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Introduction
The research and development (R&D) of a pharmaceutical product is time-consuming 
from the start of research to obtaining approval, and the probability of success with a 
candidate compound is extremely low. The probability of success from discovery and 
pre-clinical initiation of a candidate compound to launch is approximately 0.1 %, the 
cost of development to launch one product is in the hundreds of millions of dollars, and 
R&D requires more than ten years. Recently, the pharmaceutical industry’s research 
costs have increased at a rate higher than the average for all industries.

In the pharmaceutical industry, leading companies undergo shifts in the processes of 
R&D, production, and sales (Comanor and Scherer 2013; Scherer 2010; Munos 2009). 
The R&D process is called the drug pipeline, starting with new drug discovery. The 
development of new drugs requires pre-clinical testing, three stages of clinical trials, and 
approval in each country.
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The knowledge flow in the drug pipeline is defined as the shift of license to deal with 
drug candidates. Osabe and Jibu (2013a, b, 2014a, b, c, d, e, f ) pointed out that the 
knowledge flow is critical in academic collaboration for the development of new drugs 
and is measured as the shift of leading companies observed in the drug pipeline data. 
However, the knowledge flow dynamics between the pharmaceutical companies in the 
drug pipeline remain a concern (Narayana et al. 2014; Mazzola et al. 2015).

The shift of license, i.e., the knowledge flow, in drug development, is a complex phe-
nomenon arising from the relationships between pharmaceutical companies, govern-
ment institutions, and educational institutions. The multilayer networks (MLNs) are 
significant concepts for understanding complex systems because many systems in the 
real world are constructed from various relations between components. For example, 
firms are connected by supply chain, ownership, a concurrent post of board members, 
and co-application of patents Aoyama et al. (2010). Further examples of MLNs include 
transportation networks (Kurant and Thiran 2006; Zou et  al. 2010), climatic systems 
Donges et al. (2011), economic markets Yang et al. (2009), and energy-supply networks 
Buldyrev et  al. (2010). The statistical mechanics in single networks are expanded into 
MLNs Bianconi (2013).

Therefore, our primary research goal is to understand the characteristics of the flow 
and localization of knowledge during drug development. Here, localization refers to 
knowledge accumulation within the same company, observed as incoming links and self-
loops in the drug pipeline network. We analyze the drug pipeline data based on the MLN 
constructed with the drug pipeline network layer, global supply-chain network layer, and 
the global ownership network layer to achieve this research goal.

This paper is organized as follows. Section 2 describes the datasets used in this paper. 
We specifically explain the detailed characteristics of the drug pipeline data and drug 
pipelines. Section 3 explains and investigates the methods of how to construct the MLN. 
The analysis and results are explained in Sect. 4, showing a statistical test to verify the 
significance of the overlapping nodes and edges between a pair of layers. Finally, Sect. 5 
is devoted to conclusions and discussion. Appendix 1 summarizes the analysis of a sin-
gle-layer network, and Table 1 depicts a list of abbreviations used in this paper. We use 
ISO codes for countries in most of the figures and tables in this paper.

Data
Drug pipeline data

We constructed a drug database, extracting all drug data from the Cortellis Com-
petitive Intelligence database provided by Clarivate Analytics Cortellis, on Decem-
ber 11, 2013. The Cortellis Competitive Intelligence database includes pipeline data 
from various drug candidates from the R&D stage to the clinical trial stages and deals 
reports from approximately 7000 pharmaceutical companies. The drug development 
cycle consists of discovery, launched, clinical trial, pre-registration, and registered. 
Furthermore, this clinical trial can be categorized into three phases: Phase I (exam-
inations for drug safety conducted with healthy adults), Phase II (examinations for 
safety and effectiveness of a drug compared with existing drugs, conducted with a few 
patients), and Phase III (examinations for safety and effectiveness of a drug compared 
with existing drugs conducted with many patients). Deals reports include originator 
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companies (i.e., the licenser) and active companies (i.e., the licensee). We indexed 
these companies’ country and type. Indeed, there exist various types of business enti-
ties dealing with drug pipelines. The types are indexed as small-and medium-sized 
business firms classified as a private company, large-sized businesses classified as a 
public company, universities classified as educational institutions and government 
institutions classified as government institutions. The extracted drugs amount to 
38,295, excluding those being marked as “no development reported” in the highest 
status, 18- months behind the extracting date. Notably, the drug pipeline data are a 
snapshot and do not contain historical information regarding the drug development 
cycle. For example, Phase III data, whose licensee is different from the licenser, can 
show the shift of license of the drug candidate between them until Phase III but can-
not show when it happened.

The drug pipeline starts with discovering a new drug candidate, which requires pre-
clinical testing, three stages of clinical trials, and approval to launch. Generally, ven-
ture firms or educational institutions provide grants to the discovery of drug seeds 
and the licensee. For example, leading firms advance the development to launch, 
incurring considerable R&D expenses. These characteristics vary from country to 
country. Drug pipeline data help us to understand the knowledge flow in the drug 
development cycle as the shift of license to deal with drug candidates, i.e., the flow 
from the licenser to the licensee.

Figure  1 shows the number of drug pipelines at the launched status by country, 
where we counted the license of the launched drugs by country. Furthermore, we com-
pared the licensee with the licenser in drug pipelines to measure the self-sufficiency 
of individual countries and companies. For example, in the United States (US), own 
country in the legend means that drug pipelines are started in the US, other country 
means all countries except the US, own company means that the US company as the 
licensee started the drug pipeline by own company, and “other company” indicates all 
companies except for the licensee. The US has launched several drug pipelines. We 
found that most of the top 20 countries have discovered and launched more than half 
of their drug pipelines in their countries, and the drug pipelines in China (CHN) tend 
to be developed in her country compared with other countries. We anticipate that the 
licensee of the drug pipeline frequently changes because of R&D expense. To charac-
terize the changes from the viewpoint of the type of business entity, we compared the 
licenser or licensee type, namely, government institution, educational institution, a 
private company, and public company.

