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Introduction
According to recent results on the spread of COVID-19, a small fraction of the popu-
lation is responsible for most infections (Adam et al 2020; Schuchat 2020). Clusters in 
care facilities, restaurants and bars, workplaces, and music events (Furuse et al 2020), or 
even choir practice (Hamner et al. 2020), dance events (Jang et al 2020) are a hallmark of 
superspreading (Lloyd-Smith et al. 2005).

The most wide-spread deterministic Kermack–McKendrick equations (Kermack 
and McKendrick 1927), or SIR equations, are not designed to model superspreading. 
Superspreading is introduced as an additional dispersion of the secondary infections 
(Lloyd-Smith et al. 2005) using a negative binomial distribution, possibly in the context 
of random network theory (Hébert-Dufresne et  al 2020), or modeled with stochastic 
Markov Chain methods (Allen 2017).

The simplest way to modify the SIR equations to include superspreaders is by adding a 
new class of susceptible individuals, P, superspreaders (Mkhatshwa and Mummert 2010) 
to the equations. However, network science (Barabási and Albert 1999) suggests a more 
complex picture. If we map individuals into vertices of a graph and their connections 
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into edges, their degree distribution, i.e., the number of social connections of an indi-
vidual, typically follows a power-law distribution with a slope between 2 and 3. Recent 
analyses COVID-19 data (Ziff and Ziff 2020) support such power-law behavior that is 
the hallmark of small-world phenomena of network science. Our goal is to use network 
science insight to generalize the SIR formalism. The result is a set of equations simi-
lar to poly-SIR generalizations of the SIR formalism (Moghadas et al. 2020; Chikina and 
Pegden 2020), but more specific to network science and does not assume a linear con-
tact matrix: non-linearity is essential to superspreading. Note that here we are focusing 
on structural superspreading due to the average contact structure of the population as 
they go about their daily lives. In the discussions, we will outline how to model transient 
superspreading, i.e., rare individual events that can dominate the case counts when the 
overall numbers are comparable to the cut-off of the contact (degree) distribution, and 
viral superspreading, from those (if they exist) who shed more virus than average.

The principal idea is that we replace the susceptible-infected-recovered variables with 
a (binned) distribution in terms of their contacts. In the next section, we derive the 
equations governing the time development of these distributions; in “Results” section, 
we illustrate the dependence of the solutions of the network science parameters; and in 
the final section, we summarize and discuss the results.

Network science inspired generalization of the SIR equations
Let us denote the number of social connections or contacts of a person with k. If a per-
son is represented as a vertex of a graph, k would be the number of links of that vertex 
to other persons, or the degree of that vertex. Note that in reality this graph is changing 
every day: for instance, a person going to a rock concert would have many contacts on a 
particular day. We assume that over time, the contact distribution itself is stationary at 
least over the fundamental timescales associated with the disease. This is an approxima-
tion that will smear out transient rare events and can be fixed only with Monte Carlo 
modeling briefly discussed at the end. We focus on potentially infectious contacts, but 
do not track their quality. Some encounters that are closer, longer, or in an enclosed 
space, are more likely to lead to transmission. We average over these and assume that the 
resulting graph has a structure typical of other social networks.

The probability per day that a contact from an infected person produces a new infec-
tion is β = 1/Tc , or the inverse of the average time in days that such connections will 
produce a new infection. In the usual SIR type modeling, the time derivative Ṡ = βI/NS , 
i.e., the infected fraction of the population I/N times the S chances of infections with 
probability β per day that an encounter results in a successful transmission. The original 
interpretation of β incorporates social interactions, while we split it off to do social con-
tact distributions defined next.

To model the social connection network without a Monte Carlo representation of the 
actual social connection graph, we introduce the quantities, Sk , Ik ,Rk , the susceptible, 
infected, and recovered number of the population with k social links. The sum of the var-
iables, Sk + Ik + Rk = Nk ∝ k−α typically from network science. 2 < α < 3 (“ultra small 
world”) is the most interesting and practical limit for social networks. α < 2 is patholog-
ical, and α > 3 corresponds to random graph (“small world”). Typical ultra small world 
social networks contain large “hubs”, individuals with large number of connections. They 
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are positioned in the tail of the distribution, and they will correspond to superspreaders 
in an epidemiological network.

With the above definitions we will write the network science inspired modification of 
the SIR equations as

where pk is the probability that a vertex with k links will be infected, depending on 
pk = pk(β , Il ), and on γ = 1/Tr , the usual inverse recovery time in unit of 1/days. As 
noted earlier, the meaning of β is the average transmission fraction of potentially infec-
tious encounters. This is subtly different from the original SIR model, where β includes 
the probability that a potentially infectious encounter actually happens. Note that the 
sum of any variable over index k gives the corresponding traditional SIR variable, and the 
sum of the equations correspond to an effective SIR equation with changing parameters.

