
REDUNET: reducing test suites by integrating
set cover and network‑based optimization
Misael Mongiovì1,2*  , Andrea Fornaia2  and Emiliano Tramontana2 

Introduction
Test cases ensure that a software system is checked against possible defects and let
developers assess its correctness. Generally, test developers determine the input values
and expected output values for each test case, and then implement a test case that exe-
cutes a functionality with the chosen input values and compare the received output with
the expected output. Since this activity can be time consuming, some tools are available
to assist the automatic generation of tests, e.g. for choosing input values and combining
them for an execution scenario (Kuhn et al. 2015). Testing frameworks, such as JUnit1

Abstract 

The availability of effective test suites is critical for the development and maintenance
of reliable software systems. To increase test effectiveness, software developers tend to
employ larger and larger test suites. The recent availability of software tools for auto-
matic test generation makes building large test suites affordable, therefore contribut-
ing to accelerating this trend. However, large test suites, though more effective, are
resources and time consuming and therefore cannot be executed frequently. Reducing
them without decreasing code coverage is a needed compromise between efficiency
and effectiveness of the test, hence enabling a more regular check of the software
under development. We propose a novel approach, namely REDUNET, to reduce a
test suite while keeping the same code coverage. We integrate this approach in a
complete framework for the automatic generation of efficient and effective test suites,
which includes test suite generation, code coverage analysis, and test suite reduction.
Our approach formulates the test suite reduction as a set cover problem and applies
integer linear programming and a network-based optimisation, which takes advantage
of the properties of the control flow graph. We find the optimal set of test cases that
keeps the same code coverage in fractions of seconds on real software projects and
test suites generated automatically by Randoop. The results on ten real software sys-
tems show that the proposed approach finds the optimal minimisation and achieves
up to 90% reduction and more than 50% reduction on all systems under analysis. On
the largest project our reduction algorithm performs more than three times faster
than both integer linear programming alone and the state-of-the-art heuristic Harrold
Gupta Soffa.

Keywords:  Test suite reduction, Static analysis, Graph analysis, Network analysis

Open Access

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat​iveco​mmons​.org/licen​ses/by/4.0/.

RESEARCH

Mongiovì et al. Appl Netw Sci (2020) 5:86
https://doi.org/10.1007/s41109-020-00323-w Applied Network Science

*Correspondence:
misael.mongiovi@istc.cnr.it
1 ISTC CNR, Via Gaifami, 18,
95126 Catania, Italy
Full list of author information
is available at the end of the
article

1  https​://junit​.org/.

http://orcid.org/0000-0003-0528-5490
http://orcid.org/0000-0001-6034-855X
http://orcid.org/0000-0002-7169-659X
http://creativecommons.org/licenses/by/4.0/.
http://creativecommons.org/licenses/by/4.0/.
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-020-00323-w&domain=pdf
https://junit.org/

Page 2 of 21Mongiovì et al. Appl Netw Sci (2020) 5:86

for Java and their counterparts for other languages, are widely used to make it easier for
the developer to implement test cases. Moreover, test generation tools spare developers
many coding activities related to the production of test cases.

Many tools generating test code find methods of classes and parameters and pro-
duce method calls, with proper values for parameters and the return value. The most
prominent of such tools are Randoop (Pacheco and Ernst 2007) and EvoSuite (Fraser
and Arcuri 2011, 2012). Randoop produces test cases having a small number of calls to
methods, which have been chosen from the analysed code randomly (Pacheco and Ernst
2007). EvoSuite produces test cases consisting of calls to methods, which are selected
using evolutionary computation over a population (Fraser and Arcuri 2011). Surely, test
generation is useful to check contract violation and for regression tests. However, the
number of generated test cases tend to be very large, given the many combinations of
calls to methods that can be found. Moreover, for automatic generation of test cases,
the percentage of code coverage tends to reach a plateau, where additional test cases
generated leave code coverage largely unchanged. As a result the efficacy of additional
tests is limited, whereas the time needed to run all tests can be very large and take up
many resources (Shamshiri et al. 2015; Kazmi et al. 2017). This effect can be seen when
automatically generating test cases for junit4, jsoup and commons-jxpath, having sev-
eral thousands of lines of code. Figure 1 shows a plot relating the number of automati-
cally generated test cases and the measured code coverage of the systems under test.
The executed test cases cover between 24 and 40% of the lines with 500 test cases. The
coverage increases slowly when adding test cases, e.g. for jsoup when the number of test
cases goes from 150 to 450 (a threefold increase), coverage goes from 32 to 37% (about a
15% increase).

Generally, all tests available are executed automatically as soon as developers push
new components on a source code repository. When following Agile development
processes, all tests could start executing every two hours, hence a capable hardware
is needed to have test results in a timely fashion. Considering that the number of

Fig. 1  Code coverage. Number of generated test cases and their related code coverage for some analysed
software systems

Page 3 of 21Mongiovì et al. Appl Netw Sci (2020) 5:86 	

automatically generated test cases could be several thousands, either the hardware
resources are very capable or the time for running tests could be not enough for the
development practice of continuous integration. Moreover, when test cases are auto-
matically generated, some of the statements on components under test are executed
several times because covered by several test cases. Therefore, for the sake of effi-
ciency on hardware resources and running time, test cases should be reduced.

We propose a comprehensive framework for automatic generation and reduction
of test suites. While we rely on existing approaches for test generation (Pacheco and
Ernst 2007), we focus our effort on test suite reduction, i.e. finding a subset of test
cases that cover the same amount of code of the original test suite while minimis-
ing its execution time. Although several test suite reduction methods have been
designed in the past (Harrold et al. 1993; Tallam and Gupta 2006; Smith and Kapf-
hammer 2009; Xu et al. 2012; Chen et al. 2008; Jatana et al. 2016; Coviello et al. 2018a)
and they could potentially be employed in our framework, such methods either rely
on heuristics, which are not able to find the optimal reduction, or employ expensive
approaches, which do not scale well on large projects. Moreover, existing methods
focus on preserving the coverage of generic requirements, hence they are not spe-
cifically optimised for preserving code coverage, and many of them do not specifically
focus on minimising the test suite execution time. Unlike the said approaches, our
approach REDUNET finds the optimal reduced test suite in terms of execution time
in real software projects, and therefore increases the ability to give a quick feedback
to the developers. A more extensive comparison with the related work is given in a
dedicate section.

The problem of test reduction has been constructed as an optimisation problem aimed
at finding the minimum number of test cases that, while keeping the same code cov-
erage, minimises execution time. REDUNET manages to select test cases very quickly,
hence it does not impact on used resources.

