
REDUNET: reducing test suites by integrating 
set cover and network‑based optimization
Misael Mongiovì1,2*  , Andrea Fornaia2   and Emiliano Tramontana2 

Introduction
Test cases ensure that a software system is checked against possible defects and let 
developers assess its correctness. Generally, test developers determine the input values 
and expected output values for each test case, and then implement a test case that exe-
cutes a functionality with the chosen input values and compare the received output with 
the expected output. Since this activity can be time consuming, some tools are available 
to assist the automatic generation of tests, e.g. for choosing input values and combining 
them for an execution scenario (Kuhn et al. 2015). Testing frameworks, such as JUnit1 
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for Java and their counterparts for other languages, are widely used to make it easier for 
the developer to implement test cases. Moreover, test generation tools spare developers 
many coding activities related to the production of test cases.

Many tools generating test code find methods of classes and parameters and pro-
duce method calls, with proper values for parameters and the return value. The most 
prominent of such tools are Randoop (Pacheco and Ernst 2007) and EvoSuite (Fraser 
and Arcuri 2011, 2012). Randoop produces test cases having a small number of calls to 
methods, which have been chosen from the analysed code randomly (Pacheco and Ernst 
2007). EvoSuite produces test cases consisting of calls to methods, which are selected 
using evolutionary computation over a population (Fraser and Arcuri 2011). Surely, test 
generation is useful to check contract violation and for regression tests. However, the 
number of generated test cases tend to be very large, given the many combinations of 
calls to methods that can be found. Moreover, for automatic generation of test cases, 
the percentage of code coverage tends to reach a plateau, where additional test cases 
generated leave code coverage largely unchanged. As a result the efficacy of additional 
tests is limited, whereas the time needed to run all tests can be very large and take up 
many resources (Shamshiri et al. 2015; Kazmi et al. 2017). This effect can be seen when 
automatically generating test cases for junit4, jsoup and commons-jxpath, having sev-
eral thousands of lines of code. Figure 1 shows a plot relating the number of automati-
cally generated test cases and the measured code coverage of the systems under test. 
The executed test cases cover between 24 and 40% of the lines with 500 test cases. The 
coverage increases slowly when adding test cases, e.g. for jsoup when the number of test 
cases goes from 150 to 450 (a threefold increase), coverage goes from 32 to 37% (about a 
15% increase).

Generally, all tests available are executed automatically as soon as developers push 
new components on a source code repository. When following Agile development 
processes, all tests could start executing every two hours, hence a capable hardware 
is needed to have test results in a timely fashion. Considering that the number of 

Fig. 1  Code coverage. Number of generated test cases and their related code coverage for some analysed 
software systems
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automatically generated test cases could be several thousands, either the hardware 
resources are very capable or the time for running tests could be not enough for the 
development practice of continuous integration. Moreover, when test cases are auto-
matically generated, some of the statements on components under test are executed 
several times because covered by several test cases. Therefore, for the sake of effi-
ciency on hardware resources and running time, test cases should be reduced.

We propose a comprehensive framework for automatic generation and reduction 
of test suites. While we rely on existing approaches for test generation (Pacheco and 
Ernst 2007), we focus our effort on test suite reduction, i.e. finding a subset of test 
cases that cover the same amount of code of the original test suite while minimis-
ing its execution time. Although several test suite reduction methods have been 
designed in the past (Harrold et  al. 1993; Tallam and Gupta 2006; Smith and Kapf-
hammer 2009; Xu et al. 2012; Chen et al. 2008; Jatana et al. 2016; Coviello et al. 2018a) 
and they could potentially be employed in our framework, such methods either rely 
on heuristics, which are not able to find the optimal reduction, or employ expensive 
approaches, which do not scale well on large projects. Moreover, existing methods 
focus on preserving the coverage of generic requirements, hence they are not spe-
cifically optimised for preserving code coverage, and many of them do not specifically 
focus on minimising the test suite execution time. Unlike the said approaches, our 
approach REDUNET finds the optimal reduced test suite in terms of execution time 
in real software projects, and therefore increases the ability to give a quick feedback 
to the developers. A more extensive comparison with the related work is given in a 
dedicate section.

The problem of test reduction has been constructed as an optimisation problem aimed 
at finding the minimum number of test cases that, while keeping the same code cov-
erage, minimises execution time. REDUNET manages to select test cases very quickly, 
hence it does not impact on used resources.

In our previous contribution (Mongiovì et al. 2019), we have employed Integer Lin-
ear Programming (ILP) and a Control Flow Graph (CFG) analysis to reduce the number 
of test cases while ensuring that code coverage (specifically, statement coverage) is kept 
unchanged, however without considering test execution time. In this work we improved 
both effectiveness and efficiency of our approach, by taking into account the test suite 
execution time and enhancing the ability to reduce the computational cost of the opti-
misation. We also propose a more comprehensive validation of the approach, having 
performed experiments on ten real software systems. REDUNET is flexible enough to 
enable its use with other metrics different than test execution time and statement cover-
age (e.g. branch coverage).

Our experiments have shown that REDUNET, while managing to keep the same code 
coverage, greatly reduces the test suite execution times, in some cases to one-tenth of 
the original time frame, finding the optimal reduction in all software projects under 
analysis. The proposed reduction approach is also more than three times faster than ILP 
alone and than the state-of-the-art heuristic Harrold Gupta Soffa (HGS) (Harrold et al. 
1993; Coviello et al. 2018a) on the largest software project, and almost always faster than 
our previous approach (Mongiovì et al. 2019) thanks to a more careful reduction of the 
input for the ILP step.
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With respect to our previous work (Mongiovì et al. 2019), our contribution is threefold.