Table 1  List of abbreviations

Abbreviation Definition

R&D Research and development

MLN Multilayer network

SCC Strongly connected component

GWCC​ Giant weakly connectedcomponent

GSCC Giant strongly connected component

TE Tendril

M&A Mergers and acquisition

AI Artificial intelligence
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Figure  2 shows the number of drug pipelines for each status for the top four 
countries in Fig. 1 and the ratio of components regarding business entity and self-
sufficiency. “Own country” in the legend represents the number of drug pipelines 
discovered by each country. In contrast, “other country” represents the number of 
drug pipelines at individual status by each country, where a different country dis-
covers them. Similarly, “own company” in the legend represents the number of drug 
pipelines discovered by each country’s own company. “Other company” represents 
the number of drug pipelines at individual status by each country, where the dif-
ferent company discovers them from these owners. As shown in Fig. 2a, the US has 
approximately 8,000 drug discovery seeds, which is more than eight times compared 
with that of the other countries. As expected, the government and educational insti-
tutions tend to release the license at an early stage of the R & D process and the 
public company’s license acquisition rate; for example, the number of leading firms 
increases as the process reaches the launched status. Furthermore, only in Japan 
(JPN), the number of drug pipelines at the discovery status is smaller than that at the 
launched status. Because of the lack of drug discovery seeds nowadays will decline 
the country’s pharmaceutical industry in the future, countries such as JPN must 
obtain drug pipelines from other countries.

Figure 3 shows the knowledge flows in the drug pipelines between the licenser and 
licensee at the country level per pipeline status. Here we focus on the top 10 coun-
tries in Fig. 1 and aggregate the pre-registration and registered statuses because of 
the availability of a few pipelines. We ignore the drug pipelines whose license has 
not shifted to investigate the flows between different business entities. The diago-
nal elements correspond to the knowledge flows between companies in the country; 
thus, the knowledge flows from the firms in the US to the other countries in the 
drug pipelines. Furthermore, the knowledge of drug pipelines seems to flow not only 
in the direction from firms in the US to the others but also in the opposite direction.

Fig. 1  The number of drug pipelines at the launched status by countries. We show the top 20 countries 
with self-sufficiency rates by “own country” and “own company”. “Own country” in the legend represents the 
number of drug pipelines discovered and launched by each country. In contrast, “other country” represents 
the number of drug pipelines at launched status by each country, where a different country discovers them. 
Similarly, “own company” in the legend represents the number of drug pipelines discovered and launched by 
each country. “Other company” represents the number of drug pipelines launched by each country, where 
they are discovered by the different companies from these owners
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Supply chain and ownership data

The global supply chain and ownership data in the year 2017 were constructed by col-
lecting various companies’ data from the Standard & Poor’s (S&P) Capital IQ platform 
website CapitalIQ. The Capital IQ dataset covers more than 500,000 companies with 
information on business relations in 217 countries in 159 industrial sectors defined by 
the S&P, including all listed companies in the world. The data include company ID, com-
pany name, country, location of the company, company type, and the primary industry 

Fig. 2  The number of drug pipelines for each status, and these fractions of type of licenser and licensee. We 
show the top four countries in Fig. 1 a US, b JPN, c CHN and d GBR. “Own country” in the legend represents 
the number of drug pipelines discovered by each country. In contrast, “other country” represents the number 
of drug pipelines at certain statuses by each country, where a different country discovers them. Similarly, 
“own company” in the legend represents the number of drug pipelines discovered by each country’s own 
company. “Other company” represents the number of drug pipelines at certain status by each country, where 
the different company discovers them from these owners
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as node information. Industrial classification is based on the Global Industry Classifi-
cation Standard, developed by Morgan Stanley Capital International and the S&P. The 
supply chain data also include examples of the business relationship between the sup-
plier and customer as the edge information. Although various business relations that 
fall under suppliers are supplier, creditor, franchiser, licenser, landlord, lessor, auditor, 
transfer agent, investor relations firm, and vendor, most are supplier and creditor. Here, 
the supplier is a company providing the products or services, whereas the creditor is a 

Fig. 3  Knowledge flows of drug pipelines between licenser and licensee at country level per pipeline status 
focused on the top 10 countries in Fig. 1. Each element represents the number of drug pipelines between 
countries, ignored the drug pipelines whose license has not shifted. The diagonal elements correspond to 
the number of shifts of licenses between companies in the country
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private, public, or institutional entity availing funds to others to borrow. Notably, the 
links in the dataset are dominated by supply chain business relationships. Therefore, the 
characteristics of the dataset reflect the global supply chain network.

The ownership data include a list of shareholding companies and individuals for each 
company as the link information. The list comprises the top 100 owner companies and 
individuals with the ownership ratio data. The link’s weight is the ownership ratio owned 
by the owner between 0% and 100%. The listed firms dominate firms in the ownership 
data for each country. Therefore, the coverage of ownership data is narrower than that of 
the supply chain data (Table 2).

Notably, the collection years for the two datasets, namely, the drug pipeline data and 
the company’s supply chain and ownership data, are different because of data availabil-
ity. The former data are for 2013, whereas the latter is for 2017. The four-year difference 
in the data on the rapidly changing pharmaceutical industry might be a weakness. In this 
paper, we clarify the relationship among the knowledge flows, the flow of goods, and 
capital flow in the global pharmaceutical industry by analyzing the data as the MLN. The 
study is the first attempt and therefore considered significant enough.

Methodology
This study’s primary purpose is to reveal the dynamics of propagation and the locali-
zation of knowledge in the drug development cycle by analyzing the drug pipeline and 
supply chain and ownership data. For this research, we constructed an MLN, simulta-
neously representing three types of relationships between companies and institutions 
regarding the knowledge flow in the drug pipeline. Before we move to the MLN analysis, 
we explain the definition of the networks of each layer.

Drug pipeline network

We represent the drug pipeline data acquired from Clarivate Analytics as a drug pipe-
line network G1 in Fig. 4. In the graph G1 = (V1,E1) , V1 is a node-set constructed from 
companies, government, and educational institutions listed in the drug pipeline data, 
and E1 is an edge set constructed from licensor–licensee relations on drug pipelines. 
Let us denote that a directional edge is present as i → j in the drug pipeline network, 
where node i is the licenser, and node j is the drug candidate’s licensee in the drug 
pipeline data. As mentioned in Sect.  2, nodes are various types of business entities 
categorized as a government institution, educational institution, private company, 
and public company. One drug pipeline also does not always define one edge in the 
drug pipeline network because there is the case that the originator of the drug candi-
date shares the license with two companies. We denote the adjacency matrix of G1 as 
A[1] =

(

a
[1]
ij

)

 , where the element a[1]ij  corresponds to the number of edges from node i 

Table 2  The numbers of nodes, edges, and self-loops in supply chain and ownership data