The above equations will describe how an initial distribution Sk responds to the disease 
dynamics. We estimate pk next. It corresponds to the chance per day that a susceptible 
person with k social links will get infected. It is equal to 1− qk , where qk is the probabil-
ity that the person in question does not get infected during that day, i.e. (1− βp)k , where 
p is the probability that one random link carries an infection (here we assume no corre-
lation between infected links, a zeroth order approximation). Finally, in the spirit of the 
original SIR approximation, we approximate the probability with the ratio of the infected 
links to the total number of links p ≃

∑

l lIl/
∑

l lNl . Putting all these together

Note that we double counted both the infectious and total number of links which can-
cels in the ratio. While this is the simplest approximation for pk and it does not account 
for topological details and degree correlations of the graph representing social interac-
tions. The above random, non-associative network assumption captures many features 
of network theory without a full graph Monte Carlo simulation.

The sum of these variables over k will obey an effective SIR equation with an effective 
β parameter

with N =
∑

k Nk , etc. Each summed variable inherits its time dependence from the 
variables of the underlying NSIR equation. We define the effective Reff,t = βeff/γ , and 
Reff,0 = Reff,t=0 . These effective parameters depend on the social dynamics through the 
underlying k dependence and the disease dynamics represented by β , and γ . Therefore 

(1)Ṡk = −pkSk

(2)İk = pkSk − γ Ik

(3)Ṙk = γ Ik ,

(4)pk = 1−

(

1− β

∑

l lIl
∑

l lNl

)k

.

(5)βeff =
N

IS

∑

k

pkSk ,



Page 4 of 12Szapudi ﻿Appl Netw Sci            (2020) 5:93 

a given pandemic, like COVID-19, could play out differently depending on the social 
interaction hierarchy of people.

Results
We implemented the above model as a python code. If only the k = 1 terms are differ-
ent from zero, then pk = βI/N  , and βeff = β , i.e. our model is identical to the original 
SIR model. As a sanity check, we verified that this is the case.

To illustrate the flexibility and the qualitative behavior of the new model, we choose a 
set of fiducial (reference) parameters and plot solutions with respect to changing each 
parameter. First, we select a traditional SIR model as a baseline: we choose β = 0.2 and 
γ = 0.1 , which corresponds to R0 = 2 . The typical behavior of this SIR model is shown 
on Fig. 1 with dotted lines.

For the network inspired model, labeled NSIR, we choose β = 0.07 , γ = 0.1 , a slope 
of the vertex degree distribution α = 2.5 , the maximum number of connections (i.e. the 
cut-off of the vertex degree distribution, the largest superspreader) kmax = 30 . In this 
case initially βeff ≃ 0.7 , or R0 ≃ 7 ; this is much higher than the corresponding R0 = 2 in 
our baseline SIR model. As illustrated in Fig. 1, even with this seemingly extreme initial 
condition, the time development of the disease dynamics is a milder version of the base-
line SIR model. The peak infection rate is smaller, and a similarly smaller recovered frac-
tion leads to herd immunity. Note that for the NSIR model we define the herd immunity 
level where the total I =

∑

Ik variable no longer grows; it can be read off from the fig-
ures as the peak of the red curve where the tangent is parallel to the time axis. This is 
a generic feature of models with significant superspreaders: since they are responsible 
for a large fraction of infections, but also prone to get infected quickly, they eliminate 
themselves from the susceptible pool early on. Once that happened, the transmission is 

Fig. 1  The dots present a typical traditional SIR model run with β = 0.2 , γ = 0.1 ( R0 = 2 ), and one initial 
infection. The solid lines correspond to βeff,0 ≃ 0.7 , i.e R0 ≃ 7 , k = 1...30 , one infection for a superspreader in 
the k = 10 bin, and α = 2.5 for the initial distribution. This model is our fiducial NSIR model and it is displayed 
with dots for reference the set of epi curves that follow
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no longer efficient. As we will show later, (Fig. 5), this process expresses itself as a pre-
cipitous drop in Rt.

Next we demonstrate the behavior of the solutions in terms of individual parameters. 
We focus on the parameters describing the social network properties, the novel feature 
of our model. First, we take a look at the effect of inserting the infection at a particular 
degree node. Figure 2 demonstrates, the effect of introducing the infection at the high-
est or lowest degree node is relatively minor: infecting a highest degree individual (or 
hub) slightly speeds up the time-line, while infecting a low degree node slightly slows 
it down. Aside from a slight displacement of the peak, the effect is insignificant. Most 
importantly, the herd immunity level is not influenced by the transient behavior due to 
the insertion degree, therefore the conclusions that follow should be robust against that.