In our previous contribution (Mongiovì et al. 2019), we have employed Integer Lin-
ear Programming (ILP) and a Control Flow Graph (CFG) analysis to reduce the number
of test cases while ensuring that code coverage (specifically, statement coverage) is kept
unchanged, however without considering test execution time. In this work we improved
both effectiveness and efficiency of our approach, by taking into account the test suite
execution time and enhancing the ability to reduce the computational cost of the opti-
misation. We also propose a more comprehensive validation of the approach, having
performed experiments on ten real software systems. REDUNET is flexible enough to
enable its use with other metrics different than test execution time and statement cover-
age (e.g. branch coverage).

Our experiments have shown that REDUNET, while managing to keep the same code
coverage, greatly reduces the test suite execution times, in some cases to one-tenth of
the original time frame, finding the optimal reduction in all software projects under
analysis. The proposed reduction approach is also more than three times faster than ILP
alone and than the state-of-the-art heuristic Harrold Gupta Soffa (HGS) (Harrold et al.
1993; Coviello et al. 2018a) on the largest software project, and almost always faster than
our previous approach (Mongiovì et al. 2019) thanks to a more careful reduction of the
input for the ILP step.

Page 4 of 21Mongiovì et al. Appl Netw Sci (2020) 5:86

With respect to our previous work (Mongiovì et al. 2019), our contribution is threefold.

•	 We consider the running time of the test suite as a more appropriate parameter than
the number of test cases and adapt our method accordingly;

•	 We improve the efficiency of our method by using a more effective approach to
reduce the size of the data for the optimisation consisting in removing the back edges
of the control flow graph;

•	 We perform an extensive evaluation of the proposed approach on ten real software
systems.

In the following, we describe our approach and framework, then we present the problem
formulation, the proposed solution, and experimental results. Eventually, we discuss rel-
evant related works and conclude the paper.

A comprehensive approach for the automatic generation and reduction of test
suites
Our complete framework includes the automatic generation of test suites and a test
reduction process aimed at reducing the resulting test suite execution time without
affecting coverage. In the literature, test reduction approaches that preserve coverage are
said adequate, whereas inadequate ones reduce test suites that partially preserve cover-
age (Shi et al. 2014; Coviello et al. 2018b). We used statement coverage as a code cover-
age metric. Figure 2 shows the steps performed by the implementation of our complete
framework.

First, a test suite is generated for the software system to be analysed, e.g. by using Ran-
doop (Pacheco and Ernst 2007). We used Randoop to generate a large number of test
cases that offer as much coverage as possible. Randoop was chosen over EvoSuite (Fraser
and Arcuri 2011) since the former is much faster than the latter, and test cases produced
by EvoSuite would still be liable of the reduction process. However, manually imple-
mented test cases or test cases generated by another tool could be used too as input for
the following steps.

Second, the generated test cases are added to the maven project as Java unit tests.
Third, test cases are executed together with a service tracing code coverage. Tests are

executed on a virtual environment that has been created using a Vagrant box.2 Vagrant
lets us configure a virtual environment for execution, hence protecting the real system
(the real file system is not accessed, hence avoiding the content of files to be potentially
changed by the test execution). For tracing code coverage, we have used Cobertura,3

Fig. 2  General framework. The developed tool-chain consisting of test generation, code coverage
assessment, control flow graph extraction, and reduced test suite computation

2  https​://www.vagra​ntup.com.
3  https​://cober​tura.githu​b.io/cober​tura/.

https://www.vagrantup.com
https://cobertura.github.io/cobertura/

Page 5 of 21Mongiovì et al. Appl Netw Sci (2020) 5:86 	

which gives us the ids of the executed code lines for each test case run. Producing cover-
age information may introduce up to 30% of time overhead during test execution (Cru-
ciani et al. 2019). Therefore, the coverage information is produced and collected only for
the classes of the system under test, i.e. not for the external libraries, since the latter are
out of the scope of the developer’s testing activities. The outputs of each test case execu-
tion are: (1) the lines of code that have been covered, and (2) the execution time.

Fourth, we determine method coverage, i.e. the methods that have been (partially or
fully) executed when running a test case. This results from the structure of the soft-
ware system and its control flow, found by static code analysis, as well as the traces for
the executed lines of code (our component JCodeGraph implements the proper analy-
sis). Eventually, control flow graph and test execution traces are given to the test suite
reducer, which reduces the number of test cases (later used for regression testing), to
achieve a much shorter execution time, while ensuring the same code coverage.

The reduction step is the core of our tool, and is detailed in the following subsections.

Problem formulation and overall test suite reduction method

Formally, a test suite is a set of test cases, where a test case is represented by a specific
executable configuration of the input parameters. Running a test case consumes a cer-
tain amount of computational resources, which we quantify in terms of execution time.4
When a test case is run, it produces an execution trace (or simply a trace), i.e. a sequence
of visited instructions (i.e. statements). We say that a test case covers an instruction if
such an instruction is executed when the test case is run. The set of instructions covered
by a set of test cases is named code coverage (or simply coverage).

Our test suite reduction problem can be formulated as follows: given a test suite, find
a subset of test cases that maintains code coverage while minimising execution time, i.e.
whose code coverage is the same as the whole test suite and the running time of its exe-
cution is minimum.

Given a test case t, we denote with St the set of instructions covered by t, and with ct
the running time (cost) of executing t. Given a test suite T = {t1, t2 . . . , tn} , its coverage
is defined as ST =

⋃
t∈T St . Formally, our problem is defined as:

Table 1 summarises the notation used in this paper.
Our optimisation problem corresponds to a variant of set cover called weighted set

cover. Set cover is a classic computer science problem that, given a family of sets, calls
for finding the minimum-size sub-family that covers all elements in the input family. Fig-
ure 3 shows an instance of set cover with four sets ( S1 , S2 , S3 and S4 ) covering together 16
elements (black dots). In this example, an optimal solution for set cover consists of three
sets ( {S1, S2, S4} ), since there is no pair of sets that cover all 16 black dots. In weighted set

min
T ′

∑

t∈T ′

ct ,

ST ′ = ST

T
′ ⊆ T

4  our approach can be generalised to any additive cost function, e.g. the total CPU time.

Page 6 of 21Mongiovì et al. Appl Netw Sci (2020) 5:86

cover, each set is associated to a cost (weight) and the goal is to minimise the total cost of
the taken sets.

In our test reduction problem, each test case is associated to its set of covered instruc-
tions and its execution time. The family of sets corresponds to the whole test suite. The
optimal sub-family corresponds to the resulting test suite, which has the same coverage
as the initial one and is minimal, i.e. there is no way to obtain the same coverage with
shorter execution time by drawing from the initial test suite.

As set cover, weighted set cover is NP-hard and does not have a constant-factor
approximation guarantee. Therefore, it is not possible to design an algorithm that solves
it with an error within a fixed multiplicative factor of the returned solution. A greedy
algorithm for set cover solves it with a factor-log(n) approximation, i.e. with a logarith-
mic-function error bound (Feige 1998).

Although the greedy algorithm could be applied to reduce test suites, the result would
be sub-optimal. This translates to a higher number of test cases to run and therefore a
longer running time of the test execution. Computing an optimal solution, on the other
hand, would require a high amount of time and computational resources and would be
feasible only on sufficiently small problem instances.