Supply chain Ownership

# of nodes 503,840 69,552

# of edges 1,379,344 1,147,937

# of self-loops 5 24
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to j. The superscript represents the layer index. The in- and out-degrees of node i are 
defined by k[1]in,i =

∑

j a
[1]
ji  and k[1]out,i =

∑

j a
[1]
ij  . In the graph G1 , k[1]in,i and k[1]out,i represents 

the total number of drug pipeline that the company i is dealing with, and the total 
number of drug pipeline that the company i has discovered, respectively. Moreover, 
the drug pipeline data contains the case that the drug pipeline’s licensee corresponds 
to the licenser. In other words, the graph G1 contains self-loops, and the number of 
self-loops of node i are computed as ℓ[1]i = a

[1]
ii  . In order to distinguish the shifts of 

license with the other, we denote the number of edges of node i from/to different 
nodes as in-/out-degree removed self-loops,

Thus, m[1]
in,i and m[1]

out,i represents the number of license of drug candidates that the com-
pany i has transferred to the others, and that the company i has obtained from the oth-
ers, respectively. Therefore, in the graph G1 , the edges (i  = j) are knowledge flows in the 
drug pipelines. However, the self-loops (i = j) represents the localization of the knowl-
edge in one company.

Furthermore, the drug pipeline data is a snapshot data and a record at a particular 
development stage. Thus, we use the status of the drug development cycle as edge 
attribution, E1 =

⋃

p E
p
1 , and Ep

1 represents the drug pipeline at the status p ∈ {Discov-
ery, Phase I–III Clinical, Pre-registration, Registered, Launched} . In response to the 
extension, we add the status index p to the definitions of the characteristics such as 
in-degree of the company i, k[1,p]in,i  . For example, the launched drug without transfer of 
license is represented as a self-loop with the launched attribution in the network, and 
ℓ
[1,p]
i  at p = {Launched} represents the number of launched drugs for which the com-

pany i discovered and has launched. Although we cannot determine when drug candi-
dates’ license is transferred because of data property, we can observe the tendency of 
knowledge flows in the drug pipeline between business entities in the pharmaceutical 
area.

(1)m
[1]
in,i = k

[1]
in,i − ℓ

[1]
i and m

[1]
out,i = k

[1]
out,i − ℓ

[1]
i .

Fig. 4  Overview of the MLN representation. We used the drug pipeline, supply chain, and ownership data to 
define the MLN ( M = 3 ), which is composed of firms and institutions as nodes. Then, we construct MLN for 
knowledge flow based on the edge attribution about the status of the drug pipeline
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Supply chain network

The supplier-customer relationship is most important at the company level in the real 
economy. We represent the supply chain data acquired from the S&P Capital IQ data-
set as a supply-chain network G2 in Fig. 4. In the graph G2 = (V2,E2) , V2 is a node-
set constructed from companies listed in the supply chain data, and E2 is a edge set 
constructed from these supplier–customer relations. The supply chain network is an 
unweighted directed network, representing the supply chain business relationships. 
We denote a directional edge as i → j when company i is a supplier to company j. The 
in- and out-degrees of node i are defined by k[2]in,i =

∑

j a
[2]
ji  and k[2]out,i =

∑

j a
[2]
ij  . More-

over, we denote the number of edges of node i from/to different nodes as in-/out-
degree removed self-loops, m[2]

in,i = k
[2]
in,i − ℓ

[2]
i  and m[2]

out,i = k
[2]
out,i − ℓ

[2]
i  . In the graph 

G2 , m[2]
in,i and m[2]

out,i represents the number of suppliers and customers of company i, 
respectively.

Ownership network

We define ownership networks G3 in Fig. 4 based on the S&P Capital IQ dataset. In 
the graph G3 = (V3,E3) , V3 is a node-set constructed from companies listed in the 
ownership data, and E3 is an edge set constructed from these ownership relations. 
We denote an edge from company i to j when company j has a stake in the company 
i. The in- and out-degrees of node i are defined by k[3]in,i =

∑

j a
[3]
ji  and k[3]out,i =

∑

j a
[2]
ij  . 

Moreover, we denote the number of edges of node i from/to different nodes as in-/
out-degree removed self-loops, m[3]

in,i = k
[3]
in,i − ℓ

[3]
i  and m[3]

out,i = k
[3]
out,i − ℓ

[3]
i  . In the 

graph G3 , m[3]
in,i and m[3]

out,i represents the number of companies which company i holds 
shares, and the number of shareholders of company i, respectively. Furthermore, the 
number of owners of each company was limited to 100 in the S&P Capital IQ data-
set. Although the S&P Capital IQ dataset includes the ownership ratio, we define the 
ownership network as an unweighted directed network to increase the number of 
duplicated nodes between layers. Note that the ownership network in this paper rep-
resents the dependency flow, which is in the opposite direction to that typically used 
because we assume that the firm knowledge tends to flow to these owners.

Combining datasets

To construct the MLN in Fig.  4, we must combine the drug pipeline data and the 
company’s supply chain and ownership data. Because the company’s name in the two 
datasets is not always the same, we performed name identification between the two 
datasets by using information about the country and industry after removing abbre-
viations such as Inc and Corp. When multiple candidates arose, we checked them 
manually.

MLN representation

In this subsection, we generalize the definitions of our networks using an 
MLN framework. Generally, the MLN is a pair defined as M = (G, C) , where 
G = {Gα;α ∈ {1, · · · ,M}} of the family of graphs Gα = (Vα ,Eα) , where the 
set of nodes of layer Gα is denoted as Vα , and M is the number of layers. 
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C = {Eαβ ⊆ Vα × Vβ;α,β ∈ {1, · · · ,M},α �= β} is a set of interconnections between 
the nodes of different layers Gα and Gβ with α  = β . We define the MLN ( M = 3 ), com-
posed of companies and institutions as nodes and three types of interactions between 
them, by using the drug pipeline, supply chain, and ownership data. Because each 
layer of our MLN is defined by the types of interactions, there are overlapped nodes 
but no interconnection between the nodes of different layers: C = {∅} . The graphs Gα 
for each layer are defined as

•	 G1 : Drug pipeline network
•	 G2 : Supply-chain network
•	 G3 : Ownership network

where the definitions for each layer are explained in previous subsections. Figure 4 dis-
plays the conceptual representation of MLN.

