp to all the transactions1. Based on this notion of timestamp, we also segment 

Fig. 4  A sample Ethereum transaction

1  The block numbers are monotonically increasing thus giving a notion of timestamp.
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the data into several SDs of different Tg and study the behavior of the accounts. We 
describe in the Sect.  1 the different Tg s we consider. For statistical purposes, we have 
1,531 Day SDs, 219 Week SDs, 52 Month SDs, 18 Quarter SDs, 9 HalfYearly SDs, 5 Year 
SDs, and the entire dataset. A total of 1835 datasets.

For our study we assign: (i) θt = 2 so that continuous burst of smallest size are also 
captured, (ii) for an account i, θ id = 0.8× (max(d)) where d is the in/outdegree of an 
account in the considered SD, (iii) θ ib = 0.8× (max(b)) where b is the transaction bal-
ance for either in or out case, (iv) θ ia is set to be equal to the duration of the SD to keep 
the entire history of neighbors that a particular account transacted with in the past in 
the given sub-dataset, and (v)) θ ig = 0.8× (max(gasPrice)) where gasPrice is the the gas 
price for transactions associated with account i. We then analyse different time series 
based features to identify there characteristics as potential features.

Results

In this subsection, we present results obtained after analysing the dataset and using dif-
ferent ML techniques. Here, we also present results obtained after performing behavio-
ral analysis.

Fig. 5  Degree distribution of accounts
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Data analysis

For the entire dataset, we first study inDegree and outDegree distribution for both 
malicious and benign accounts to validate the fat-tailed behavior of the degree dis-
tribution. From Fig.  5, we identify that power-law distribution (Alstott et  al. 2014) 
with xmin = 2.3 , α ∈ [2.37, 2.54] and α ∈ [2.23, 2.33] fits inDegree and outDegree dis-
tribution, respectively, for both malicious and benign accounts. Here α and xmin are 
the powerlaw exponent and minimum x from where the powerlaw distribution is 
observed, respectively.

The fat-tailed nature of degree is evident because some accounts interact with more 
number of accounts at a certain instant, thereby inducing a bursty behavior. We study 
the distribution of inDegree for all individual accounts to understand if such behavior 
is shown by all the accounts. Figure 6a presents distribution of inDegree for different 
accounts. We identify that the inDegree of very few accounts is high (> 100) for very 
few time instances while most of the time it is low suggesting the existence of bursts. 
We observe a similar behavior for outDegree as well (see Fig. 6b).

Next, we validate the existence of temporal bursts. For this we study the distribu-
tion of inter-event time ( �t ) for all accounts. We find that it follows power law with 
xmin = 3 and α = 1.25 and α = 1.76 for benign and malicious cases, respectively (see 

Fig. 6  Temporal degree distribution of individual accounts
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Fig.  7a). Nonetheless, we also observe a truncation at 1.5× 106 blocks. The trunca-
tion reflects that some accounts are inactive or did not perform any transactions 
for long period of time. When looking at the individual level, we observe that only 
few accounts have very large inter-event time ( > 1× 106 ) where the probability of 

Fig. 7  Distribution of �t

Fig. 8  Attractiveness
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occurrence of such events is very low. Most of the activity happens where the inter-
event time is very small (see Fig. 7b).

The attractiveness behavior of malicious and benign accounts differ significantly 
(see Fig. 8). Most malicious accounts have high attractiveness value while most of the 
benign accounts have low attractiveness value. This justifies our assumption that most 
malicious accounts target those accounts that they have not previously interacted 
with. Some attacks (Upbit Hack - Fake_Phishing1431: ‘0xdf9191889649c442836ef55de-
5036a7b694115b6’) uses multiple accounts to evade detection while transferring money 
to exchanges. They use multiple accounts as buffer between account and exchange. 
This is the reason for relatively high probability ( p(A = 0) > 0.2 ) for the low values 
of attractiveness ( A = 0 ) for malicious accounts. Similarly, for some benign accounts 
p(A = 1) = 0.1 because such accounts only have 1 incoming transaction in whole life-
time portraying that the account interacted only with new accounts.

Feature extraction

For the entire dataset, after applying tsfresh, for every temporal feature Fj
t ∈ Ft we get a 

set of features ( F̂ j
t ) that describes Fj

t . tsfresh in most of the cases reported more than 400 
features. But, due to computational resource constraints, we were not able to use all the 
features from F̂ j

t . Therefore, we choose only the top three features identified using Gini 
as the scoring method. Here, we have selected 3 features because for most of the Fj

t ∈ Ft , 
top 3 features turned out to be equally important. After this process, we get a total of 
59 features. Appendix 2 provides extracted feature vector of a sample account. For the 
entire dataset, using pearson correlation, we remove highly correlated features and find 
36 important features. We also perform PCA to identify 28 features that cover >98.2% 
variance to further reduce the feature space in the entire dataset.