Table 1  Summary of the notation used in this paper

Symbol Name Description

T Test suite The initial set of test cases

T ′ Optimised test suite Resulting set of test cases, which minimise the execution time

St Test case coverage The set of instructions covered by test case t

ST Test suite coverage Set of instructions covered by at least one test case in T

ct Execution time (cost) Execution time of test case t

xt Test selection variable Binary variable valued 1 if the test case t is taken, 0 otherwise

G CFG The control flow graph of the program under testing

V Vertices Set of vertices in a CFG

E Edges Set of edges in a CFG

v,u Vertex A vertex of a CFG, corresponding to an instruction

e Edge An edge of a CFG, showing contiguous instructions or a jump

Fig. 3  An instance of set cover. {S1, S2, S4} is the minimum-size subfamily that covers all elements of the
input family (black dots)

Page 7 of 21Mongiovì et al. Appl Netw Sci (2020) 5:86 	

We resort to an intermediate solution that is based on Integer Linear Programming
(ILP) and the properties of the Control Flow Graph (CFG) of the software project. An
instance of set cover can be easily redefined as an instance of ILP and given to a solver.
There are several open and commercial solvers for ILP in the market. They employ a
bunch of sophisticated techniques to find an optimal solution or, in the case it cannot be
found within a user-defined time limit, an approximated solution with measurable error
from the optimal one. This approach makes the computation feasible even on large soft-
ware projects, but exhibits a decrease in accuracy with the size of the problem instance.
Therefore, to maximise the number of times that the optimal solution can be found, we
designed a method for reducing the size of the input by performing an accurate analysis
of the CFG. In the remainder of this section we describe the ILP reduction and our CFG
analysis for reducing the problem instance.

ILP‑based test suite optimisation

The problem defined above can be described as an ILP program:

T is the input test suite and {xt} are integer binary variables that describe which test
cases are taken. Specifically, the value of xt is 1 if test case t is chosen, 0 otherwise. Solv-
ing the ILP problem consists in finding the {xt} variables assignment that minimises the
cost function (total execution time of the taken test cases) and satisfies the constraints,
which guarantee to have every instruction (of the input test suite coverage) covered at
least once.

Existing ILP solvers employ a variety of techniques, including cutting-planes, branch-
and-bound and dynamic programming, to find an approximate solution with error
within a measurable bound. With small or not computationally hard instances, the
error bound can be brought to zero and an exact solution is returned. In this work we
employed the open-source solver GLPK.5 It is based on the branch-and-cut algorithm,
a combination of branch and bound and cutting plane, and employs the revised simplex
algorithm and the primal-dual interior point method to compute lower bounds (upper
bounds for maximisation problems) to the optimal solution and prune the search space
by discarding branches that cannot produce optimal solutions. If the time limit expires
before finding an optimal solution, the system returns the gap, i.e. the relative distance
of the best lower bound from the best solution found (in percentage). The gap represents
the error since the optimal solution must lie between the best lower bound and the best
solution found.

minimise
∑

t∈T

ct · xt ,

subject to
∑

t:i∈St

xt ≥ 1 for all i ∈ ST ,

xt ∈ {0, 1} for all t ∈ T

5  http://www.gnu.org/softw​are/glpk/.

http://www.gnu.org/software/glpk/

Page 8 of 21Mongiovì et al. Appl Netw Sci (2020) 5:86

Increasing efficiency by integrating CFG analysis

A control flow graph (CFG) is a static representation of the execution flow of a program.
We exploit the properties of the CFG for reducing the input size for the ILP program.
Specifically, we show that by CFG analysis we can select a subset of covered instructions
for the optimisation problem without affecting correctness.

A CFG is a graph G = (V ,E) , where V is a set of vertices, which represent program
instructions, and E is a set of (directed) edges in the form e = (u, v) , where u, v ∈ V
are called source and target, respectively. We also say that e is an outgoing edge from
u and an incoming edge to v. Two vertices u, v ∈ V in a CFG are connected by an
edge ( (u, v) ∈ E ) if instructions u and v can be executed subsequently either because

Fig. 4  Sample class ShoppingCart. A sample class having several execution paths

Fig. 5  Control flow graph. Control flow graph for the ShoppingCart class

Page 9 of 21Mongiovì et al. Appl Netw Sci (2020) 5:86 	

they are contiguous or because of jumps in the control flow (i.e. in the presence of
conditional statements, loop statements or method calls). Figure 4 shows class Shop-
pingCart and Fig. 5 shows its CFG for method getTotal(), where vertices are
labelled with corresponding instruction line numbers. Vertex 4 corresponds to the
first instruction; vertices 8, 12 and 13 represent conditional statements, hence they
have more than one outgoing edge. Vertices 21 and 22 represent a for loop header and
its body, respectively.

Our CFG analysis is aimed at identifying instructions that are guaranteed to be exe-
cuted even if excluded from the input given to the ILP step. In the program shown in
Figs. 4 and 5, if a test t covers instruction 10, we can be sure that it also covers instruc-
tions 8, 5 and 4, since the only path from the first instruction through vertex 10 traverses
such vertices. In this case we might choose to include vertex 10 and exclude vertices 8, 5
and 4 from the computation without affecting code coverage.

Before applying our algorithm we remove from the CFG instructions that are not cov-
ered by the input test suite, since they do not affect the computation. The main idea of
our algorithm is based on the observation that for each edge (u, v) of the CFG whose
target v has only one incoming edge, we can remove the source u from the ILP opti-
misation step without loosing its coverage since v can be reached only through u. Note
that v might itself be a source of another edge (v, z), hence it might be removed as well,
but in this case its coverage would still be guaranteed by the presence of z or one of its
descendant.

We can improve the performance of our input size reduction procedure by cleaning
the CFG of back edges of the depth first search tree within methods. In short, a back
edge is an incoming edge to an ancestor of the depth first search tree. A back edge
prevents its target vertex to be removed since it contributes to increase (to at least
2) its number of incoming edges. However, within a method, a back edge occurs only
because of a loop statement or a recursive call; in both cases, to reach the source of
the back edge we must explore its target, which correspond to the first instruction of
the loop (or the method declaration of the recursive call). E.g., in Fig. 5, intuitively
vertex 19 can be excluded by the ILP computation since vertex 22 guarantees its cov-
erage (if vertex 22 is reached we can be sure that vertex 19 has been visited). How-
ever, without removing back edges, vertex 19 cannot be excluded since its successor,
vertex 21, has two incoming edges. If we remove the edge that connects vertex 22 to
vertex 21, which is a back edge, vertex 21 is left with just one incoming edge, hence
vertex 19 can be excluded.