The adjacency matrix of each layer Gα is denoted by A[α] =
(

a
[α]
ij

)

 , where the element 

a
[α]
ij  corresponds to the number of edges from node i to j in the α-th layer. The in- and 

out-degrees of a node i of the MLN are defined as vectors:

where k[α]in,i and k[α]out,i are the in- and out-degrees of node i in the α-th layer, i.e., 
k
[α]
in,i =

∑

j a
[α]
ji  and k[α]out,i =

∑

j a
[α]
ij  . Similarly, we denote the number of self-loops of node 

i in the α-th layer as, ℓ[α]i = a
[α]
ii  . In this paper, we must recognize the flows as self-loops 

because self-loops in the drug pipeline network G1 correspond to the accumulation of 
knowledge. Thus, we count the number of flows in each layer by the edges between two 
nodes and self-loops. The number of edges of node i from/to different nodes is denoted 
as

and their total number is

where Nα is the number of nodes in α-th layer. Notably, we added the status layer index p 
to the definitions of the first layer characteristics such as in-degree of the i-th node k[1,p]in,i  
and the total number of edges Mp

1.

Bow tie structure

As we showed in the edge-level analysis in Sect.  2, the knowledge flow in the drug 
pipeline seems to be circulated at the country level; however, whether the flows con-
nect at the company level is unclear. Generally, the giant weakly connected components 
(GWCCs) of a directed network can be decomposed as giant strongly connected com-
ponents (GSCCs), which is the largest size of the SCC in the GWC, its upstream and 
downstream portions (IN and OUT) known as the bow tie decomposition in the Web 

(2)k in,i =
(

k
[1]
in,i, k

[2]
in,i, k

[3]
in,i

)

and kout,i =
(

k
[1]
out,i, k

[2]
out,i, k

[3]
out,i

)

,

(3)m
[α]
in,i = k

[α]
in,i − ℓ

[α]
i and m

[α]
out,i = k

[α]
out,i − ℓ

[α]
i ,

(4)Mα =
1

2

Nα
∑

i,j=1,i �=j

a
[α]
ij and Lα =

Nα
∑

i

a
[α]
ii .
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Broder et al. (2000). This decomposition could help us understand the hierarchical and 
circular flows of the networks from a macroscopic perspective.

Community structure

Besides the macroscopic structure measured as a bow-tie structure, a community detec-
tion is a powerful tool for explaining densely connected networks’ structural properties. 
We compared the structural properties between layers by using node attributes such as 
country and primary industry. Although we show the detailed analysis of community 
structure of each network in 6.2, we explain the method that is useful to extract commu-
nity structures of a network here.

To find communities in the GWCC of the layers, we use the map equation method 
Rosvall and Bergstrom (2008), known as Infomap, which is one of the best performing 
community detection methods Lancichinetti and Fortunato (2009). The map equation 
method is a flow-based and information-theoretic approach to find an efficient code 
for minimizing the length of the description of the random walk for generating a mod-
ule partition M to divide n nodes into m communities. Then, the average single-step 
description length is defined as

The first term arises from the movements of the random walker across modules, where 
q� is the probability that the random walker switches communities, and H(Q) depicts 
the average description length of the community index codewords given by the Shan-
non entropy. The second term arises from the intra-community movement of the ran-
dom walker, where the weight pi� represents the fraction of the movements within the 
community, and H(Pi) represents the entropy of the intra-community movement. Fur-
thermore, this method has been extended to a hierarchical map equation Rosvall and 
Bergstrom (2011) that decomposes a network into communities and sub-communities.

We detect the hierarchical communities by using the multi-coding Infomap method, 
and we use the “Level” index to represent the hierarchy of communities; communities at 
the 2nd level represent sub-communities at the 1st level. To characterize the hierarchical 
communities, we use node attributions with country, company type, and bow tie compo-
nent for the drug pipeline layer, and country, primary industry, and bow tie component 
for the supply-chain and ownership layer, respectively.

Interlayer degree correlations

It is reasonable to assume that a hub node in the drug pipeline network could be a hub 
in the supply chain or ownership network. Thus, to verify this assumption, we investi-
gate the degree correlations for each node between different layers. However, we must 
note that the edges in the drug pipeline layer Ep

1 characterized by the status p ∈ {Dis-
covery, Phase I–III Clinical, Pre-registration, Registered, Launched} , and the drug pipe-
lines that have not reached the launched stage could disappear in the drug development 
cycle. Therefore, we only focus on the launched case here. Furthermore, each company’s 
incoming edges in the drug pipeline layer are equal to the number of drugs with which 

(5)L(M) = q�H(Q)+

m
∑

i=1

pi�H(Pi) .
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it is dealing. From this perspective, we divide the edges on which we focus in the drug 
pipeline layer into two types:

•	 Self-loops, ℓ[1,p]i  at p = {Launched} , corresponding to the number of launched drugs 
that the company i discovered as the licenser and has launched. In this paper, we 
define that ℓ[1,p]i  at p = {Launched} represents the closed innovation.

•	 In-degrees removed self-loops, m[1,p]
in,i  at p = {Launched} , corresponding to the num-

ber of launched drugs for which company i was not licensed originally but owns 
because of the licensee. In this paper, we define that m[1,p]

in,i  at p = {Launched} repre-
sents the open innovation.

Node and edge overlap

Although the dynamics of knowledge flows in the drug pipeline between companies 
remain unclear, we can raise a possible hypothesis for the edge-level similarity. When 
drug pipelines develop in a too closed situation, such that pharmaceutical companies do 
not have business with the same industry, the supply chain’s edge-level similarity ceases 
to appear. However, the alliances between the pharmaceutical companies, i.e., open 
innovation in the pharmaceutical industry, could share not only markets but also drug 
pipelines, which is assumed to appear as the edge-level similarity to the supply-chain 
layer. Furthermore, if the drug pipeline tends to be transferred to the owner of its licen-
sor, we might observe the edge-level similarities to the ownership network. Although 
knowledge of the pharmaceutical industry might flow along with the flow of control, it is 
challenging to observe it in our MLN when the mergers and acquisition (M&A) causes 
it. To confirm the above hypothesis, we compute the overlapping of nodes and edges as

where Xα is a set of nodes/edges at the α-th layer. We measure the overlap by the frac-
tion of nodes/edges appearing in both layers over the aggregate number of nodes/edges 
of the two layers. We ignore the multiple edges and self-loops in the drug pipeline layer.