•	 We consider the running time of the test suite as a more appropriate parameter than 
the number of test cases and adapt our method accordingly;

•	 We improve the efficiency of our method by using a more effective approach to 
reduce the size of the data for the optimisation consisting in removing the back edges 
of the control flow graph;

•	 We perform an extensive evaluation of the proposed approach on ten real software 
systems.

In the following, we describe our approach and framework, then we present the problem 
formulation, the proposed solution, and experimental results. Eventually, we discuss rel-
evant related works and conclude the paper.

A comprehensive approach for the automatic generation and reduction of test 
suites
Our complete framework includes the automatic generation of test suites and a test 
reduction process aimed at reducing the resulting test suite execution time without 
affecting coverage. In the literature, test reduction approaches that preserve coverage are 
said adequate, whereas inadequate ones reduce test suites that partially preserve cover-
age (Shi et al. 2014; Coviello et al. 2018b). We used statement coverage as a code cover-
age metric. Figure 2 shows the steps performed by the implementation of our complete 
framework.

First, a test suite is generated for the software system to be analysed, e.g. by using Ran-
doop (Pacheco and Ernst 2007). We used Randoop to generate a large number of test 
cases that offer as much coverage as possible. Randoop was chosen over EvoSuite (Fraser 
and Arcuri 2011) since the former is much faster than the latter, and test cases produced 
by EvoSuite would still be liable of the reduction process. However, manually imple-
mented test cases or test cases generated by another tool could be used too as input for 
the following steps.

Second, the generated test cases are added to the maven project as Java unit tests.
Third, test cases are executed together with a service tracing code coverage. Tests are 

executed on a virtual environment that has been created using a Vagrant box.2 Vagrant 
lets us configure a virtual environment for execution, hence protecting the real system 
(the real file system is not accessed, hence avoiding the content of files to be potentially 
changed by the test execution). For tracing code coverage, we have used Cobertura,3 

Fig. 2  General framework. The developed tool-chain consisting of test generation, code coverage 
assessment, control flow graph extraction, and reduced test suite computation

2  https​://www.vagra​ntup.com.
3  https​://cober​tura.githu​b.io/cober​tura/.

https://www.vagrantup.com
https://cobertura.github.io/cobertura/
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which gives us the ids of the executed code lines for each test case run. Producing cover-
age information may introduce up to 30% of time overhead during test execution (Cru-
ciani et al. 2019). Therefore, the coverage information is produced and collected only for 
the classes of the system under test, i.e. not for the external libraries, since the latter are 
out of the scope of the developer’s testing activities. The outputs of each test case execu-
tion are: (1) the lines of code that have been covered, and (2) the execution time.

Fourth, we determine method coverage, i.e. the methods that have been (partially or 
fully) executed when running a test case. This results from the structure of the soft-
ware system and its control flow, found by static code analysis, as well as the traces for 
the executed lines of code (our component JCodeGraph implements the proper analy-
sis). Eventually, control flow graph and test execution traces are given to the test suite 
reducer, which reduces the number of test cases (later used for regression testing), to 
achieve a much shorter execution time, while ensuring the same code coverage.

The reduction step is the core of our tool, and is detailed in the following subsections.

Problem formulation and overall test suite reduction method

Formally, a test suite is a set of test cases, where a test case is represented by a specific 
executable configuration of the input parameters. Running a test case consumes a cer-
tain amount of computational resources, which we quantify in terms of execution time.4 
When a test case is run, it produces an execution trace (or simply a trace), i.e. a sequence 
of visited instructions (i.e. statements). We say that a test case covers an instruction if 
such an instruction is executed when the test case is run. The set of instructions covered 
by a set of test cases is named code coverage (or simply coverage).

Our test suite reduction problem can be formulated as follows: given a test suite, find 
a subset of test cases that maintains code coverage while minimising execution time, i.e. 
whose code coverage is the same as the whole test suite and the running time of its exe-
cution is minimum.

Given a test case t, we denote with St the set of instructions covered by t, and with ct 
the running time (cost) of executing t. Given a test suite T = {t1, t2 . . . , tn} , its coverage 
is defined as ST =

⋃
t∈T St . Formally, our problem is defined as:

Table 1 summarises the notation used in this paper.
Our optimisation problem corresponds to a variant of set cover called weighted set 

cover. Set cover is a classic computer science problem that, given a family of sets, calls 
for finding the minimum-size sub-family that covers all elements in the input family. Fig-
ure 3 shows an instance of set cover with four sets ( S1 , S2 , S3 and S4 ) covering together 16 
elements (black dots). In this example, an optimal solution for set cover consists of three 
sets ( {S1, S2, S4} ), since there is no pair of sets that cover all 16 black dots. In weighted set 

min
T ′

∑

t∈T ′

ct ,

ST ′ = ST

T
′ ⊆ T

4  our approach can be generalised to any additive cost function, e.g. the total CPU time.
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cover, each set is associated to a cost (weight) and the goal is to minimise the total cost of 
the taken sets.

In our test reduction problem, each test case is associated to its set of covered instruc-
tions and its execution time. The family of sets corresponds to the whole test suite. The 
optimal sub-family corresponds to the resulting test suite, which has the same coverage 
as the initial one and is minimal, i.e. there is no way to obtain the same coverage with 
shorter execution time by drawing from the initial test suite.