Approach using supervised learning

For the analysis purposes, besides performing PCA to identify 28 features and before 
running the AutoML tool (TPOT) to identify the best supervised learning algorithm, 
we segment the entire dataset into six dataset configurations. Note that these six data-
set configurations are different from the temporal SDs. Three out of these six dataset 
configurations use all types of accounts (EOA and SC) and have 59, 36, and 28 features, 
respectively. While for the remaining three, we separate EOAs from SCs and use only 
EOAs. These three configurations again have 59, 36, and 28 features, respectively. We 
configure TPOT with all the supervised ML algorithms used in the state of the art stud-
ies along with other supervised ML algorithms to identify the algorithm that gives best 
balanced accuracy.

As mentioned in the Sect.  3, from a given set of ML pipelines, TPOT reports the 
ML pipeline that produces the best results, in our case the best balanced accuracy. 
This results in the evaluation of multiple ML models that are even beyond those that 
are reported by the related works. We, thus, decided to limit ourselves from reporting 
results of all the models and instead report the model for which the best balanced accu-
racy was achieved.Table 2 lists different dataset configurations we have used along with 
the algorithm that provided the best balanced accuracy along with precision, recall, and 
f1-score for each class and reports Mathews Correlation Coefficient (MCC).For each 
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dataset configuration and the algorithm that provided the best balanced accuracy, we 
only provide values of those hyperparameters for which the values are different from the 
default case. We identify that ExtraTreesClassifier provides overall best balanced accu-
racy for all the dataset configurations. Among the different dataset configurations we 
have, the dataset with 59 features and containing both EOAs and SCs shows the best 
balanced accuracy. The difference in balanced accuracy score between the dataset con-
figurations when 36 and 59 features are used is only 0.5% for both when we consider 
only EOAs and all the accounts, respectively. Given such results, we show that correlated 
features do not provide much gain and can be removed without the loss of accuracy. 

Fig. 9  Cosine similarity between malicious accounts identified on different dates

Table 2  Balanced accuracy, Precision, and  Recall, and  F1 score for  both  malicious 
(Mal) and  benign (Ben) accounts with  best identified ML algorithm for  supervised case 
when using different dataset configurations

Here, we also report the Matthews Correlation Coefficient (MCC) score

28 (PCA) EOA ExtraTreesClassifier(class_weight = ‘balanced’, max_features = 0.4, max_samples = 0.3, min_samples_leaf = 
11, min_samples_split = 19, n_estimators = 600)

28 (PCA) EOA and SC ExtraTreesClassifier(class_weight = ‘balanced’, criterion = ’entropy’, max_features = 0.25, max_samples 
= 0.15, min_samples_leaf = 13, min_samples_split = 4, n_estimators = 800, n_jobs = 20, random_state = 100)

36 EOA ExtraTreesClassifier(bootstrap = true, class_weight = ‘balanced’, max_features = 0.15, max_samples = 0.7, min_
samples_leaf = 8, min_samples_split = 18, n_estimators = 200, n_jobs = 10, random_state = 100)

36 EOA and SC ExtraTreesClassifier(class_weight = ‘balanced’, criterion = ’entropy’, max_features = 0.45, max_samples = 
0.75, min_samples_leaf = 18, min_samples_split = 6, n_estimators = 200)

59 EOA ExtraTreesClassifier(class_weight = ‘balanced’, max_features = 0.2, max_samples = 0.75, min_samples_leaf = 13, 
min_samples_split = 19)

59 EOA and SC ExtraTreesClassifier(class_weight = ‘balanced’, criterion = ’entropy’, max_features = 0.3, max_samples = 0.3, 
min_samples_leaf = 14, min_samples_split = 20, n_estimators = 200)