To evaluate the statistical significance of the finding stated above more precisely, we 
compute the probabilities (p values) when the expected number of overlapped edges is 
larger than the observed value by using a statistical test. Here, the null hypothesis is that 
we have no edge overlap between the two layers. First, we assume that the probability of 
generating the α-th layer having the x overlapping edges obeys the binomial distribution, 
x ∼ B(n, p(β|α)) , where n =

∣

∣Eα ∪ Eβ
∣

∣ . We define the conditional probability that the 
edge connects between the two nodes of the overlapping knowledge flow layer ( β = 1 ) 
and the α-th layer as

where �k̄[α]� is the half value of the averaged total degree of the α-th layer. Therefore, the 
last term in the right-hand side of this equation corresponds to the probability of finding 

(6)O(Xα ,Xβ) =

∣

∣Xα ∩ Xβ

∣

∣

∣

∣Xα ∪ Xβ

∣

∣

,

(7)p(β = 1|α) = p1 × pα = 1×

〈

k̄[α]
〉

|Vα|
,
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the edges for randomly selected pairs of nodes. Here, the drug pipeline layer ( β = 1 ) is 
independent variable of the α-th layer, p1 = 1 , by definition.

Results
In this section, first, the results of the single-layer analysis were explained, and then the 
multi-layer analysis was performed based on the results.

Single‑layer analysis

In preparation for MLN analysis, we carried out an analysis of the bow-tie structure and 
the community structure of every single layer: the drug pipeline network, the supply 
chain network, and the ownership network. Bow tie analysis suggests that the knowl-
edge flows in drug pipelines have similar macroscopic characteristics as those of the 
supply chain network. For a comparison of the structural properties between layers, we 
conducted the community detection using the Infomap method and characterized each 
community in terms of node attributes such as country and primary industry. For the 
detailed discussion of single-layer analysis, see Appendix 1. As discussed in Sect. 2, the 
knowledge flow between the licenser and licensee to circulate at the country level and 
the global level because of the US companies. We observed a large size of SCC in the 
bow-tie structure at the company level in the drug pipeline network, which is a large-
scale circular flow between pharmaceutical companies.

Interlayer degree correlations

We constructed the MLN to investigate the knowledge flow between companies in drug 
pipelines using the drug pipeline, supply-chain, and ownership data. Table 3 summarizes 
the number of nodes, edges, and self-loops for each layer of the MLN, where we list the 
number of the cases successfully combined by the Coritellis and Capital IQ datasets in 
parentheses. Table 4 shows the knowledge flows in drug pipelines for each status of the 
drug development cycle.

We show the relations between the number of launched drugs and the number of sup-
plier–customer (ownership) links in the upper (lower) part of Fig. 5. Note that the num-
ber of drugs corresponds to the edges attributed to p = {Launched} at the drug pipeline 
layer, and Fig. 5 does not contain companies not dealing with launched drugs. This is 
the reason that the number of data points in Fig. 5 is less than the number of nodes in 
Table 3.

Table 3  The number of  nodes, edges, and  self-loops before  combining Coritellis 
and Capital IQ datasets

We also list the number after the combination

G1 : Drug pipeline G2 : Supply chain G3 : ownership

Whole (Combined) Whole (Combined) Whole (Combined)

Nα : # of nodes 7785 (2379) 503,840 (1954) 69,552 (830)

Mα : # of edges 11,478 (3769) 1,379,344 (3115) 1,147,937 (158)

Lα : # of self-loops 20,876 (10,927) 5 (0) 24 (0)
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As defined in Sect. 3, ℓ[1,p]in,i  and m[1,p]
in,i  at p = {Launched} represents the closed and open 

innovation, respectively. Thus, we can investigate the relation between layers from Fig. 5a 
and c for the closed innovation, and Fig. 5b and d for the open innovation, respectively. We 
also calculated the Pearson correlation coefficients as denoted on these figures. Note that 

Table 4  The number of edges and self-loops for each pipeline status in the drug pipeline 
layer

p: pipeline status M
p
1
 : # of edges L

p
1
 : # of self-loops       Total

Discovery 4488 13,668 18,156

Phase I clinical 818 1716 2534

Phase II clinical 1255 1941 3196

Phase III clinical 538 630 1168

Pre-registration 165 189 354

Registered 120 155 275

Launched 4065 2527 6592

Fig. 5  Interlayer degree correlations. The Upper (lower) two figures illustrate the relations between the 
number of drug pipelines and the number of supplier–customer (ownership) links. The left (right) vertical 
axis corresponds to the number of self-loops (in-degree) at the drug pipeline layer’s launched state. Since the 
upper limits at approximately 100 for the out-degree in the ownership layer because of the data collection 
threshold, we do not compute the Pearson correlation coefficients of them
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the upper limits at approximately 100 for the out-degree in the ownership layer because 
of the threshold in data collection. This is why we do not compute the Pearson correlation 
coefficients relating to out-degree in the ownership layer. Notably, the companies having 
larger m[1,p]

in,i  at p = {Launched} have a larger number of supplier–customer or ownership 
relations. As a result, we have weak and positive interlayer degree correlations between 
the drug pipeline and both supply chain and ownership. Especially, we observed more 
strong correlation in the open innovation, which is measured by m[1,p]

in,i  at p = {Launched} 
in Fig. 5b and d, than the closed innovation in Fig. 5a and c. Therefore, we could expect 
that open and closed innovation is useful for some companies with a larger number of sup-
pliers–customer or ownership relations in the pharmaceutical industry– and they appear 
more remarkably in open innovation.

Node and edge overlap

Table 5 shows the node and edge overlap between the two layers. We demonstrate the over-
lapping of nodes and edges between the layers by measuring the fraction of nodes/edges 
appearing in both layers over the aggregate number of nodes/edges of the two layers. There 
is a lower proportion of node/edge overlap present at the ownership layer, which is more 
remarkable than the GWCC case.