Fig. 2  The effect of infecting nodes with different degrees. The parameters are the same as NSIR model of 
Fig. 1, except the infection is inserted at the highest degree (top), and the lowest degree (bottom) node. The 
fiducial model is plotted with dots for reference
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Next we examine the cut-off of the degree distribution, corresponding to the highest 
degree hubs or superspreaders present in the population. While in the fiducial model we 
assumed at most kmax = 30 connections, Fig. 3 shows 11 (top) and 100 (bottom) con-
nections. The higher the cut-off, the faster the time development and the higher the peak 
infected rate is. Conversely, cutting off the superspreaders flattens the curve, as expected. 
The number of equations is three times the highest degree node, for kmax = 11, 30, 100 , 
respectively, 33, 90, 300 coupled differential equations were solved.

The slope of the degree distribution controls the relative contribution of the rare 
high degree nodes (hubs, superspreaders) compared to the more usual low degree 
nodes. Our fiducial parameter α = 2.5 is middle of the range, and Fig.  4 values 
close to the extremes in the interesting range from network science: α = 2.1 (top), 

Fig. 3  The effect of the highest degree nodes (the cut-off of the degree distribution). The parameters are 
the same as NSIR model of Fig. 1, except the highest degree is 11 (top), and 100 (bottom). These two cases 
represent extreme, or moderate superspreaders, respectively. The fiducial model is plotted with dots for 
reference
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corresponding to a distribution with a heavy tail, or many superspreaders, while 
α = 2.9 (bottom) is approaching a random network ( α ≥ 3 ). It is clear that increasing 
the proportion of superspreaders increases the severity of the disease time-line, as 
before.

As we have shown earlier, whether the infection is introduced at a high degree or 
low degree nodes corresponds to transient effects, and hardly influences the top line 
final results. To elucidate the difference it makes in the early stage of the endemic, 
Fig. 5 plots Rt for several cases: the fiducial SIR model, our fiducial NSIR model, and 
two extremes, where the infection was introduced at a hub (superspreader) node, or 
a bottom (low social connection) node. Eventually, all three NSIR models converge 
to the same SIR model asymptote. If the infection starts with a hub, the early values 

Fig. 4  The effect of of the slope of the degree distribution. The parameters are the same as NSIR model of 
Fig. 1, except α = 2.1 (top), and α = 2.9 (bottom). The flatter distribution means more superspreaders/hubs, 
while the steeper distribution corresponds to a case more similar to a random graph. The fiducial model is 
plotted with dots for reference
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of Rt , corresponding to an effective R0 , are extremely high and drop quickly when 
the superspreaders eliminate themselves from the susceptible pool. Conversely, if the 
infection starts at a low degree node, the initial R0 is much lower, even rises initially 
as the infection spreads towards superspreaders. Therefore, if this is a realistic model 
of disease transmission, measurements of R0 are fairly sensitive to serendipitous tran-
sient effects due to where exactly the infection was introduced.

Fig. 5  The time development of Rt is plotted for the fiducial SIR (dots), fiducial NSIR (dashes), and two 
extreme NSIR models where the infection is inserted into a high degree node (top, blue), or a low degree 
node (bottom, red). Independent of the insertion degree, each NSIR curve lingers around R ≃ 3 . This is more 
meaningful than the actual R0 that is sensitive to the insertion degree

Fig. 6  The time development if individual infection bins in the fiducial NSIR model. The dotted lines 
correspond to the summary of the fiducial model, while the red solid lines correspond to the individual bins if 
the infected distribution, the highest degree being the lowest point. The one red line with different transient 
behavior than the rest corresponds to the node where the infection was inserted
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Finally, we show time development of each bin in the contact distribution of the popu-
lation in our fiducial NSIR model. On Fig. 6, the solid red lines from top to bottom cor-
respond to the degree distribution at a particular point in time from low to high degree. 
For reference, the total SIR variables are displayed with dots on this semi-log plot: the 
red dots correspond to the sum of the red solid lines.

After transient effects, nodes with different degrees have similar development, perhaps 
high degree nodes, hubs or superspreaders, reaching their maxima slightly earlier. The 
one outlying solid line corresponds to the transient behavior of the node carrying the 
initial infection. After the first few weeks (while the infected fraction is still fairly low), 
the transient behavior joins the trend carved out by the rest of the curves. It took about 
two timescales of 1/γ to achieve such statistical “thermalization” and erase the memory 
of where the infection started.