Features Data segment Best classifier Accuracy 
balanced

Precision Recall F1 score MCC score

Mal Ben Mal Ben Mal Ben

28 Only EOA ExtraTrees 0.872 0.38 1.00 0.75 0.99 0.50 1.00 0.510

(PCA) EOA and SC 0.873 0.22 1.00 0.76 0.99 0.34 0.99 0.421

36 Only EOA 0.876 0.11 1.00 0.78 0.97 0.19 0.99 0.254

EOA and SC 0.882 0.24 1.00 0.78 0.99 0.37 0.99 0.429

59 Only EOA 0.881 0.26 1.00 0.77 0.99 0.38 0.99 0.425

EOA and SC 0.887 0.29 1.00 0.78 0.99 0.42 1.00 0.473
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Further, for completeness, the Table  3 shows balanced accuracy, precision, recall, and 
MCC score for the ML algorithms and their hyperparameters that the state of the art 
algorithms use. Here, we specifically focus on the Ethereum based state of the art algo-
rithms for which the hyperparameters were reported. From the Table 3, we can see that 
the best balanced accuracy achieved was 85% while using our approach, we were able 
to achieve > 88.7% balanced accuracy. However, when comparing MCC scores, we note 
that although XGBoost has a high MCC score, it has relatively low Recall on malicious 
account. Having a low Recall would mean that algorithm is deeming a large number of 
malicious accounts as benign. This is not desired as there could be an adversarial attack. 
Though for our case the MCC score is low, recall is high. Therefore, our model is more 
robust towards adversarial attack.

To validate our results, we test ExtraTreesClassifier with identified hyperparameters 
on newly identified set of 1252 malicious accounts. The classifier achieves 50% bal-
anced accuracy. However, when we train the classifier with identified hyperparameters 
on the total dataset (dataset consisting of previously used 700k accounts and new 1252 
accounts), we were able to achieve ≈ 92% balanced accuracy. This makes us wonder if the 
new malicious nodes have different characteristics. We check cosine similarity between 
the old 2946 malicious accounts and the new 1252 malicious accounts (see Fig. 9). We 
find that most of the newly added malicious accounts had low similarity score. Only one 
new malicious account had similarity score > 0.985 with only one old malicious account. 
In many cases the similarity score even reached < −0.89 showing that the accounts are 
not similar and there are some new aspects used by new malicious accounts. Note that 
to identify cosine similarity we do not use features such as transactedlast and transact-
edFirst because many of the accounts were created after 7th Dec 2019. This shows mali-
cious actors also evolve the ways they use to misuse crypto-currency platforms for their 
fraudulent activities.

Approach using unsupervised learning

We next test unsupervised learning algorithms such as K-Means, DBSCAN, HDBSCAN, 
and oneClassSVM to identify suspect accounts in the entire dataset. We find that for 
the six dataset configurations (mentioned above and not the SDs) and different values of 
k ∈ [3, 24] , K-Means provide the best silhouette score (score = 0.365) when k = 10 clus-
ters and when we use all the features but only EOAs (‘59 - EOA’) (see Fig. 10). Among 

Table 3  Balanced accuracy, Precision, and  Recall, and  F1 score for  both  malicious (Mal) 
and  benign (Ben) accounts for  supervised learning algorithms used in  state of  the  art 
approaches where hyperparameters were reported

Here, we use 59 features and both EOA and SC dataset configuration. Here, we also report the Matthews Correlation 
Coefficient (MCC) score

*Did not converge as the dataset was large

Reference Classifier Accuracy 
balanced

Precision Recall F1 score MCC

Mal Ben Mal Ben Mal Ben Score

Ostapowicz and 
Zbikowski (2019)

RandomForest 0.64 0.98 1.00 0.29 1.00 0.44 1.00 0.52

SVM* – – – – – – – –

XGBoost 0.85 0.97 1.00 0.7 1.00 0.91 1.00 0.81

Singh (2019) KNN 0.73 0.89 0.99 0.48 0.99 0.62 0.99 0.64
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Fig. 10  Silhouette scores of clusters identified by K-Means where k ∈ [3, 24] for different dataset 
configurations

Fig. 11  Clusters with number of malicious accounts for a when only EOAs are considered, b when both 
EOAs and SCs are considered

Fig. 12  Cosine similarity between malicious accounts and benign accounts in the cluster with best 
Silhouette score
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these 10 clusters, for one initial condition, one cluster had the most number of already 
known malicious EOAs ( ≈ 73.9% (2062/2788) ) (see Fig. 11). We then identify the simi-
larity between all the accounts in the identified cluster. We identify 554 benign accounts 
whose behavior (cosine similarity) (see Fig. 12) is within 1− ǫ where ǫ → 0 to that of 
malicious accounts. For our analysis we use ǫ = 10−7 . We cross validate the transactions 
performed by these 554 benign accounts and find that (a) most of the EOAs have small 
transactedLast value, meaning, those accounts never transacted in recent past (in past 
6 months 494 EOAs never interacted), (b) atleast 38 EOAs only have incoming transac-
tions and are not exchanges, and (c) totalBalance ∈ [0.0, 150.0] Ethers with a median of 
0.001 Ethers.