Table 5 shows that the overlap between the knowledge flow layer and the supply chain 
layer is more extensive than other combinations of layers in both the node overlap and edge 
overlap. Now, the conditional probabilities p(1|α) are given as

(8)p(1|α) =

{

2.33× 10−3 (α = 2)

1.14 × 10−2 (α = 3)
where �k̄[α]� =

{

2.68 (α = 2)

1.01 (α = 3)
,

Table 5  Overlap of  nodes and  edges between  the  layers, as  measured by  the  fraction 
of  nodes/edges appearing in  both  layers over  the  aggregate number of  nodes/edges 
of the two layers

We ignore the multiple edges in the drug pipeline layer

Drug pipeline Supply chain Ownership

(a) Node overlap between two layers

   Drug pipeline 1.000

   Supply chain 0.730 1.000

   Ownership 0.042 0.057 1.000

(b) Edge overlap between two layers

   Drug pipeline 1.000

   Supply chain 0.081 1.000

   Ownership 0.007 0.007 1.000

(c) Number of node overlap between two layers 
∣

∣Vα ∩ Vβ
∣

∣

   Drug pipeline 1574

   Supply chain 1149 1149

   Ownership 67 66 74

(d) Number of edge overlap between two layers 
∣

∣Eα ∩ Eβ
∣

∣

   Drug pipeline 3318

   Supply chain 480 3079

   Ownership 22 23 75
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for the GWCC of supply chain (α = 2) and ownership (α = 3) network. Figure 6 com-
pares the comparisons of the actual number of edge overlaps with the above binomial 
distributions, where Fig.  6a shows the supply chain and (b) the ownership network. 
Consequently, the p-value shows a value approximately equal to zero (one) for the 
supply-chain (ownership) layer. Therefore, the null hypothesis is rejected (adopted) for 
the supply chain (ownership) layer, proving that the observed edge overlaps between 
the knowledge flow and the supply chain (ownership) layers are (are not) statistically 
significant.

Therefore, the pharmaceutical industry’s knowledge flows are related to the flow of 
products associated with the supply chain, rather than the dependency based on the 
ownership network. This suggests that pharmaceutical companies use open innovation 
to share the drug pipeline and spread the business market as the supply chain. Although 
we do not use the ownership data, including M&A, the relation between the knowledge 
flow of the drug pipeline and ownership network is rare. Future work, therefore, should 
compare the traditional M&A strategy of pharmaceutical companies with their sustain-
able growth.

The similarity between the knowledge flows of drug pipelines and supply-chain net-
works is also observed at the edge level, i.e., the licenser (licensee) of drug pipelines tends 
to be the supplier (customer), and a hub of knowledge flows of the drug pipelines tends 
to be their hub in the supply chain. Our results suggest a strong connection between 
an open innovation in the pharmaceutical industry and firms’ activities regarding the 
supply chain. Generally, the pharmaceutical industries promote drug discovery and a 
clinical trial using artificial intelligence (AI) methods. For example, large pharmaceutical 

Fig. 6  Comparison with binomial distribution. The solid lines represent binomial distributions B(n, pα) , where 
pα is the conditional probability that we can choose the overlapped edge between drug pipeline layer and 
the α-th layer from n edges for a for supply chain and b ownership. The dashed lines represent observed 
values listed in Table 5, that is, 480 for α = 2 and 22 for α = 3
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companies, such as Pfizer and Novartis, deployed AI systems for drug discovery and 
clinical trials by IBM Pharmatutor.org , Fleming (2018). This collaboration suggests an 
increase in the need for the relation between drug pipelines and supply chains in other 
industries. Based on the analysis, our findings, therefore, agree with the reported situa-
tion of pharmaceutical innovation.

Implications

Open innovation is a lucrative field within industries relying on innovation. Specifically, 
the pharmaceutical industry represents knowledge-intensive industries, and open inno-
vation should significantly boost pharmaceutical collaborations and reduce the cost of 
long-term R & D processes or the M & A in closed innovation.

Consequently, the development of a new drug and trial requires high investment, but 
with a low possibility of success. Private companies, such as small and medium enter-
prises and ventures, end up funding innovations because of high investments. Further-
more, public companies, such as big pharmaceutical companies, are always looking for 
new available targets. Thus, to boost pharmaceutical innovation, based on globalized 
and IT innovation, it is crucial to understand the dynamics of innovation regarding the 
firm-level economy’s various interactions.

To reveal pharmaceutical innovation’s actual situation, we proposed an MLN frame-
work using the drug pipeline, global supply chain, and ownership data. Furthermore, we 
investigated the characteristics of the knowledge flows between the licenser and licen-
see, defined by the drug pipeline data, from the proposed framework. Several seeds of 
the drug pipeline were discovered in the US and provided to other countries. Larger 
firms, such as public companies having an individual market in the supply chain, can 
hold many drug pipelines as a licensee, causing pharmaceutical knowledge flows cross-
borders among countries. The macroscopic structure of pharmaceutical knowledge 
flows provides us knowledge about the characteristics of each country. Because the US 
firms provide drug pipeline seeds, they compose the upper stream of the entire network 
of the knowledge flow of the drug pipeline. Although firms in JPN do not have many 
drug seeds, they deal with the second-largest launched drug pipeline. Several firms in 
JPN are interdependent with others on drug development. From a macroscopic struc-
ture, we can confirm that most of the firms in JPN are located in the largest size of the 
SCC. By contrast, the firms in CHN, having a high self-sufficiency rate of drug pipelines, 
do not involve the circular flow of knowledge of drug pipelines with others. Further-
more, the tendency of closed innovation in CHN is seen from a closed community of 
pharmaceutical firms in CHN in the global supply chain network.

Finally, an essential question for future studies is to understand how some opera-
tions, such as policy making, could boost pharmaceutical innovation. Thus, our study 
provides a framework for future studies to assess pharmaceutical innovation’s charac-
teristics regarding various firm-level activities by using MLN representation. Although 
our results are inspiring, more investigations are required for further improvements. 
The traditional M&A strategy of pharmaceutical companies could be evaluated based on 
their sustainable growth by combining the historical M&A data with our networks. Fur-
thermore, our approach can investigate how the risk, patent cliff in the pharmaceutical 
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industry will spread to other sectors in the future. We hope that future studies could 
reduce unnecessary risk.

Conclusion
Drug development is time-consuming from the start of research to obtaining approval, 
and the probability of success with a candidate compound is extremely low. We evalu-
ated the characteristics of the flow and localization of knowledge during drug develop-
ment in the global pharmaceutical industry.

We analyzed the MLN constructed with the drug pipeline network layer, the global 
supply chain network layer, and the global ownership network layer. First, we focused on 
the flows in an individual layer of MLNs, licenses as knowledge, goods, and capital. We 
identified the bow tie and the community structure of each network layer. The obtained 
bow-tie structure suggested that the knowledge flows in drug pipelines have macro-
scopic characteristics similar to the supply chain network, characterized as the larger 
SCC size. The obtained communities in three layers were characterized by country, cat-
egory of the company, and bow tie component.