Summary and discussions
We have introduced a generalization of the SIR model, where each variable is a distribu-
tion. This generalization is a specific case of a poly-SIR model that could describe a vari-
ety of situations, e.g., Moghadas et al. (2020) and Chikina and Pegden (2020) used it to 
model the interactions of different age groups with a constant contact matrix. We focus 
on social connection distributions motivated by network science. The resulting equa-
tions are more non-linear than a standard poly-SIR model with a fixed contact matrix.

There are a number of phenomenological parameters that influence the dynamics of 
the disease transmission. In our formulation, both parameters β and γ are describe aver-
age properties of the viral infection, unlike the traditional SIR model, where β is influ-
enced by the properties of the disease as well as social interactions. We model social 
interactions through the social contact distribution motivated from network science. 
The universality of social networks (Barabási and Albert 1999) motivates the assump-
tions of a power law degree distribution. We explore how the slope, the cut-off, and the 
contact degree of the initial infection drives the dynamics.

Our main result, consistent with expectations and results from other methods, is that 
if supserspreaders, highly connected hub-nodes, are important for disease transmission, 
a lower level of infection rate leads to herd immunity than otherwise. Superspreaders 
tend to infect each other quickly and remove themselves from the susceptible pool ear-
lier. Thus, the initial effective R0 drops quicker than in the analogous SIR model.

The steeper the degree distribution and the lower its cut-off, the less important super-
spreaders become. Steepening the distribution, i.e. moving people to lower connections 
than normal, corresponds to social distancing or lock-down. Moving the cut-off to lower 
degrees, i.e., removing superspreaders appears to be an effective strategy to flatten the 
curve as well. If parameters are fit from realistic data, our results could inform non-
pharmaceutical mitigation strategies during the COVID-19 pandemic.

We found that the insertion of the infection at a highly or poorly connected node 
results widely varying effective R0 values if interpreted in terms of the traditional SIR 
model. We speculate that zoonotic viral transmission to humans is likely at an aver-
age node (because there is more such nodes), while transmission by or after travel 
is more likely through hub nodes. This is qualitatively consistent with the initial 
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lower estimates of R0 ≃ 2− 3 for COVID-19 (Zhao et al. 2020) that was revised up to 
R0 ≃ 4 − 6 (Sanche et al. 2020; Flaxman et al 2020) after international spread.

Our work does not take into account the discrete transients of disease transmission: 
a particular person (or the corresponding node) is either infected or not, there are 
no fractional infections. In the contrary, the solutions to SIR-like differential equa-
tions have a scaling property: a new solution is obtained by multiplying a solution 
with an arbitrary real number. This is clearly not a good approximation for smaller 
communities and stochastic effects are important in the early phases of an endemic 
in larger communities. For instance, the first infection might die out or trigger a tran-
sient superspreader event, ultimately leading to vastly different outcomes.

It would be relatively straightforward to modify our model to include transients 
in a Monte Carlo fashion. Instead of multiplying with the probability pk , we could 
draw the number of infections from a multinomial distribution of Sk total numbers 
with pk infection probability, assuming each infection is independent. Our differential 
equations then become a discrete difference equations: Ṡk → �Sk , and so forth. Each 
solution corresponds to a Monte Carlo realization, and rare events, corresponding to 
mass gatherings, for instance, could now happen in a discrete fashion. If it is found 
that disease transmission probability varies widely with individuals β itself could be a 
realization from a distribution. If that distribution has a long tail, this process would 
induce viral superspreading.

Several of the Monte Carlo simulations are needed to evaluate the statistics and 
small number transients associated with the transmission. Nevertheless, such Monte 
Carlo simulations would still be less costly than a full network science Monte Carlo 
model. Once the total numbers are high enough, the multinomial distribution will 
narrow enough to produce results very similar to our equations 3. The above generali-
zations are left for future work.

The plausible simplifications that enabled the construction of the NSIR model need 
to be confronted with data. The more complex behavior of the effective Rt , as shown 
on Fig. 5 would be the first qualitative sign of behavior beyond the simple SIR model. 
Detailed analyses of contact tracing information could affirm or reject the assumption 
that potentially infectious contacts have similar structure to other social networks. 
Finally, investigating the time development of infections correlated with publicly 
available social networking data could reveal a structure similar to Fig. 6, a smoking 
gun for NSIR-like development.

If parameters of the NSIR model constrained by data confirm that superspreading 
is significant, these results can inform public health measures: non-pharmaceutical 
interventions could focus on potential superspreading situations and people; the first 
wave of vaccines could be directed toward individuals in jobs or situations (e.g., living 
quarters) of superspreading potential. Such measures would be effective compared to 
policies blind to social networks. To end on a positive note, the NSIR model suggests 
that if superspreading is important in the spread of COVID-19, herd immunity levels 
are somewhat lower than the more pessimistic estimates from high R0 estimated from 
the SIR model.
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