As set cover, weighted set cover is NP-hard and does not have a constant-factor 
approximation guarantee. Therefore, it is not possible to design an algorithm that solves 
it with an error within a fixed multiplicative factor of the returned solution. A greedy 
algorithm for set cover solves it with a factor-log(n) approximation, i.e. with a logarith-
mic-function error bound (Feige 1998).

Although the greedy algorithm could be applied to reduce test suites, the result would 
be sub-optimal. This translates to a higher number of test cases to run and therefore a 
longer running time of the test execution. Computing an optimal solution, on the other 
hand, would require a high amount of time and computational resources and would be 
feasible only on sufficiently small problem instances.

Table 1  Summary of the notation used in this paper

Symbol Name Description

T Test suite The initial set of test cases

T ′ Optimised test suite Resulting set of test cases, which minimise the execution time

St Test case coverage The set of instructions covered by test case t

ST Test suite coverage Set of instructions covered by at least one test case in T

ct Execution time (cost) Execution time of test case t

xt Test selection variable Binary variable valued 1 if the test case t is taken, 0 otherwise

G CFG The control flow graph of the program under testing

V Vertices Set of vertices in a CFG

E Edges Set of edges in a CFG

v,u Vertex A vertex of a CFG, corresponding to an instruction

e Edge An edge of a CFG, showing contiguous instructions or a jump

Fig. 3  An instance of set cover. {S1, S2, S4} is the minimum-size subfamily that covers all elements of the 
input family (black dots)
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We resort to an intermediate solution that is based on Integer Linear Programming 
(ILP) and the properties of the Control Flow Graph (CFG) of the software project. An 
instance of set cover can be easily redefined as an instance of ILP and given to a solver. 
There are several open and commercial solvers for ILP in the market. They employ a 
bunch of sophisticated techniques to find an optimal solution or, in the case it cannot be 
found within a user-defined time limit, an approximated solution with measurable error 
from the optimal one. This approach makes the computation feasible even on large soft-
ware projects, but exhibits a decrease in accuracy with the size of the problem instance. 
Therefore, to maximise the number of times that the optimal solution can be found, we 
designed a method for reducing the size of the input by performing an accurate analysis 
of the CFG. In the remainder of this section we describe the ILP reduction and our CFG 
analysis for reducing the problem instance.

ILP‑based test suite optimisation

The problem defined above can be described as an ILP program:

T  is the input test suite and {xt} are integer binary variables that describe which test 
cases are taken. Specifically, the value of xt is 1 if test case t is chosen, 0 otherwise. Solv-
ing the ILP problem consists in finding the {xt} variables assignment that minimises the 
cost function (total execution time of the taken test cases) and satisfies the constraints, 
which guarantee to have every instruction (of the input test suite coverage) covered at 
least once.

Existing ILP solvers employ a variety of techniques, including cutting-planes, branch-
and-bound and dynamic programming, to find an approximate solution with error 
within a measurable bound. With small or not computationally hard instances, the 
error bound can be brought to zero and an exact solution is returned. In this work we 
employed the open-source solver GLPK.5 It is based on the branch-and-cut algorithm, 
a combination of branch and bound and cutting plane, and employs the revised simplex 
algorithm and the primal-dual interior point method to compute lower bounds (upper 
bounds for maximisation problems) to the optimal solution and prune the search space 
by discarding branches that cannot produce optimal solutions. If the time limit expires 
before finding an optimal solution, the system returns the gap, i.e. the relative distance 
of the best lower bound from the best solution found (in percentage). The gap represents 
the error since the optimal solution must lie between the best lower bound and the best 
solution found.

minimise
∑

t∈T

ct · xt ,

subject to
∑

t:i∈St

xt ≥ 1 for all i ∈ ST ,

xt ∈ {0, 1} for all t ∈ T

5  http://www.gnu.org/softw​are/glpk/.

http://www.gnu.org/software/glpk/
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Increasing efficiency by integrating CFG analysis

A control flow graph (CFG) is a static representation of the execution flow of a program. 
We exploit the properties of the CFG for reducing the input size for the ILP program. 
Specifically, we show that by CFG analysis we can select a subset of covered instructions 
for the optimisation problem without affecting correctness.

A CFG is a graph G = (V ,E) , where V is a set of vertices, which represent program 
instructions, and E is a set of (directed) edges in the form e = (u, v) , where u, v ∈ V  
are called source and target, respectively. We also say that e is an outgoing edge from 
u and an incoming edge to v. Two vertices u, v ∈ V  in a CFG are connected by an 
edge ( (u, v) ∈ E ) if instructions u and v can be executed subsequently either because 

Fig. 4  Sample class ShoppingCart. A sample class having several execution paths

Fig. 5  Control flow graph. Control flow graph for the ShoppingCart class
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they are contiguous or because of jumps in the control flow (i.e. in the presence of 
conditional statements, loop statements or method calls). Figure 4 shows class Shop-
pingCart and Fig.  5 shows its CFG for method getTotal(), where vertices are 
labelled with corresponding instruction line numbers. Vertex 4 corresponds to the 
first instruction; vertices 8, 12 and 13 represent conditional statements, hence they 
have more than one outgoing edge. Vertices 21 and 22 represent a for loop header and 
its body, respectively.

Our CFG analysis is aimed at identifying instructions that are guaranteed to be exe-
cuted even if excluded from the input given to the ILP step. In the program shown in 
Figs. 4 and 5, if a test t covers instruction 10, we can be sure that it also covers instruc-
tions 8, 5 and 4, since the only path from the first instruction through vertex 10 traverses 
such vertices. In this case we might choose to include vertex 10 and exclude vertices 8, 5 
and 4 from the computation without affecting code coverage.