After analyzing individual layers, we studied the knowledge flows in the MLN, pri-
marily whether the knowledge flows are related to the flow of goods in the supply chain 
or the flow of capital in the ownership. Based on the results obtained from the MLN 
analysis, we conducted a statistical test. We verified the significance of the overlapping 
of edges between drug pipeline and supply-chain layers. Our results suggest a strong 
connection between open innovation in the pharmaceutical industry and its economic 
activities in the supply chain.
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Bow tie structure

Although the knowledge flow in the drug pipeline seems to be circulated at the coun-
try level by the edge-level analysis, whether the flows connect at the network level or 
not remains unclear.

First, we computed the number and sizes of SCC for each layer. We show the distri-
butions of SCC size for each layer in Fig. 7. Compared to the size of GSCC in the sup-
ply chain layer with the second-largest SCC, it is clear that the supply chain network 
contains an immensely large circular flow. On the other hand, there is no significantly 
larger SCC than the others in the ownership network. In the drug pipeline network, it 
is apparent that only small SCCs except for GSCC.

We show the bow-tie decomposition results for each layer network in Table  6, 
where we define the GWCC components not belonging to the GSCC, IN, and OUT 
components as Tendril (TE). The ownership network has an entirely different bow-tie 
structure than the others. The ownership network does not have a large SCC, such as 
a large circular flow of control. Conversely, the drug pipeline layer’s bow-tie structure 
has similar fractions of components than those of the supply-chain layer. Our results 
suggest that the knowledge flows in drug pipelines have similar macroscopic charac-
teristics as those of the supply chain network, especially the larger SCCs in the flows.

Fig. 7  Distribution of strongly connected component (SCC) size for each layer. The size of SCC is measured as 
the number of nodes

Table 6  The sizes of  different components based on  the  bow tie decomposition for  each 
layer

Drug pipeline Supply chain Ownership

Components Counts Ratio (%) Counts Ratio (%) Counts Ratio (%)

IN 1020 23.88 100,976 21.17 33,011 56.82

GSCC 498 11.66 80,225 16.82 63 0.11

OUT 1313 30.74 218,344 45.79 501 0.86

TE 1440 33.72 77,332 16.22 24,525 42.21

GWCC​ 4271 100.00 476,877 100.00 58,100 100.00
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Furthermore, we investigated the role of each country in the knowledge circulation 
of the drug pipeline layer. Figure 8 shows the number of each bow-tie component of 
the drug pipeline layer by country, where we listed the top four countries located in 
GWCC. We categorized each component using the type of business entities; Private 
Company, Public Company, Educational, and Government Institutions. As shown in 
Fig. 8a, most companies in the US are located on the IN component, which is consist-
ent with most drug pipelines at discovery status in the US (Sect. 2). Figure 8b shows 
that several public companies in JPN belong to GSCC of the drug pipeline networks. 
Although the GWCC in the drug pipeline layer is composed mainly of firms in the 
US, these companies should provide the drug pipeline seeds to the whole system, and 
the leading company in JPN contributes to the circular flow of knowledge. Further-
more, as shown in Fig. 8c and d, the companies in CHN does not contribute to the 
largest SCC in the GWCC, and this structure is not found in other countries.

Fig. 8  The number of bow tie components in the drug pipeline network by countries. We categorized 
each component using the types of business entities and only showed the top four countries located in the 
GWCC, namely, a US, b JPN, c GBR, and d CHN
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Community structure

For a comparison of the structural properties between layers, we conducted the commu-
nity detection known as the Infomap method and characterized each community using 
node attributes such as country and primary industry. We detected the hierarchical 
communities by using the multi-coding Infomap method. Table 7 summarizes the sta-
tistics in terms of hierarchical communities, where “Level” index represents the hierar-
chy of communities; communities at the 2nd level represent sub-communities at the 1st 
level. “#com.” is the number of all communities at each level, “#irr.com.” is the number 
of irreducible communities, which are communities that do not have any sub-commu-
nities. We determined the number of nodes “#nodes” such as firms and institutions, in 
irreducible communities at each level. We find that most of the firms belong to 2nd level 
communities except for the ownership network layer. Therefore, we limit our discussion 
of the properties of sub-communities to those of the 2nd level.

In Table 8, we show the characteristics of the largest community at the first layer for 
the drug pipeline layer and the three largest communities at the second level, where we 
use the attributions of country, bow tie component, and category of the company for 
this layer, and measure the community size by using the number of nodes in the com-
munity. Then, comparing the fraction of attributions at the first and second levels reveals 
that each community has similar characteristics, including 10% of public companies. The 
knowledge of the drug pipelines flows into the set of several private companies and a few 
leading firms and is widely distributed in the largest community.

Second, we demonstrate the characteristics of the communities in the other layers, 
using the primary industry attributes instead of the category of companies. As shown in 
Table 9, the primary industry of the firms forms the communities at the first level in the 
supply-chain layer, and the third-largest community labeled fourth has a significant frac-
tion of the pharmaceutical sector. To investigate the relationship between the knowledge 
flows in the pharmaceutical industry, we investigate the second-level sub-communities 
in the community labeled fourth in Table 10. Note that the community comprising the 
pharmaceutical firms in CHN is the second-largest sub-community at the supply chain 
layer. These trends align with the previously discussed structure of the knowledge flows 
in drug pipelines in CHN, which is too close.

Finally, Table 11 shows the characteristics of the six largest communities at the first 
level. Table  12 shows the characteristics of the three largest sub-communities of the 

Table 7  Statistics for  the  communities detected by  using the  multi-coding Infomap 
method

“#com.” is the number of all communities, “#irr.com.” is the number of irreducible communities, which are communities that 
do not have any sub-communities. “#nodes” represents the number of nodes such as firms and institutions in irreducible 
communities

G1 : Drug pipeline G2 : Supply chain G3 : Ownership

Level #com. #irr.com. #nodes #com. #irr.com. #nodes #com. #irr.com. #nodes

1 784 778 778 425 70 479 447 429 709

2 410 320 2754 41,532 35,586 381,343 7819 6689 29,953

3 287 279 701 22,591 22,155 92,599 12,185 11,671 23,706

4 16 16 38 1028 1022 2425 1731 1687 3531

5 15 15 31 112 112 201
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largest community at the 1st level in the ownership layer. Consequently, based on own-
ership, there are no significant characteristics in the largest communities. However, at 
this level, it is challenging to relate the knowledge flows of the drug pipelines in this 
stage, future work should focus on the relation to the community of dependency flow, in 
contrast to the knowledge flows by the mergers and acquisitions (M&A).