Our complete algorithm is reported in Algorithm 1. It first initialises S as the set of
covered instructions and cleans the CFG of vertices that are not covered by the test
suite and back edges. Then, it visits all edges (u, v) in the CFG and removes sources of
edges whose targets have exactly one incoming vertex. Eventually the algorithm returns
the family for the ILP computation, after removing elements that are not in S and
empty sets. In the example in Fig. 5, S , initially composed by all vertices, is reduced to
S = {10, 25, 22, 16, 14, 28} .

Page 10 of 21Mongiovì et al. Appl Netw Sci (2020) 5:86

Employing other metrics

The proposed approach is flexible enough to be applied with other metrics different than
test execution time and code coverage. E.g., we might want to consider for a test the num-
ber of previously detected faults, or the number of mutants detected when adopting muta-
tion testing (Myers et al. 2011; DeMillo et al. 1978). Alternatively, we might want to focus
on covering a portion of code that is more likely affected by changes, hence more suscepti-
ble to errors, motivated by considerations similar to those found in Panda et al. (2016).

In general, we can substitute code instructions with any other set of elements we aim at
covering and the test execution time with any other metrics we aim at minimising. E.g.,
we could restrict the code instructions to cover a suitably selected subset, or substitute the
metric “code instructions covered” with “faults detected” (or “mutants killed” or any other
properties of test cases), without changing the other parts of the proposed approach and
framework.

When considering the code coverage provided by test cases, CFG analysis has been used
in our approach for excluding some instructions before starting the computation of the
reduced test suite. Should code coverage be substituted by some other metrics, then our
CFG analysis would have to be changed. A similar CFG analysis could be implemented in
case a different coverage measure is considered. E.g., when using branch coverage (God-
boley et al. 2017) we may reduce the number of branches to be considered according to
their control dependencies (e.g. in case of nested branches) (Arcuri 2011).

We might also want to include multiple optimisation criteria, e.g. minimise test execu-
tion time and maximise the sum of fault detected (e.g. in a set of mutants) by each test case,
while maintaining code coverage. In general, this would require solving a multi-objective
optimisation problem, which is out of the scope of this work. However, in some cases the
criteria can be combined in a unique linear objective function, hence easily integrated in
our approach. E.g., we might consider for each test case the ratio between the execution
time and the number of faults detected, hence the following objective function:

where ct is the execution time of test case t and ft is its number of detected faults.

(1)min
T ′

∑

t∈T ′

ct

ft
,

Page 11 of 21Mongiovì et al. Appl Netw Sci (2020) 5:86 	

Experimental results
We evaluated our approach by executing the implemented tool-chain on ten open source
projects implemented in Java. Details about considered versions and other replication
data can be found in the REDUNET repository.6 We generated a test suite for each of
them by using Randoop (Pacheco and Ernst 2007). For every software system, we set the
maximum allowed time to generate the random test suite to 50–150 s overall, consisting
of 10–30 runs of Randoop of 5 s each, with a different random seed on each run. This
lets us produce a test suite having a size of around 1000 test cases in most cases (a single
run for Randoop starting from one random seed gives much less test cases, even when
its running time is not bounded). For the smallest system (610 lines of code), chord-cli-
ent, 73 generated test cases gave the maximum instruction code coverage that could be
achieved. All the other analysed systems were much bigger, ranging from 1213 lines of
code to 36,603 lines of code, and instruction code coverage varied from 15 to 65%.

Table 2 reports the measured sizes for each analysed software system and the related
generated test suites, i.e. starting from the left column, the table gives: the name of the
software system, the number of classes, the number of methods, the total number of
lines of code, the number of generated test cases, the coverage (as the number of code
lines that have been executed when running the test suite).

We implemented our tool for test suite optimisation in Java 10. We employed JCod-
eGraph, a tool of ours based on JavaPDG (Shu et al. 2013) for computing the CFG. We
integrated GLPK7 for solving the ILP program and the library JGraphT8 for managing
graphs. All ILP programs in this evaluation have been solved optimally by GLPK in less
than 2 s. Therefore we did not set a time limit for the solver and do not report the error
(gap) since it is always zero.

We compared the proposed method with three state-of-the-art approaches. We
included a previous version of our system, described in the introduction (Mongiovì

Table 2  Sizes of the software systems (number of classes, methods and lines of code)
and the related test suites

Column “Test cases” gives the number of test cases of the whole test suite; column “Covered lines” reports the number of
instructions covered by the whole test suite

Software Classes Methods Lines Test cases Covered lines

chord-client 11 61 610 73 143

junit4 347 1772 5216 532 2046

jsoup 256 1697 7691 1171 3446

commons-cli 27 291 1213 801 779

commons-codec 102 916 4413 1303 2774

commons-collections 536 4449 13593 1391 3227

commons-jxpath 187 1632 9405 1173 3294

commons-math 917 6287 36603 1345 7066

jackson-core 124 2182 15796 1040 2428

jackson-dataformat-xml 55 520 2509 1031 805

6  https​://githu​b.com/aforn​aia/redun​et.
7  http://www.gnu.org/softw​are/glpk/.
8  https​://jgrap​ht.org/.

https://github.com/afornaia/redunet
http://www.gnu.org/software/glpk/
https://jgrapht.org/

Page 12 of 21Mongiovì et al. Appl Netw Sci (2020) 5:86

et al. 2019). We also implemented a greedy algorithm for weighted set cover (Vazirani
2013), a variant of the traditional greedy algorithm for set cover, previously applied
for test suite reduction (Smith and Kapfhammer 2009), which aims at minimising the
total execution time (we select at each step the test that maximises the ratio between
its uncovered elements and its weight, i.e. execution time). Last, we implemented the
Harrold Gupta Soffa (HGS) method (Harrold et al. 1993), which has been shown to
have superior or similar performances than other heuristics such as Greedy, 2-Opti-
mal, Delayed Greedy, GE and GRE (Coviello et al. 2018a). We also included some
variants of our method to assess the impact of including specific techniques. We did
not perform tests with methods that do not guarantee code coverage (inadequate

Table 3  Approaches. Description of approaches compared in this experimental analysis

Approach Description

Do nothing No optimisation performed, just the initial test suite is returned

Greedy Greedy algorithm for set cover, previously adopted by Smith and Kapfhammer (2009)

HGS Harrold Gupta Soffa (HGS) test-reduction method (Harrold et al. 1993)

CN Test suite optimisation of our previous tool in Mongiovì et al. (2019), designed to minimise the
number of test cases

ILP ILP-based test suite optimisation as described in the first part of the method section

ILP+CFG ILP-based test suite optimisation integrated with the CFG analysis, except the back edges removal

REDUNET Our complete tool, i.e. ILP + CFG + back edges removal

Fig. 6  Effectiveness of our test suite optimisation Running time in seconds of the test suites after the
reduction (y-axes). The labels in the x-axis represent the ten software projects under analysis, whose details
are reported in Table 2. The series represents the approaches under comparison, whose details are given in
Table 3

Page 13 of 21Mongiovì et al. Appl Netw Sci (2020) 5:86 	

methods), since they are out of the scope of this work and it has been shown that they
perform worse in terms of fault detection ability (Coviello et al. 2018a). Table 3 sum-
marises the approaches included in this evaluation.