Before applying our algorithm we remove from the CFG instructions that are not cov-
ered by the input test suite, since they do not affect the computation. The main idea of 
our algorithm is based on the observation that for each edge (u, v) of the CFG whose 
target v has only one incoming edge, we can remove the source u from the ILP opti-
misation step without loosing its coverage since v can be reached only through u. Note 
that v might itself be a source of another edge (v, z), hence it might be removed as well, 
but in this case its coverage would still be guaranteed by the presence of z or one of its 
descendant.

We can improve the performance of our input size reduction procedure by cleaning 
the CFG of back edges of the depth first search tree within methods. In short, a back 
edge is an incoming edge to an ancestor of the depth first search tree. A back edge 
prevents its target vertex to be removed since it contributes to increase (to at least 
2) its number of incoming edges. However, within a method, a back edge occurs only 
because of a loop statement or a recursive call; in both cases, to reach the source of 
the back edge we must explore its target, which correspond to the first instruction of 
the loop (or the method declaration of the recursive call). E.g., in Fig.  5, intuitively 
vertex 19 can be excluded by the ILP computation since vertex 22 guarantees its cov-
erage (if vertex 22 is reached we can be sure that vertex 19 has been visited). How-
ever, without removing back edges, vertex 19 cannot be excluded since its successor, 
vertex 21, has two incoming edges. If we remove the edge that connects vertex 22 to 
vertex 21, which is a back edge, vertex 21 is left with just one incoming edge, hence 
vertex 19 can be excluded.

Our complete algorithm is reported in Algorithm 1. It first initialises S as the set of 
covered instructions and cleans the CFG of vertices that are not covered by the test 
suite and back edges. Then, it visits all edges (u, v) in the CFG and removes sources of 
edges whose targets have exactly one incoming vertex. Eventually the algorithm returns 
the family for the ILP computation, after removing elements that are not in S and 
empty sets. In the example in Fig. 5, S , initially composed by all vertices, is reduced to 
S = {10, 25, 22, 16, 14, 28} . 
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Employing other metrics

The proposed approach is flexible enough to be applied with other metrics different than 
test execution time and code coverage. E.g., we might want to consider for a test the num-
ber of previously detected faults, or the number of mutants detected when adopting muta-
tion testing (Myers et al. 2011; DeMillo et al. 1978). Alternatively, we might want to focus 
on covering a portion of code that is more likely affected by changes, hence more suscepti-
ble to errors, motivated by considerations similar to those found in Panda et al. (2016).

In general, we can substitute code instructions with any other set of elements we aim at 
covering and the test execution time with any other metrics we aim at minimising. E.g., 
we could restrict the code instructions to cover a suitably selected subset, or substitute the 
metric “code instructions covered” with “faults detected” (or “mutants killed” or any other 
properties of test cases), without changing the other parts of the proposed approach and 
framework.

When considering the code coverage provided by test cases, CFG analysis has been used 
in our approach for excluding some instructions before starting the computation of the 
reduced test suite. Should code coverage be substituted by some other metrics, then our 
CFG analysis would have to be changed. A similar CFG analysis could be implemented in 
case a different coverage measure is considered. E.g., when using branch coverage (God-
boley et al. 2017) we may reduce the number of branches to be considered according to 
their control dependencies (e.g. in case of nested branches) (Arcuri 2011).

We might also want to include multiple optimisation criteria, e.g. minimise test execu-
tion time and maximise the sum of fault detected (e.g. in a set of mutants) by each test case, 
while maintaining code coverage. In general, this would require solving a multi-objective 
optimisation problem, which is out of the scope of this work. However, in some cases the 
criteria can be combined in a unique linear objective function, hence easily integrated in 
our approach. E.g., we might consider for each test case the ratio between the execution 
time and the number of faults detected, hence the following objective function:

where ct is the execution time of test case t and ft is its number of detected faults.

(1)min
T ′

∑

t∈T ′

ct

ft
,
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Experimental results
We evaluated our approach by executing the implemented tool-chain on ten open source 
projects implemented in Java. Details about considered versions and other replication 
data can be found in the REDUNET repository.6 We generated a test suite for each of 
them by using Randoop (Pacheco and Ernst 2007). For every software system, we set the 
maximum allowed time to generate the random test suite to 50–150 s overall, consisting 
of 10–30 runs of Randoop of 5 s each, with a different random seed on each run. This 
lets us produce a test suite having a size of around 1000 test cases in most cases (a single 
run for Randoop starting from one random seed gives much less test cases, even when 
its running time is not bounded). For the smallest system (610 lines of code), chord-cli-
ent, 73 generated test cases gave the maximum instruction code coverage that could be 
achieved. All the other analysed systems were much bigger, ranging from 1213 lines of 
code to 36,603 lines of code, and instruction code coverage varied from 15 to 65%.

Table 2 reports the measured sizes for each analysed software system and the related 
generated test suites, i.e. starting from the left column, the table gives: the name of the 
software system, the number of classes, the number of methods, the total number of 
lines of code, the number of generated test cases, the coverage (as the number of code 
lines that have been executed when running the test suite).