Table 8  Characteristics of  the  largest community at  the  first level for  the  drug pipeline 
layer and the three largest sub-communities at the second level

The figures in parentheses indicate the fraction of attribution, and we have only listed the attributions having a share of 
more than 5%

G1 : Drug pipeline

Index Size Country Category Bow tie

(a) the largest community

 1: 3380 US (48.5) Private company (76.7) TE (31.5)

JPN (7.6) Public company (12.6) IN (27.3)

GBR (7.2) Educational institution (9.9) OUT (27.1)

GSCC (14.1)

(b) 3 largest sub-communities

 1:1: 68 US (66.7) Private company (73.5) OUT (36.8)

ISR (7.4) Educational institution (11.8) IN (32.4)

Public Company (10.3) GSCC (17.6)

TE (13.2)

 1:3: 66 US (59.4) Private company (83.3) OUT (37.9)

CAN (6.2) Public company (10.6) GSCC (25.8)

JPN (6.2) TE (18.2)

GBR (6.2) IN (18.2)

 1:7: 63 US (50.0) Private company (81.0) OUT (42.9)

CAN (7.7) Public company (12.7) IN (28.6)

GBR (7.7) Educational institution (6.3) TE (15.9)

GSCC (12.7)
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Table 9  Characteristics of the six largest communities at the first level for the supply chain 
layer

The figures in parentheses indicate the fraction of attribution, and we have only listed the attributions having a share of 
above 5%

G2 : supply chain

Index Size Country Primary industry Bow tie

3: 43,636 US (32.3) Application software (7.6) OUT (53.5)

CHN (9.1) Technology distributors (7.3) IN (17.3)

JPN (7.5) Semiconductors (5.2) GSCC (15.1)

TWN (6.3) TE (14.1)

1: 30,972 US (43.2) Application software (8.8) OUT (44.5)

CHN (9.4) Movies and entertainment (7.5) IN (22.9)

GBR (7.1) GSCC (20.2)

TE (12.5)

4: 30,430 US (52.0) Pharmaceuticals (15.7) OUT (35.6)

CHN (6.0) Biotechnology (11.1) IN (28.0)

GBR (5.2) Health care equipment (8.2) GSCC (19.7)

Health care facilities (7.0) TE (16.7)

Health care distributors (5.2)

5: 28,298 IND (70.4) Construction and engineering (5.3) OUT (48.6)

US (6.1) GSCC (23.8)

IN (18.5)

TE (9.0)

2: 25,365 US (47.6) Apparel, accessories and luxury goods (8.5) OUT (41.5)

GBR (5.8) Packaged foods and meats (7.1) IN (23.7)

CHN (5.4) GSCC (17.7)

TE (17.1)

6: 17,857 US (36.2) Oil and gas exploration and production (15.1) OUT (36.8)

CHN (8.3) Oil and gas storage and transportation (7.8) IN (27.7)

GBR (5.6) Oil and gas equipment and services (6.7) GSCC (23.2)

TE (12.4)

Table 10  Characteristics of  the  three largest communities in  the  fourth community 
at the second level for the supply chain layer

The figures in parentheses indicate the fraction of attribution, and we have only listed the attributions with a share above 
5%

G2 : Supply chain

Index Size Country Primary industry Bow tie

4:2: 792 US (97.0) Construction and engineering (70.5) IN (94.3)

4:7: 509 CHN (99.0) Health care distributors (47.5) OUT (41.8)

Pharmaceuticals (35.6) GSCC (31.2)

Biotechnology (7.6) IN (26.9)

4:22: 364 US (47.0) Biotechnology (52.4) TE (84.6)

DEU (7.5) Life sciences tools and services (17.7) OUT (14.6)

GBR (6.9) Health care equipment (8.1)

Health care distributors (6.5)

Pharmaceuticals (5.6)
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Table 11  Characteristics of the six largest communities at the first level for the ownership 
layer

The figures in parentheses indicate the fraction of attribution, and we have only listed the attributions with a share above 5%

G3 : Ownership

Index Size Country Primary industry Bow tie

1: 54845 US (21.9)
IND (9.0)
CAN (6.4)
CHN (5.7)
AUS (5.2)
GBR (5.2)
JPN (5.1)

Asset management and custody banks (10.1) IN (56.8)
TE (42.2)

7: 644 US (24.0)
IND (10.3)
CAN (6.2)
AUS (5.9)
JPN (5.4)

Asset management and custody banks (11.6) IN (57.3)
TE (41.1)

6: 532 US (22.2)
IND (8.3)
CAN (7.5)
AUS (6.2)
JPN (5.8)
CHN (5.1)

Asset management and custody banks (11.1) IN (59.2)
TE (39.7)

3: 525 US (22.3)
IND (9.2)
CHN (5.9)
CAN (5.9)

Asset management and custody banks (11.8) IN (57.3)
TE (41.9)

12: 403 US (18.9)
IND (10.4)
CAN (7.7)
AUS (5.7)

Asset management and custody banks (10.5) IN (54.8)
TE (44.2)

16: 364 US (24.4)
CAN (11.3)
GBR (8.7)
IND (8.7)

Asset management and custody banks (10.2) IN (57.5)
TE (41.2)

Table 12  Characteristics of the largest community at the first level for the ownership layer 
and the three largest communities at the second level

The figures in parentheses indicate the fraction of attribution, and we have only listed the attributions with a share above 5%

G3 : Ownership

Index Size Country Primary industry Bow tie

1:1: 8,860 US (22.4)
IND (8.8)
CAN (6.2)
CHN (5.8)
GBR (5.4)
JPN (5.1)

Asset management and custody banks (10.8) IN (56.2)
TE (42.8)

1:2: 2,761 US (21.2)
IND (9.1)
CAN (6.7)
AUS (6.1)
CHN (5.1)
GBR (5.1)

Asset management and custody banks (10.0) IN (58.1)
TE (40.9)

1:5: 2,674 US (20.6)
IND (9.1)
CAN (7.6)
GBR (5.5)
CHN (5.4)
AUS (5.3)
JPN (5.1)

Asset management and custody banks (9.4) IN (55.3)
TE (43.5)
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