All optimisation tests have been run on a Windows 10 PC with Intel Core i5-8250U
1.60 GHz CPU and 8 GB RAM.

The effectiveness of our framework has been assessed by measuring the time neces-
sary for executing the resulting test suite. We run the tests sequentially, then the total
execution time is ct1 + ct2 + · · · + ctn , where cti is the running time of a single test. We
also evaluated efficiency, in terms of time needed for computing the test suite reduc-
tion. We do not consider the time needed to run the test suite, to generate the execution
traces, and to build the CFG, since we do not have control on them and we employed
tools from third parties, which are not optimised for efficiency. Instead, we focus on the
test suite reduction time, since it is more critical for scalability, and include the input
size reduction techniques described in the method section.

Figure 6 compares test suites execution times resulting by Greedy, HGS, CN, the cur-
rent approach REDUNET, and the unfiltered test suite (Do Nothing). ILP and ILP+CFG
are not included since their performances are the same as REDUNET. As expected, all
approaches reduce the running time of each test suite significantly. For the largest sys-
tem, commons-math, the running time when using REDUNET is less than half of the
running time needed for the whole test suite. The best gain is for the system jackson-
dataformat-xml, for it the resulting running time was reduced more than 10 times.
REDUNET performs always better than the other approaches. This is an expected result
since REDUNET is specifically designed to minimise execution time and has found the
optimally reduced test suite in each case.

To better show the improvement of REDUNET with respect to the other approaches,
we report the precise test execution time in Table 4. We also report, within brackets, the
optimisation time, which we discuss in the next paragraph. The resulting test suite given
by REDUNET has a running time up to 15 s shorter than the one given by HGS (on
commons-math), up to 5 s shorter than the one given by Greedy (on commons-jxpath),
and up to 7 s shorter than the one given by CN (on jackson-core).

We evaluate the efficiency of our approach by comparing it to previously proposed
approaches. We include some variants of our approach in order to assess the impact that

Table 4  Running time in seconds of the test suites after the reduction

The numbers within brackets represent the time for computing the test suite optimisation (see also Fig. 7)

Software project Do Nothing HGS Greedy CN REDUNET

chord-client 57.1 19.7 (0.0) 18.9 (0.0) 18.8 (0.0) 18.3 (0.0)

junit4 4.51 1.54 (0.7) 1.56 (0.2) 1.55 (0.3) 1.47 (0.3)

jsoup 425.1 73.0 (0.4) 74.2 (0.2) 72.9 (0.4) 71.4 (0.4)

commons-cli 221.4 22.6 (0.0) 22.8 (0.0) 22.0 (0.1) 21.3 (0.1)

commons-codec 498.3 99.0 (0.2) 96.5 (0.0) 97.6 (0.2) 93.3 (0.2)

commons-collections 502.9 126.2 (0.1) 125.3 (0.0) 125.4 (0.3) 120.3 (0.3)

commons-jxpath 616.1 221.1 (0.3) 220.6 (0.0) 219.9 (0.2) 215.2 (0.2)

commons-math 730.2 317.2 (1.7) 306.4 (0.1) 306.2 (0.5) 301.9 (0.5)

jackson-core 355.7 131.9 (0.1) 129.3 (0.0) 134.5 (0.2) 127.1 (0.2)

jackson-dataformat-xml 640.4 45.9 (0.1) 45.0 (0.0) 43.6 (0.1) 41.3 (0.1)

Page 14 of 21Mongiovì et al. Appl Netw Sci (2020) 5:86

CFG analysis and the removal of back edges have on REDUNET. To reduce the error due
to small fluctuations of the running times, we repeat each run 100 times and consider
the average computation time.

Figure 7 reports the results in terms of running times. The most efficient method is
Greedy. However, as discussed previously, Greedy is less effective than REDUNET and
other ILP-based algorithms, therefore its speed comes at the cost of a more expensive
resulting test suite. Note that the running time of the test suite is two order of mag-
nitude longer than the running time of the test suite reduction and the test suite is
executed more frequently than the reduction. Therefore, it is worth to spend some frac-
tions of a second more to have a less expensive test suite. The most costly approach is
ILP (except on junit4, where HGS performs slower). ILP has the advantage of finding
the optimal solution, however it does not implement the CFG analysis discussed in the
method section. CN, ILP+CFG and REDUNET are significantly quicker than ILP in all
projects except chord-client. REDUNET is slightly quicker than CN and ILP+CFG in all
projects except chord-client and commons-collections. Note that REDUNET (as well as
ILP+CFG) is as effective as ILP, therefore the gain in efficiency comes at no cost. The
higher efficiency of REDUNET depends on the ability to reduce the input for the ILP
solver. The time necessary for finding an exact solution of an ILP problem grows expo-
nentially with the input size, while the CFG analysis has linear complexity, therefore the
advantage of our CFG-based input reduction grows with the size of the input. Interest-
ingly, the only project for which REDUNET performs worse than ILP is chord-client (6
ms for REDUNET and 5 ms for ILP, values not shown in the graphics). Due to the very

Fig. 7  Efficiency of test suite optimisation Running time in seconds for computing the test suite optimisation
(y-axes). The labels in the x-axis represent the ten software projects under analysis, whose details are reported
in Table 2. The series represents the approaches under comparison, whose details are given in Table 3

Page 15 of 21Mongiovì et al. Appl Netw Sci (2020) 5:86 	

small size of such a system, the running time of the ILP solver is negligible, hence the
time spent by the CFG analyser to provide less data to the ILP solver cannot be coun-
terbalanced when running the ILP solver. HGS shows mixed results in comparison to
the other approaches, being less efficient than ILP in one case (on junit4) and always less
efficient than Greedy. In 6 over 10 projects HGS is faster than REDUNET. However, as
shown in Fig. 6, its effectiveness is not superior to Greedy, therefore similar considera-
tions hold.

For small-size software systems the difference in efficiency among CN (or ILP+CFG)
and REDUNET is expected to be small, whereas for larger ones the difference is expected
to be bigger. This has been confirmed experimentally; indeed the largest analysed sys-
tem, commons-math, is the one in which the results provided by REDUNET shows the
largest percent improvement in computation time with respect to CN and ILP+CFG
(its value is 6%, value not shown in the plot). On larger projects, the ability to reduce the
input size for the ILP program becomes more critical. To assess this ability we compute
the percent of reduction of the input size of CN, ILP+CFG and REDUNET with respect
to ILP, which performs no input reduction. The input size is defined as the sum over all
test cases of the number of instructions covered by each test case.

Figure 8 shows the results in terms of input size. The reduction is always significant,
in the range between 66 and 93% . REDUNET outperforms CN and ILP+CFG in all pro-
jects except chord-client, where it shows the same performance. CN and ILP+CFG show
the same performances since they use the same reduction algorithm and only differ in
the objective function of the ILP optimisation.