We implemented our tool for test suite optimisation in Java 10. We employed JCod-
eGraph, a tool of ours based on JavaPDG (Shu et al. 2013) for computing the CFG. We 
integrated GLPK7 for solving the ILP program and the library JGraphT8 for managing 
graphs. All ILP programs in this evaluation have been solved optimally by GLPK in less 
than 2 s. Therefore we did not set a time limit for the solver and do not report the error 
(gap) since it is always zero.

We compared the proposed method with three state-of-the-art approaches. We 
included a previous version of our system, described in the introduction (Mongiovì 

Table 2  Sizes of  the  software systems (number of  classes, methods and  lines of  code) 
and the related test suites

Column “Test cases” gives the number of test cases of the whole test suite; column “Covered lines” reports the number of 
instructions covered by the whole test suite

Software Classes Methods Lines Test cases Covered lines

chord-client 11 61 610 73 143

junit4 347 1772 5216 532 2046

jsoup 256 1697 7691 1171 3446

commons-cli 27 291 1213 801 779

commons-codec 102 916 4413 1303 2774

commons-collections 536 4449 13593 1391 3227

commons-jxpath 187 1632 9405 1173 3294

commons-math 917 6287 36603 1345 7066

jackson-core 124 2182 15796 1040 2428

jackson-dataformat-xml 55 520 2509 1031 805

6  https​://githu​b.com/aforn​aia/redun​et.
7  http://www.gnu.org/softw​are/glpk/.
8  https​://jgrap​ht.org/.

https://github.com/afornaia/redunet
http://www.gnu.org/software/glpk/
https://jgrapht.org/
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et al. 2019). We also implemented a greedy algorithm for weighted set cover (Vazirani 
2013), a variant of the traditional greedy algorithm for set cover, previously applied 
for test suite reduction (Smith and Kapfhammer 2009), which aims at minimising the 
total execution time (we select at each step the test that maximises the ratio between 
its uncovered elements and its weight, i.e. execution time). Last, we implemented the 
Harrold Gupta Soffa (HGS) method (Harrold et al. 1993), which has been shown to 
have superior or similar performances than other heuristics such as Greedy, 2-Opti-
mal, Delayed Greedy, GE and GRE (Coviello et  al. 2018a). We also included some 
variants of our method to assess the impact of including specific techniques. We did 
not perform tests with methods that do not guarantee code coverage (inadequate 

Table 3  Approaches. Description of approaches compared in this experimental analysis

Approach Description

Do nothing No optimisation performed, just the initial test suite is returned

Greedy Greedy algorithm for set cover, previously adopted by Smith and Kapfhammer (2009)

HGS Harrold Gupta Soffa (HGS) test-reduction method (Harrold et al. 1993)

CN Test suite optimisation of our previous tool in Mongiovì et al. (2019), designed to minimise the 
number of test cases

ILP ILP-based test suite optimisation as described in the first part of the method section

ILP+CFG ILP-based test suite optimisation integrated with the CFG analysis, except the back edges removal

REDUNET Our complete tool, i.e. ILP + CFG + back edges removal

Fig. 6  Effectiveness of our test suite optimisation Running time in seconds of the test suites after the 
reduction (y-axes). The labels in the x-axis represent the ten software projects under analysis, whose details 
are reported in Table 2. The series represents the approaches under comparison, whose details are given in 
Table 3
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methods), since they are out of the scope of this work and it has been shown that they 
perform worse in terms of fault detection ability (Coviello et al. 2018a). Table 3 sum-
marises the approaches included in this evaluation.

All optimisation tests have been run on a Windows 10 PC with Intel Core i5-8250U 
1.60 GHz CPU and 8 GB RAM.

The effectiveness of our framework has been assessed by measuring the time neces-
sary for executing the resulting test suite. We run the tests sequentially, then the total 
execution time is ct1 + ct2 + · · · + ctn , where cti is the running time of a single test. We 
also evaluated efficiency, in terms of time needed for computing the test suite reduc-
tion. We do not consider the time needed to run the test suite, to generate the execution 
traces, and to build the CFG, since we do not have control on them and we employed 
tools from third parties, which are not optimised for efficiency. Instead, we focus on the 
test suite reduction time, since it is more critical for scalability, and include the input 
size reduction techniques described in the method section.

Figure 6 compares test suites execution times resulting by Greedy, HGS, CN, the cur-
rent approach REDUNET, and the unfiltered test suite (Do Nothing). ILP and ILP+CFG 
are not included since their performances are the same as REDUNET. As expected, all 
approaches reduce the running time of each test suite significantly. For the largest sys-
tem, commons-math, the running time when using REDUNET is less than half of the 
running time needed for the whole test suite. The best gain is for the system jackson-
dataformat-xml, for it the resulting running time was reduced more than 10 times. 
REDUNET performs always better than the other approaches. This is an expected result 
since REDUNET is specifically designed to minimise execution time and has found the 
optimally reduced test suite in each case.

To better show the improvement of REDUNET with respect to the other approaches, 
we report the precise test execution time in Table 4. We also report, within brackets, the 
optimisation time, which we discuss in the next paragraph. The resulting test suite given 
by REDUNET has a running time up to 15  s shorter than the one given by HGS (on 
commons-math), up to 5 s shorter than the one given by Greedy (on commons-jxpath), 
and up to 7 s shorter than the one given by CN (on jackson-core).