When considering both EOAs and SCs, we obtain the best silhouette score (score = 
0.356) for k = 9 clusters but for the case when we use all the 59 features (‘59 - EOA 
and SC’) (see Fig. 10). In this case, for one initial condition, there was one cluster with a 
maximum number of already tagged malicious EOAs ( ≈ 64.3% (1793/2788) ) and mali-
cious SCs ( ≈ 62.6% (99/158) ). We identify 293 potential suspects EOAs and no suspect 
SCs within this cluster using our previous method. Out of these 293 accounts, 160 EOAs 
were also detected in the set of 554 accounts. We further tested if the accounts we identi-
fied as suspects are present in the list of newly tagged malicious accounts. We found that 
none of the 3 new malicious tagged accounts that transacted during our analysis period 
were not in our list of suspects. This is possible as the accounts must have changed their 
behavior and become malicious after our collection period. We do not reveal the account 
hash for the sake of privacy and not maligning benign accounts in interacting with any of 
these 554 or 293 suspects until they are officially tagged malicious. Other unsupervised 
ML algorithms did not perform better than K-Means. The range of silhouette scores for 
HDBSCAN was ∈ [−0.06,−0.022] while oneClassSVM did not converge.

Given such results, we advocate the use of the approach using unsupervised learning. 
Approach using supervised learning failed to classify correctly new malicious accounts. 
Moreover, for the unsupervised case, even in the initial dataset, our approach was able 
to identify more accounts as suspects. Thereby aligning with our motivation of detecting 
suspects in the blockchain. Keeping, such results in mind, we used unsupervised learn-
ing approach to detect behavior changes before deeming any account as malicious.

Behavior analysis

To further understand the temporal behavior changes before classifying the accounts 
as malicious, we use temporal sub-datasets (SDs) created at different temporal granu-
larities ( Tg , see Sect. 1). Consider a Tg ∈ TG of several SDs. Let this set be SD(Tg ) where 
SD(Tg ) = {SD(Tg )1, SD(Tg )2, · · · , SD(Tg )j , · · · , SD(Tg )n} . Further, consider an account 
i. We first analyse all the time-series based features in each SD(Tg )j and characterise 
them. We employ a similar approach as before where we identify F̂ i

t using tsfresh for a 
Fi
t ∈ F  in a given SD(Tg )j and use three features in F̂ i

t with the highest gini scores.
We then use K-Means with previously identified hyperparameter ( k = 9 ) and per-

form clustering. As before, we tag accounts in each SD(Tg )j as malicious and benign 
after identifying cosine similarity. This results in a vector (M) for each account of size 
ni where each element ( Mj ) in M is either 0 or 1 and ni is the number of SDs in a Tg 
in which the account appears. Here 0 represents not identified as malicious. Let this 
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set of SDs be SD(Tg ) = {SD(Tg )
i
1, SD(Tg )

i
2, · · · , SD(Tg )

i
j , · · · , SD(Tg )

i
n} . M depicts 

the behavior of an account i where a change in behavior is captured if Mj  = Mj+1 . 
We note that only one benign account, as per our analysis, has changed its behaviour 
most number of times (591) in the Tg = Day . Figure 13 shows probability distribution 
of the number of behavioral changes observed in an accounts. The figure only consid-
ers those accounts where the change happened at least once. For the daily case, as the 
data was significant we identify that lognormal-positive distribution with parameters 
xmin = 1 , µ = 1.25 , and σ = 2.36 best fits the data. Further, across all Tg s there were 
9254 unique benign accounts that showed unstable behavior.

From M, the probability of a particular account i to be malicious in a given Tg is 

given by pim =

∑

j∈SD(Tg )i
Mj

ni
 . Number of accounts with certain probability for being 

benign at different Tg s is shown in Fig. 14. Intuitively, a benign account should have 
pim = 0 while a malicious account should have pim = 1 . If a known benign account 
has a high probability then it cannot be trusted. Using such approach, we identify 814 
unique accounts across different Tg s as suspects that have pim = 0 . Further, as seen 
from the figure, most of the accounts were identified as benign.