Fig. 8  Input size reduction. Percent of reduction of the input size for the ILP program (y-axes). The labels in
the x-axis represent the ten software projects under analysis, whose details are reported in Table 2. The series
represents the approaches under comparison, whose details are given in Table 3

Page 16 of 21Mongiovì et al. Appl Netw Sci (2020) 5:86

Related works
The problems of generating and reducing test suites have been considered by past work
both as distinct problems and jointly. We briefly review existing approaches and high-
light the differences with our approach.

Automatic generation of test suites

Randoop (Pacheco and Ernst 2007) creates unit tests by chaining sequences of methods
randomly selected from the software under test. Code coverage is not considered during
test generation, thus several generated test cases could exercise the same code portion.
With respect to our contribution it is complementary, since we take the randomly gener-
ated test cases and select such test cases that cover the code without much repetition,
reducing the test suite size while maintaining the same code coverage.

Test suite reduction, selection and prioritisation

Existing approaches for test suite reduction focus on maintaining generic requirements,
which might refer to code coverage or other characteristics of test cases. Although some
of these approaches can be applied to maintain statement coverage, on large projects the
size of data would make them unfeasible or at least inefficient.

The approach proposed in Tallam and Gupta (2006) considers the requirements exer-
cised by a test, and minimises the number of test cases by excluding a test case when
requirements covered are also covered by other test cases. They introduce a solution
called delayed-greedy, consisting of some heuristics, such as checking whether a set of
requirements is a superset or a subset of another, hence excluding the test cases having
subsets of requirements; whether a requirement is covered by only one test case, then
including such a test case; and whether the test case covers the maximum number of
attributes, then including it.

Harrold et al. (1993) proposed the HGS heuristic to reduce test suites by maintaining
a certain set of test requirements, where requirements can refer to code statements or
other features of tests. It consists in grouping test requirements into an ordered family
of sets, where the i-th set contains requirements that are covered by exactly i tests, and
taking tests that satisfy requirements from the 1-st set, then from the 2-nd set and so on,
until all requirements are satisfied.

Smith and Kapfhammer (2009) evaluated several heuristics, including HGS (Harrold
et al. 1993), the traditional greedy algorithm for set cover and two of its variants, 2-opti-
mal greedy and delayed greedy, for reducing test suites. The greedy algorithm takes test
cases one by one considering at each step the test case that maximises the ratio between
its number of previously unsatisfied requirements and its cost. 2-optimal greedy is simi-
lar but considers pairs of sets in place of single sets. Delayed greedy pre-processes the
test suite before applying the greedy algorithm by removing test cases that are subsets of
other test cases and including test cases that contain requirements that are not satisfied
by other test cases.

Xu et al. (2012) considered the problem of reducing test suites as a variant of set cover,
where costs are associated to sets (test cases) and the goal is to maintain the coverage
of requirements by minimising the total cost. The authors apply a greedy algorithm to

Page 17 of 21Mongiovì et al. Appl Netw Sci (2020) 5:86 	

solve it. In Hsu and Orso (2009) the authors mapped the set cover problem to a muta-
tion testing problem. By using a greedy approach to find the minimum set of test cases
that covers all the mutants killed by the original test suite, they were able to detect the
same number of faults.

Chen et al. (2008) adopted an exact approach based on ILP to reduce the test suite by
maintaining a set of requirements, and propose some heuristics to increase efficiency.
Panda and Mohapatra (2017) proposed a an ILP-based approach for minimising the
test suite without loosing coverage of modified sentences and meanwhile minimising
a measure of cohesion of code parts covered by each test case. In Jatana et al. (2016)
the authors proposed a general ILP-based framework to support test-suite minimisation
over multiple criteria, such as code coverage, test execution time and setup cost.

FLOWER (Gotlieb and Marijan 2014) describes a novel Maximum-Flow-based
approach for reducing the test suite while maintaining requirement coverage and shows
that this method is more effective than greedy approaches, is more efficient than exact
ILP-based approaches and admits multi-objective optimisation.

Although the described approaches can take into account statement coverage, the
methods are not specifically optimised for it, therefore using them for code cover-
age guarantees might be unfeasible or ineffective on large programs. Focusing on code
coverage, instead of coverage of requirements, has specific advantages and introduces
some challenges. Most development practices have only coarse-grained requirements,
hence many portions of code are implemented for a requirement. As a result, two (or
more) test cases covering the same requirement could exercise different portions of
code. Moreover, by automatically deriving the code lines covered by each test case, we
need not rely on a manual mapping between test cases and requirements. Focusing on
code coverage is harder due to the larger amount of data (code instructions) to handle.
Although some heuristics could easily be applied to guarantee code coverage, in place of
manually-curated requirements, the accuracy would be penalised to guarantee feasibil-
ity. In contrast, we leverage on the properties of the CFG to feasibly solve the problem
with high accuracy. Since they are not directly focused on code coverage, none of the
previously discussed approaches take advantage of the properties of the CFG for opti-
mising computation.

In Do (2016), several approaches are presented for the reduction, selection, prior-
itisation of test cases. For test case reduction, in some approaches code coverage was
assessed by means of a CFG, and other approaches used ILP for test case selection. We
put forward both and we include optimisations (such as the early selection of state-
ments thanks to the CFG) in our proposed solution. For recent approaches the preferred
way to assess their benefits is by measuring the reduction rate of tests or their execu-
tion time and the coverage ensured by selected test cases. Accordingly, our optimisation
method has maximised coverage, while minimising the execution time. Moreover, pre-
vious approaches are often scored against a suite of software systems that is sometimes
considered controversial (perhaps not representative enough). We have permed experi-
ments on ten recent and large software systems.

In Chen et al. (2010), the authors describe the technique of Adaptive Random Test-
ing and its implications. It is argued that the more evenly spread the test cases the
better, as they would allow running several parts of the system. More specifically, it is

Page 18 of 21Mongiovì et al. Appl Netw Sci (2020) 5:86

recommended that random values for parameters should be chosen to be located away
from previously executed test cases that have not revealed failures. Such a technique
mainly aims at generating a selection of input values for test cases. It can be argued that
for the same method to be tested, the selected values would run different paths. How-
ever, for test cases having each a sequence of method calls, it is not straightforward to
provide an estimate on the absence of overlapping paths, hence on coverage.

In Cruciani et al. (2019), the authors reduce test suites by computing the similar-
ity among test cases and take the most distant tests as these should be the ones that
potentially show faults on several parts of the system. Their reduction approach need
not executing tests on the system, hence it performs quickly. Still to determine the code
coverage provided by the reduced test suite, test cases have to be executed on the sys-
tem. Moreover, several reduced test suites could need execution to ensure that a target
code coverage has been reached. The comparison of their adequate version with other
approaches on a Java dataset has shown no difference in fault detection abilities, whereas
the Greedy algorithm achieves the best test suite reduction. REDUNET clearly outper-
forms Greedy, and this is confirmed empirically by our experimental results.