We evaluate the efficiency of our approach by comparing it to previously proposed 
approaches. We include some variants of our approach in order to assess the impact that 

Table 4  Running time in seconds of the test suites after the reduction

The numbers within brackets represent the time for computing the test suite optimisation (see also Fig. 7)

Software project Do Nothing HGS Greedy CN REDUNET

chord-client 57.1 19.7 (0.0) 18.9 (0.0) 18.8 (0.0) 18.3 (0.0)

junit4 4.51 1.54 (0.7) 1.56 (0.2) 1.55 (0.3) 1.47 (0.3)

jsoup 425.1 73.0 (0.4) 74.2 (0.2) 72.9 (0.4) 71.4 (0.4)

commons-cli 221.4 22.6 (0.0) 22.8 (0.0) 22.0 (0.1) 21.3 (0.1)

commons-codec 498.3 99.0 (0.2) 96.5 (0.0) 97.6 (0.2) 93.3 (0.2)

commons-collections 502.9 126.2 (0.1) 125.3 (0.0) 125.4 (0.3) 120.3 (0.3)

commons-jxpath 616.1 221.1 (0.3) 220.6 (0.0) 219.9 (0.2) 215.2 (0.2)

commons-math 730.2 317.2 (1.7) 306.4 (0.1) 306.2 (0.5) 301.9 (0.5)

jackson-core 355.7 131.9 (0.1) 129.3 (0.0) 134.5 (0.2) 127.1 (0.2)

jackson-dataformat-xml 640.4 45.9 (0.1) 45.0 (0.0) 43.6 (0.1) 41.3 (0.1)
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CFG analysis and the removal of back edges have on REDUNET. To reduce the error due 
to small fluctuations of the running times, we repeat each run 100 times and consider 
the average computation time.

Figure 7 reports the results in terms of running times. The most efficient method is 
Greedy. However, as discussed previously, Greedy is less effective than REDUNET and 
other ILP-based algorithms, therefore its speed comes at the cost of a more expensive 
resulting test suite. Note that the running time of the test suite is two order of mag-
nitude longer than the running time of the test suite reduction and the test suite is 
executed more frequently than the reduction. Therefore, it is worth to spend some frac-
tions of a second more to have a less expensive test suite. The most costly approach is 
ILP (except on junit4, where HGS performs slower). ILP has the advantage of finding 
the optimal solution, however it does not implement the CFG analysis discussed in the 
method section. CN, ILP+CFG and REDUNET are significantly quicker than ILP in all 
projects except chord-client. REDUNET is slightly quicker than CN and ILP+CFG in all 
projects except chord-client and commons-collections. Note that REDUNET (as well as 
ILP+CFG) is as effective as ILP, therefore the gain in efficiency comes at no cost. The 
higher efficiency of REDUNET depends on the ability to reduce the input for the ILP 
solver. The time necessary for finding an exact solution of an ILP problem grows expo-
nentially with the input size, while the CFG analysis has linear complexity, therefore the 
advantage of our CFG-based input reduction grows with the size of the input. Interest-
ingly, the only project for which REDUNET performs worse than ILP is chord-client (6 
ms for REDUNET and 5 ms for ILP, values not shown in the graphics). Due to the very 

Fig. 7  Efficiency of test suite optimisation Running time in seconds for computing the test suite optimisation 
(y-axes). The labels in the x-axis represent the ten software projects under analysis, whose details are reported 
in Table 2. The series represents the approaches under comparison, whose details are given in Table 3
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small size of such a system, the running time of the ILP solver is negligible, hence the 
time spent by the CFG analyser to provide less data to the ILP solver cannot be coun-
terbalanced when running the ILP solver. HGS shows mixed results in comparison to 
the other approaches, being less efficient than ILP in one case (on junit4) and always less 
efficient than Greedy. In 6 over 10 projects HGS is faster than REDUNET. However, as 
shown in Fig. 6, its effectiveness is not superior to Greedy, therefore similar considera-
tions hold.

For small-size software systems the difference in efficiency among CN (or ILP+CFG) 
and REDUNET is expected to be small, whereas for larger ones the difference is expected 
to be bigger. This has been confirmed experimentally; indeed the largest analysed sys-
tem, commons-math, is the one in which the results provided by REDUNET shows the 
largest percent improvement in computation time with respect to CN and ILP+CFG 
(its value is 6%, value not shown in the plot). On larger projects, the ability to reduce the 
input size for the ILP program becomes more critical. To assess this ability we compute 
the percent of reduction of the input size of CN, ILP+CFG and REDUNET with respect 
to ILP, which performs no input reduction. The input size is defined as the sum over all 
test cases of the number of instructions covered by each test case.

Figure 8 shows the results in terms of input size. The reduction is always significant, 
in the range between 66 and 93% . REDUNET outperforms CN and ILP+CFG in all pro-
jects except chord-client, where it shows the same performance. CN and ILP+CFG show 
the same performances since they use the same reduction algorithm and only differ in 
the objective function of the ILP optimisation.

Fig. 8  Input size reduction. Percent of reduction of the input size for the ILP program (y-axes). The labels in 
the x-axis represent the ten software projects under analysis, whose details are reported in Table 2. The series 
represents the approaches under comparison, whose details are given in Table 3
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Related works
The problems of generating and reducing test suites have been considered by past work 
both as distinct problems and jointly. We briefly review existing approaches and high-
light the differences with our approach.

Automatic generation of test suites

Randoop (Pacheco and Ernst 2007) creates unit tests by chaining sequences of methods 
randomly selected from the software under test. Code coverage is not considered during 
test generation, thus several generated test cases could exercise the same code portion. 
With respect to our contribution it is complementary, since we take the randomly gener-
ated test cases and select such test cases that cover the code without much repetition, 
reducing the test suite size while maintaining the same code coverage.