In summary, capturing account’s behavior changes advocates if the account should 
be considered as malicious or benign at the time of performing a transaction with 
it. It is possible that, in past, an account might have evaded detection as malicious. 

Fig. 13  Probability distribution of number of changes in behavior of accounts with certain probability for 
being benign at different Tgs

Fig. 14  Number of accounts with certain probability for being benign at different Tg s on a semi-log scale
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Knowledge of such changes in the behavior provides an understanding on whether an 
account is trusted and is not involved in any illegal activity. Our approach provides 
one solution to know beforehand and predict if an account would behave maliciously.

Conclusion
Blockchains technology and concept has found its implementation not only in the 
financial sector such as crypto-currency market, hedge-fund, and insurance but also 
in sectors such as governance, education, healthcare, and law enforcement. Although 
blockchains are privacy-preserving, with an increase in its adoption, security threats are 
inevitable. The misuse will be more diverse and deployed using novel techniques. It is 
essential to have secure transactions. Motivated by the fact that there is limited work in 
identifying accounts involved in potential malicious activities and those available do not 
target temporal aspects of blockchains, in this work, we present a way to detect mali-
cious accounts considering the temporal nature of the blockchains.

In this work, we present graph-based temporal features (such as burst and attractive-
ness) that are inspired by the existing attacks in the blockchain on top of existing features 
used to identify malicious accounts. To do so, we first conduct a systematic study of the 
temporal behavior of the blockchain graph on a collected transaction data in one of the 
blockchains called Ethereum. Our results show that ExtraTreesClassifier performs best 
under the supervised setting and achieves balanced accuracy in the range [87.2, 88.7] for 
different dataset configurations. Moreover, under the unsupervised settings, K-Means 
was able to cluster max 73.9% known malicious accounts together and identify 554 more 
suspects that had similar behavior to that of malicious accounts. When considering 
behavioral changes over time and studying them over different temporal granularities, 
we are able to detect the probability of an account being malicious at a particular tempo-
ral granularity.

Given such results, we expect that benign accounts would be more careful while trans-
acting with suspects and safe-guard themselves from any fraud and security threats. 
However, the current technique is only applicable to permissionless blockchain. We 
would like to investigate the applicability of our method to blockchains where features 
such as Transaction Fees and Balance are missing. Despite whether a particular block-
chain is permissionless or permissioned, there are many other centrality measures such 
as closeness, betweenness and page-rank that are applicable in a blockchain graph. 
Another future research direction is to incorporate these measures as features and study 
the behavior of the accounts before tagging them as malicious or benign. Nonetheless, 
in this work, we detected suspects using supervised learning and unsupervised learning 
algorithms. Reinforcement learning is another type of ML that can be applied and stud-
ied to detect malicious activity. As our validations failed on the newly tagged malicious 
accounts one perspective is to study new features and new methods that the new mali-
cious accounts are using and deploying to perform illegal activities. In this work, we con-
sidered all the malicious activities under one class. In the future, we would also like to 
investigate which features are more important for a particular activity and study based 
on the malicious activity type.



Page 27 of 30Agarwal et al. Appl Netw Sci             (2021) 6:9 	

Abbreviations
EOA: Externally Owned Account; CC: Clustering coefficient; SC: Smart Contract; Bal: Balance; ML: Machine Learning; TF: 
Transaction Fee; AS: Active state; BB: Burst; iD: inDegree; IET: Inter-event time; oD: outDegree; A: Attractiveness; PoW: 
Proof of work; LOF: Local Outlier Factor; EVM: Ethereum Virtual Machine; MCC: Matthews Correlation Coefficient; RPC: 
Remote procedure call.

Acknowledgements
Not applicable.

Authors’ contributions
RA, SB and SKS designed the research, RA and SB conducted experiments. All authors read and approved the final 
manuscript.

Funding
This work is partially funded by the National Blockchain Project at IIT Kanpur sponsored by the National Cyber Security 
Coordinator’s office of the Government of India (Grant No. NCSC/CS/2017518) and partially by the C3i Center funding 
from the Science and Engineering Research Board of the Government of India (Grant No. SERB/CS/2016466).

Availability of data and materials
The list of 2946 malicious accounts used will be made available upon request. Nonetheless, list of all 4708 malicious 
accounts is publicly available on Etherscan and can be crawled using Etherscan (2020b). The Ethereum transaction Data 
is also public and can be downloaded using Etherscan APIs (Etherscan 2020a).

Competing interests
The authors declare that they have no competing interests.