A study has also compared test suite reduction and test case selection approaches in
detecting change-related faults, i.e. faults caused only by some specific changes (e.g.
occurred between two code revisions) (Shi et al. 2015). The authors observed that test
suite reduction can lose change-related fault-detection capability (of up to 5.93% for
killed mutants) with respect to the full test suite, while regression test selection has
no loss. This because reduction approaches operate only on one software revision, so
they are not aware of changes, and they can remove tests that are deemed redundant
for the current revision, irrespective of recent changes (Shi et al. 2014). Test selection
approaches are instead specifically designed to select all tests that may be affected by
given changes, thus having a better detection of faults caused by them. On the other
hand, test reduction approaches are still able to find faults unrelated to those changes.

In Luo et al. (2018) the authors compare eight approaches for Test Case Prioritisation
(TCP): given a test suite, test case prioritisation consists in finding a set permutation
where test cases are ordered according to a specific performance function (Rothermel
et al. 2001), such as the number of synthetic software defects (mutants) they are able to
detect (kill). The authors investigate whether the common practice of evaluating tests
performance against mutants would be representative of the performance achieved on
real faults, highlighting in which cases this may lead to an over/under estimation of the
actual prioritisation effectiveness in terms of fault detection rate. The main difference
with our approach is that the test case prioritisation problem differs from the test suite
minimisation we solve: the former seeks to order test cases in such a way that early fault
detection is maximised, the latter seeks to eliminate redundant test cases in order to
reduce the number of tests to run (Yoo and Harman 2012). That is, while the objective of
TCP approaches is to prioritise tests while leaving the test suite size unchanged, which
is desirable for test cases properly crafted by a software developer, in our proposal we
leverage random approaches to automatically generate a considerably higher number of
tests, and then reduce the test suite size according to the coverage performance.

The ability of reduced test suites to properly discover faults have been studied in the
past. Preliminary research on small C programs have produced mixed results, with e.g.

Page 19 of 21Mongiovì et al. Appl Netw Sci (2020) 5:86 	

Wong et al. (1998) showing no significant reduction in fault detection capability, while
Rothermel et al. (2002) reported a significant reduction of the ability to detect faults.
Their results, however, have been obtained on small programs in C language and might
not extend to modern software projects. More recent assessments have reported no sig-
nificant reduction in fault detection capability of adequate methods (i.e. which maintain
code coverage) (Coviello et al. 2018a).

Joint generation and optimisation of test suites

EvoSuite (Fraser and Arcuri 2011, 2012) uses symbolic execution to automatically gen-
erate test cases with assertions. It aims at generating a test suite minimising the num-
ber of test cases while maximising code coverage. The former characteristic is the one
giving EvoSuite more similarities to our approach. However, each sequence of method
calls generated by EvoSuite, which represents a population to be selected and bred if
considered the most fit, is executed in order to assess code coverage. This is time con-
suming; risky when having to interact with files, databases, and networks; and since their
approach is evolutionary, the number of execution is not bounded nor small (Fraser and
Arcuri 2011). Our approach requires only one execution of the test cases, then the selec-
tion approach does not require any run.

The authors in Murphy et al. (2013) first generate the test cases to cover all different
subpaths in a program, then, since each test case can cover more than one subpath, they
reduce the number of test cases by identifying which subpaths are covered by each test
case. The test cases selected are found by a greedy solution, which finds in some cases
the optimal solution. Compared to our approach, there are similarities on the coverage,
though we consider single lines of code, instead of subpaths. As far as the solution is
concerned, instead of using a simple greedy approach, we have proposed a solution able
to find a guaranteed optimum on all tested software projects and an accurate approx-
imated solution within a measurable error bound in all cases. Moreover our solution
leverages on the knowledge of the control flow to reduce the number of code lines to
consider, hence searching on a smaller solution space.

To our knowledge no approach uses the CFG properties to optimise the test suite min-
imisation process.

Conclusions
Optimising test suites can be a valuable aid for a software developer in establishing
agile practices, which require frequent and extensive testing of software projects under
development. The proposed approach manages to reduce the size of a test suite used for
regression testing considerably, and its execution time is also decreased without losing
code coverage.

We have evaluated our test reduction approach on ten open source systems having
size between several hundreds to tens of thousands lines of code and their associated
test suites generated by Randoop. Our optimisation tool finds the minimum-cost test
suite with 100% accuracy in fractions of a second on all software systems under evalua-
tion, and performs an up to ten-fold reduction of the test suite execution time.

Our complete framework, which automates test generation, code coverage computa-
tion, and test suite reduction, takes as input a software system and generates a minimal

Page 20 of 21Mongiovì et al. Appl Netw Sci (2020) 5:86

amount of test cases with the maximum reasonably possible code coverage. The ability
of generating effective test suites that execute quickly is beneficial for regression testing
since it enables frequent execution of test cases and ensures timely feedback, even when
only limited hardware resources are available.

Abbreviations
CFG: Control flow graph; HGS: Harrold Gupta Soffa; ILP: Integer linear programming; TCP: Test case prioritisation.

Acknowledgements
The authors acknowledge the support provided by projects CLARA and TEAMS.

Authors’ contributions
ET introduced the problem of reducing test suites, devised the overall solution and designed the abstract framework.
MM proposed the problem formulation, designed and described the proposed algorithm, implemented the algorithms
for the evaluation, and discussed the results. AF proposed the idea of removing back edges, collected the software
projects for the experimental analysis, developed the framework for generating traces and CFGs, and described such a
framework. All authors participated in discussions and proposed ideas and suggestions. All authors participated in writ-
ing, revising and polishing the manuscript. All authors read and approved the final manuscript.

Funding
This work is supported by project CLARA (CLoud plAtform and smart underground imaging for natural Risk Assessment),
SCN 00451, funded by Italian MIUR within the Smart Cities and Communities and Social Innovation initiative, and by
project TEAMS–TEchniques to support the Analysis of big data in Medicine, energy and Structures–Piano di incentivi per
la ricerca di Ateneo 2020/2022.

Availability of data and materials
The dataset generated and analysed during the current study is available in the REDUNET GitHub repository (https​://
githu​b.com/aforn​aia/redun​et).

Competing interests
The authors declare that they have no competing interests.

Author details
1 ISTC CNR, Via Gaifami, 18, 95126 Catania, Italy. 2 Dipartimento di Matematica e Informatica, University of Catania, Viale A.
Doria, 6, 95125 Catania, Italy.