Test suite reduction, selection and prioritisation

Existing approaches for test suite reduction focus on maintaining generic requirements, 
which might refer to code coverage or other characteristics of test cases. Although some 
of these approaches can be applied to maintain statement coverage, on large projects the 
size of data would make them unfeasible or at least inefficient.

The approach proposed in Tallam and Gupta (2006) considers the requirements exer-
cised by a test, and minimises the number of test cases by excluding a test case when 
requirements covered are also covered by other test cases. They introduce a solution 
called delayed-greedy, consisting of some heuristics, such as checking whether a set of 
requirements is a superset or a subset of another, hence excluding the test cases having 
subsets of requirements; whether a requirement is covered by only one test case, then 
including such a test case; and whether the test case covers the maximum number of 
attributes, then including it.

Harrold et al. (1993) proposed the HGS heuristic to reduce test suites by maintaining 
a certain set of test requirements, where requirements can refer to code statements or 
other features of tests. It consists in grouping test requirements into an ordered family 
of sets, where the i-th set contains requirements that are covered by exactly i tests, and 
taking tests that satisfy requirements from the 1-st set, then from the 2-nd set and so on, 
until all requirements are satisfied.

Smith and Kapfhammer (2009) evaluated several heuristics, including HGS (Harrold 
et al. 1993), the traditional greedy algorithm for set cover and two of its variants, 2-opti-
mal greedy and delayed greedy, for reducing test suites. The greedy algorithm takes test 
cases one by one considering at each step the test case that maximises the ratio between 
its number of previously unsatisfied requirements and its cost. 2-optimal greedy is simi-
lar but considers pairs of sets in place of single sets. Delayed greedy pre-processes the 
test suite before applying the greedy algorithm by removing test cases that are subsets of 
other test cases and including test cases that contain requirements that are not satisfied 
by other test cases.

Xu et al. (2012) considered the problem of reducing test suites as a variant of set cover, 
where costs are associated to sets (test cases) and the goal is to maintain the coverage 
of requirements by minimising the total cost. The authors apply a greedy algorithm to 
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solve it. In Hsu and Orso (2009) the authors mapped the set cover problem to a muta-
tion testing problem. By using a greedy approach to find the minimum set of test cases 
that covers all the mutants killed by the original test suite, they were able to detect the 
same number of faults.

Chen et al. (2008) adopted an exact approach based on ILP to reduce the test suite by 
maintaining a set of requirements, and propose some heuristics to increase efficiency. 
Panda and Mohapatra (2017) proposed a an ILP-based approach for minimising the 
test suite without loosing coverage of modified sentences and meanwhile minimising 
a measure of cohesion of code parts covered by each test case. In Jatana et  al. (2016) 
the authors proposed a general ILP-based framework to support test-suite minimisation 
over multiple criteria, such as code coverage, test execution time and setup cost.

FLOWER (Gotlieb and Marijan 2014) describes a novel Maximum-Flow-based 
approach for reducing the test suite while maintaining requirement coverage and shows 
that this method is more effective than greedy approaches, is more efficient than exact 
ILP-based approaches and admits multi-objective optimisation.

Although the described approaches can take into account statement coverage, the 
methods are not specifically optimised for it, therefore using them for code cover-
age guarantees might be unfeasible or ineffective on large programs. Focusing on code 
coverage, instead of coverage of requirements, has specific advantages and introduces 
some challenges. Most development practices have only coarse-grained requirements, 
hence many portions of code are implemented for a requirement. As a result, two (or 
more) test cases covering the same requirement could exercise different portions of 
code. Moreover, by automatically deriving the code lines covered by each test case, we 
need not rely on a manual mapping between test cases and requirements. Focusing on 
code coverage is harder due to the larger amount of data (code instructions) to handle. 
Although some heuristics could easily be applied to guarantee code coverage, in place of 
manually-curated requirements, the accuracy would be penalised to guarantee feasibil-
ity. In contrast, we leverage on the properties of the CFG to feasibly solve the problem 
with high accuracy. Since they are not directly focused on code coverage, none of the 
previously discussed approaches take advantage of the properties of the CFG for opti-
mising computation.

In Do (2016), several approaches are presented for the reduction, selection, prior-
itisation of test cases. For test case reduction, in some approaches code coverage was 
assessed by means of a CFG, and other approaches used ILP for test case selection. We 
put forward both and we include optimisations (such as the early selection of state-
ments thanks to the CFG) in our proposed solution. For recent approaches the preferred 
way to assess their benefits is by measuring the reduction rate of tests or their execu-
tion time and the coverage ensured by selected test cases. Accordingly, our optimisation 
method has maximised coverage, while minimising the execution time. Moreover, pre-
vious approaches are often scored against a suite of software systems that is sometimes 
considered controversial (perhaps not representative enough). We have permed experi-
ments on ten recent and large software systems.

In Chen et al. (2010), the authors describe the technique of Adaptive Random Test-
ing and its implications. It is argued that the more evenly spread the test cases the 
better, as they would allow running several parts of the system. More specifically, it is 
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recommended that random values for parameters should be chosen to be located away 
from previously executed test cases that have not revealed failures. Such a technique 
mainly aims at generating a selection of input values for test cases. It can be argued that 
for the same method to be tested, the selected values would run different paths. How-
ever, for test cases having each a sequence of method calls, it is not straightforward to 
provide an estimate on the absence of overlapping paths, hence on coverage.