Appendix 1: Proof of work
Proof-of-Work (PoW) is a type of consensus algorithm typically used in a Blockchain. 
Using consensus algorithms, distributed systems can achieve agreement on a single data 
value. In a lot of crypto-currencies, miners solve a computationally expensive and time 
consuming problem to add a block to the ledger. Miners use a costly highly specialized 
computer hardware (ASIC) for mining. They are awarded Ethers as mining reward when 
their block get confirmed in the ledger. Ethereum uses a Ethash PoW algorithm which is 
prominently designed to be ASIC resistant and supports GPU-based mining. It uses a 
memory intensive approach rather than a CPU intensive computation.

Nonetheless, PoW consensus algorithms partially provide defense from Sybil attacks 
because such attacks are computationally expensive and require a lot of computational 
resources. Therefore, although, an attack is possible, it is computationally very expensive.

Appendix 2: List of features
The Table  4 below list all the features used for our analysis. Note that the values are 
scaled values. Here, # Features represent the features present in the different data 
configurations.
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Table 4  Sample feature data

tsfresh 
identified

Feature names (as used in code) # 
Features

Value

59 36

indegreeTimeInv ✓ ✓ − 0.0086

outdegreeTimeInv ✓ − 0.0178

degreeTimeInv ✓ − 0.0128

numberOfburstTemporalInOut ✓ − 0.0045

longestBurstTemporalInOut ✓ − 0.1089

numberOfburstTemporalIn ✓ ✓ − 0.0035

longestBurstTemporalIn ✓ ✓ − 0.0375

numberOfburstTemporalOut ✓ ✓ − 0.0079

longestBurstTemporalOut ✓ ✓ − 0.1289

numberOfburstDegreeInOut ✓ − 0.0077

longestBurstDegreeInOutAtTime ✓ − 0.0728

numberOfburstDegreeIn ✓ ✓ − 0.0062

longestBurstDegreeInAtTime ✓ ✓ − 0.047

numberOfburstDegreeOut ✓ ✓ − 0.0074

longestBurstDegreeOutAtTime ✓ ✓ − 0.0569

zeroTransactions ✓ ✓ 0.0

totalBal ✓ ✓ − 8.6e−5

transactedFirst ✓ ✓ − 0.1942

transactedLast ✓ ✓ − 0.8879

activeDuration ✓ − 0.3908

averagePerInBal ✓ − 0.0222

uniqueIn ✓ ✓ − 0.0061

lastActiveSince ✓ ✓ 0.0

✓ indegree__index_mass_quantile__q_0.1 ✓ ✓ 0.3977

✓ indegree__energy_ratio_by_chunks_num_segments_10__segment_
focus_0

✓ − 0.3957

✓ indegree__linear_trend__attr_“pvalue” ✓ ✓ 1.1364

✓ ittime__quantile__q_0.7 ✓ ✓ − 0.2804

✓ ittime__fft_coefficient__coeff_0__attr_“real” ✓ ✓ − 0.3908

✓ ittime__median ✓ − 0.2861

✓ outdegree__energy_ratio_by_chunks__num_segments_10__segment_
focus_0

✓ ✓ − 0.4218

✓ outdegree__enegy_ratio_by_chunks__num_segments_10__segment_
focus_1

✓ ✓ 0.9724

✓ outdegree__fft_coefficient__coeff_0__attr_“real” ✓ ✓ − 0.0178

✓ gasPrice__quantile__q_0.2 ✓ − 0.3171

✓ gasPrice__quantile__q_0.1 ✓ ✓ − 0.3036

✓ gasPrice__cwt_coefficients__widths_(2, 5,10, 20)__coeff_0__w_20 ✓ ✓ − 0.0015

✓ attractiveness__median ✓ ✓ 0.7886

✓ attractiveness__quantile__q_0.4 ✓ 0.6248

✓ attractiveness__mean ✓ 0.9815

✓ balanceOut__quantile__q_0.1 ✓ ✓ − 0.0098

✓ balanceOut__quantile__q_0.3 ✓ − 0.0118

✓ balanceOut__cwt_coefficients__widths_(2, 5,10, 20)__coeff_0__w_2 ✓ − 0.0128

✓ balanceIn__quantile__q_0.4 ✓ ✓ − 0.0189

✓ balanceIn__cwt_coefficients__widths_(2, 5,10, 20)__coeff_0__w_20 ✓ ✓ − 0.0231

✓ balanceIn__quantile__q_0.3 ✓ − 0.0183

✓ maxInPayment__quantile__q_0.3 ✓ − 0.0188
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