Received: 20 April 2020 Accepted: 9 October 2020

References
Arcuri A (2011) A theoretical and empirical analysis of the role of test sequence length in software testing for structural

coverage. IEEE Trans Softw Eng 38(3):497–519
Chen Z, Zhang X, Xu B (2008) A degraded ILP approach for test suite reduction. In: Proceedings of SEKE
Chen TY, Kuo F-C, Merkel RG, Tse T (2010) Adaptive random testing: the art of test case diversity. J Syst Softw 83(1):60–66
Coviello C, Romano S, Scanniello G (2018a) An empirical study of inadequate and adequate test suite reduction

approaches. In: Proceedings of the 12th ACM/IEEE international symposium on empirical software engineering and
measurement, pp 1–10

Coviello C, Romano S, Scanniello G, Marchetto A, Antoniol G, Corazza A (2018b) Clustering support for inadequate test
suite reduction. In: 2018 IEEE 25th international conference on software analysis, evolution and reengineering
(SANER). IEEE, pp 95–105

Cruciani E, Miranda B, Verdecchia R, Bertolino A (2019) Scalable approaches for test suite reduction. In: Proceedings of
IEEE/ACM international conference on software engineering (ICSE), pp 419–429

DeMillo RA, Lipton RJ, Sayward FG (1978) Hints on test data selection: help for the practicing programmer. Computer
11(4):34–41

Do H (2016) Recent advances in regression testing techniques. In: Memon AM (ed) Advances in computers, vol 103.
Elsevier Academic Press, Amsterdam, pp 53–77

Feige U (1998) A threshold of ln n for approximating set cover. J ACM (JACM) 45(4):634–652
Fraser G, Arcuri A (2011) Evosuite: automatic test suite generation for object-oriented software. In: Proceedings of ACM

SIGSOFT symposium and European conference on foundations of software engineering
Fraser G, Arcuri A (2012) Whole test suite generation. IEEE Trans Softw Eng 39(2):276–291
Godboley S, Panda S, Dutta A, Mohapatra DP (2017) An automated analysis of the branch coverage and energy con-

sumption using concolic testing. Arab J Sci Eng 42(2):619–637
Gotlieb A, Marijan D (2014) Flower: optimal test suite reduction as a network maximum flow. In: Proceedings of ACM

international symposium on software testing and analysis
Harrold MJ, Gupta R, Soffa ML (1993) A methodology for controlling the size of a test suite. ACM Trans Softw Eng Meth-

odol (TOSEM) 2(3):270–285

https://github.com/afornaia/redunet
https://github.com/afornaia/redunet

Page 21 of 21Mongiovì et al. Appl Netw Sci (2020) 5:86 	

Hsu H-Y, Orso A (2009) Mints: a general framework and tool for supporting test-suite minimization. In: Proceedings of
IEEE ICSE

Jatana N, Suri B, Kumar P, Wadhwa B (2016) Test suite reduction by mutation testing mapped to set cover problem. In:
Proceedings of ACM international conference on information and communication technology for competitive
strategies

Kazmi R, Jawawi DN, Mohamad R, Ghani I (2017) Effective regression test case selection: a systematic literature review.
ACM Comput Surv (CSUR) 50(2):1–32

Kuhn DR, Bryce R, Duan F, Ghandehari LS, Lei Y, Kacker RN (2015) Combinatorial testing: theory and practice. Adv Comput
99:1–66

Luo Q, Moran K, Poshyvanyk D, Di Penta M (2018) Assessing test case prioritization on real faults and mutants. In: 2018
IEEE international conference on software maintenance and evolution (ICSME), pp 240–251. IEEE

Mongiovì M, Fornaia A, Tramontana E (2019) A network-based approach for reducing test suites while maintaining code
coverage. In: International conference on complex networks and their applications. Springer

Murphy C, Zoomkawalla Z, Narita K (2013) Automatic test case generation and test suite reduction for closed-loop con-
troller software. Technical report, University of Pennsylvania, Department of Computer and Information Science

Myers GJ, Sandler C, Badgett T (2011) The art of software testing. Wiley, Hoboken
Pacheco C, Ernst MD (2007) Randoop: feedback-directed random testing for java. In: Proceedings of OOPSLA companion
Panda S, Mohapatra DP (2017) Regression test suite minimization using integer linear programming model. Softw Pract

Exp 47(11):1539–1560
Panda S, Munjal D, Mohapatra DP (2016) A slice-based change impact analysis for regression test case prioritization of

object-oriented programs. Adv Softw Eng. https​://doi.org/10.1155/2016/71324​04
Rothermel G, Harrold MJ, Von Ronne J, Hong C (2002) Empirical studies of test-suite reduction. Softw Test Verif Reliab

12(4):219–249
Rothermel G, Untch RH, Chu C, Harrold MJ (2001) Prioritizing test cases for regression testing. IEEE Trans Softw Eng

27(10):929–948
Shamshiri S, Just R, Rojas JM, Fraser G, McMinn P, Arcuri A (2015) Do automatically generated unit tests find real faults? An

empirical study of effectiveness and challenges. In: Proceedings of IEEE/ACM ASE
Shi A, Gyori A, Gligoric M, Zaytsev A, Marinov D (2014) Balancing trade-offs in test-suite reduction. In: Proceedings of the

22nd ACM SIGSOFT international symposium on foundations of software engineering, pp 246–256
Shi A, Yung T, Gyori A, Marinov D (2015) Comparing and combining test-suite reduction and regression test selection. In:

Proceedings of the 2015 10th joint meeting on foundations of software engineering, pp 237–247
Shu G, Sun B, Henderson TA, Podgurski A (2013) Javapdg: a new platform for program dependence analysis. In: Proceed-

ings of IEEE international conference on software testing, verification and validation
Smith AM, Kapfhammer GM (2009) An empirical study of incorporating cost into test suite reduction and prioritization.

In: Proceedings of the 2009 ACM symposium on applied computing, pp 461–467
Tallam S, Gupta N (2006) A concept analysis inspired greedy algorithm for test suite minimization. ACM SIGSOFT Softw

Eng Notes 31(1):35–42
Vazirani VV (2013) Approximation algorithms. Springer, Berlin
Wong WE, Horgan JR, London S, Mathur AP (1998) Effect of test set minimization on fault detection effectiveness. Softw

Pract Exp 28(4):347–369
Xu S, Miao H, Gao H (2012) Test suite reduction using weighted set covering techniques. In: Proceedings of IEEE interna-

tional conference on software engineering, artificial intelligence, networking and parallel/distributed computing
Yoo S, Harman M (2012) Regression testing minimization, selection and prioritization: a survey. Softw Test Verif Reliab

22(2):67–120

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1155/2016/7132404

	REDUNET: reducing test suites by integrating set cover and network-based optimization
	Abstract
	Introduction
	A comprehensive approach for the automatic generation and reduction of test suites
	Problem formulation and overall test suite reduction method
	ILP-based test suite optimisation
	Increasing efficiency by integrating CFG analysis
	Employing other metrics

	Experimental results
	Related works
	Automatic generation of test suites
	Test suite reduction, selection and prioritisation
	Joint generation and optimisation of test suites

	Conclusions
	Acknowledgements
	References