In Cruciani et  al. (2019), the authors reduce test suites by computing the similar-
ity among test cases and take the most distant tests as these should be the ones that 
potentially show faults on several parts of the system. Their reduction approach need 
not executing tests on the system, hence it performs quickly. Still to determine the code 
coverage provided by the reduced test suite, test cases have to be executed on the sys-
tem. Moreover, several reduced test suites could need execution to ensure that a target 
code coverage has been reached. The comparison of their adequate version with other 
approaches on a Java dataset has shown no difference in fault detection abilities, whereas 
the Greedy algorithm achieves the best test suite reduction. REDUNET clearly outper-
forms Greedy, and this is confirmed empirically by our experimental results.

A study has also compared test suite reduction and test case selection approaches in 
detecting change-related faults, i.e. faults caused only by some specific changes (e.g. 
occurred between two code revisions) (Shi et al. 2015). The authors observed that test 
suite reduction can lose change-related fault-detection capability (of up to 5.93% for 
killed mutants) with respect to the full test suite, while regression test selection has 
no loss. This because reduction approaches operate only on one software revision, so 
they are not aware of changes, and they can remove tests that are deemed redundant 
for the current revision, irrespective of recent changes (Shi et al. 2014). Test selection 
approaches are instead specifically designed to select all tests that may be affected by 
given changes, thus having a better detection of faults caused by them. On the other 
hand, test reduction approaches are still able to find faults unrelated to those changes.

In Luo et al. (2018) the authors compare eight approaches for Test Case Prioritisation 
(TCP): given a test suite, test case prioritisation consists in finding a set permutation 
where test cases are ordered according to a specific performance function (Rothermel 
et al. 2001), such as the number of synthetic software defects (mutants) they are able to 
detect (kill). The authors investigate whether the common practice of evaluating tests 
performance against mutants would be representative of the performance achieved on 
real faults, highlighting in which cases this may lead to an over/under estimation of the 
actual prioritisation effectiveness in terms of fault detection rate. The main difference 
with our approach is that the test case prioritisation problem differs from the test suite 
minimisation we solve: the former seeks to order test cases in such a way that early fault 
detection is maximised, the latter seeks to eliminate redundant test cases in order to 
reduce the number of tests to run (Yoo and Harman 2012). That is, while the objective of 
TCP approaches is to prioritise tests while leaving the test suite size unchanged, which 
is desirable for test cases properly crafted by a software developer, in our proposal we 
leverage random approaches to automatically generate a considerably higher number of 
tests, and then reduce the test suite size according to the coverage performance.

The ability of reduced test suites to properly discover faults have been studied in the 
past. Preliminary research on small C programs have produced mixed results, with e.g. 
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Wong et al. (1998) showing no significant reduction in fault detection capability, while 
Rothermel et  al. (2002) reported a significant reduction of the ability to detect faults. 
Their results, however, have been obtained on small programs in C language and might 
not extend to modern software projects. More recent assessments have reported no sig-
nificant reduction in fault detection capability of adequate methods (i.e. which maintain 
code coverage) (Coviello et al. 2018a).

Joint generation and optimisation of test suites

EvoSuite (Fraser and Arcuri 2011, 2012) uses symbolic execution to automatically gen-
erate test cases with assertions. It aims at generating a test suite minimising the num-
ber of test cases while maximising code coverage. The former characteristic is the one 
giving EvoSuite more similarities to our approach. However, each sequence of method 
calls generated by EvoSuite, which represents a population to be selected and bred if 
considered the most fit, is executed in order to assess code coverage. This is time con-
suming; risky when having to interact with files, databases, and networks; and since their 
approach is evolutionary, the number of execution is not bounded nor small (Fraser and 
Arcuri 2011). Our approach requires only one execution of the test cases, then the selec-
tion approach does not require any run.

The authors in Murphy et al. (2013) first generate the test cases to cover all different 
subpaths in a program, then, since each test case can cover more than one subpath, they 
reduce the number of test cases by identifying which subpaths are covered by each test 
case. The test cases selected are found by a greedy solution, which finds in some cases 
the optimal solution. Compared to our approach, there are similarities on the coverage, 
though we consider single lines of code, instead of subpaths. As far as the solution is 
concerned, instead of using a simple greedy approach, we have proposed a solution able 
to find a guaranteed optimum on all tested software projects and an accurate approx-
imated solution within a measurable error bound in all cases. Moreover our solution 
leverages on the knowledge of the control flow to reduce the number of code lines to 
consider, hence searching on a smaller solution space.

To our knowledge no approach uses the CFG properties to optimise the test suite min-
imisation process.

Conclusions
Optimising test suites can be a valuable aid for a software developer in establishing 
agile practices, which require frequent and extensive testing of software projects under 
development. The proposed approach manages to reduce the size of a test suite used for 
regression testing considerably, and its execution time is also decreased without losing 
code coverage.

We have evaluated our test reduction approach on ten open source systems having 
size between several hundreds to tens of thousands lines of code and their associated 
test suites generated by Randoop. Our optimisation tool finds the minimum-cost test 
suite with 100% accuracy in fractions of a second on all software systems under evalua-
tion, and performs an up to ten-fold reduction of the test suite execution time.

Our complete framework, which automates test generation, code coverage computa-
tion, and test suite reduction, takes as input a software system and generates a minimal 
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amount of test cases with the maximum reasonably possible code coverage. The ability 
of generating effective test suites that execute quickly is beneficial for regression testing 
since it enables frequent execution of test cases and ensures timely feedback, even when 
only limited hardware resources are available.
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