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Abstract

Human mobility connects urban dwellers and neighborhoods and impacts social
equity. An in-depth understanding of human mobility helps to enhance urban
resilience. However, limited research has focused on mobility resilience. Building on
previous research, this study looks at the neighborhood connectivity enabled by
urban mobility. We analyze the aggregated mobility patterns in Boston through the
coupling of network structure and social characteristics. Geocoded twitter data
combined with socioeconomic datasets were used to create a mobility-based urban
network. Through the quantitative analysis, we found that the social segregation in
Boston shapes its mobility network. Network communities identified by the Louvain
modularity algorithm are often self-containing, meaning that their residents are more
likely to move within their communities. A multinomial regression reveals that spatial
racial and income segregation has a strong impact on the dynamic segregation of
the network. The beneficial network characteristics –e.g. higher density and well-
connected motifs– are less present in areas with bolder presence of minorities. Thus,
the resilience state is not equitable among neighborhoods of different income levels
and races, indicating that the resilience measures of urban networks need to be
adapted according to sociodemographic characteristics.

Keywords: Urban mobility, Resilience, Urban systems, Network science, Social
segregation, Network motifs

Introduction
Cities are hybrid systems consisting of entangled entities and thus should be treated as

one adaptive complex system (Amir and Kant 2018). Because of the high complexity,

advancing urban resilience requires studying and engineering urban areas as a set of

interactive social, environmental, structural, and governance systems. One of the big-

gest challenges of enhancing urban resilience is to identify processes that require

changes in this context. It can only be achieved through case studies that are represen-

tative of the real world accompanied by descriptive and explanatory quantitative ana-

lyses that can also raise new questions (Hill et al. 2012).
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Mobility resilience is a critical aspect of urban resilience. Mobility, a basic human be-

havior, is the “the micro-geographies of everyday life” (Adey 2010). It lies within the

intersection of many urban systems to generate and accumulate wealth, support busi-

ness, and maintain engineering and social infrastructures. During manmade and natural

disasters, maintaining mobility resilience could be a matter of life and death and help

urban dwellers “remain resilient in the face of adversity” (United States 2017) and with-

standing and recovering rapidly.

Despite the critical importance, human mobility research has long been focusing on the

discovery of systematic behaviors within a certain range of the stable state, including the

high uniformity (Jurdak et al. 2015; Brockmann et al. 2006), ultraslow diffusion (Toole

et al. 2015; Song et al. 2010a, b; Noulas et al. 2012; Cuttone et al. 2018; Yan et al. 2014),

periodicity (Cho et al. 2011; Liang et al. 2012), high predictability (Bagrow et al. 2011;

Schneider et al. 2013a), and motif composition (Schneider et al. 2013a, b; Candia et al.

2008). Limited research has been conducted to understand how mobility enables connect-

ivity between urban neighborhoods. Also, there is a dearth of studies that attempted to

understand study how socio-demographics impact the mobility-based social networks.

Building on a comprehensive definition of urban resilience and through a case study

of Boston, this study focuses on inter-neighborhood mobility structure and its relation-

ship with socioeconomic characteristics of residents to better understand the weak-

nesses, strengths, and segregation patterns of the mobility network of the city. The

rationale of the study is that humans are inevitably and continuously an integral part of

many networks. Researchers have applied a variety of approaches to gather and process

large quantities of data to systematically model the networks around us and capture the

dynamic nature of real-world networks (Vespignani 2012). The diverse use of concepts,

tools, and methods from network science in many fields and the interdependent nature

of the systems of study, make it a remarkably suitable instrument to study mobility net-

works. Understanding the underlying characteristics of such network are vital in miti-

gating the negative impacts of hazards and improving urban resilience.

The rest of the article is organized in the following orders. In Section 2, we provide a

brief review of research background in related areas. We discuss the importance of mobil-

ity for social resilience in urban areas and we review the literature on urban mobility and

discuss the differences between urban mobility systems and urban transportation systems.

The clarification of the differences serves as the foundation to discuss the differences in

resilience studies of the two systems. The last part of the Section 2 explains motifs and

their role in mobility network studies. In Section 3, we introduce both the data and the

network analysis methods and measures used in this study. Then it is followed by Section

4 to present the results from our analysis. We present our discovery of the network struc-

tures and social characteristics of network communities hidden in the mobility network in

Boston. Also, we discuss the motifs in these network communities. The paper ends with

an acknowledge of certain limitations (Section 5) and our conclusions (Section 6).

Background
Urban resilience

Urban areas are a combination of ecological, technical, and social systems. Ecological

or technological approaches to enhance resilience of urban areas will fail without the
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third social consideration (Grimm et al. 2008). Urban systems are not merely aggrega-

tion of people and technology, rather they are hybrid systems and entangled entities

that should be looked at as an adaptive whole (Amir and Kant 2018). Although urban

resilience is still a vague concept that often-times lacks operationalizability, recent defi-

nitions of urban resilience agree on the interdependency of urban systems (e.g. Coaffee

2008; Paton and Johnston 2001). In this study, we define urban resilience as:

the ability of an urban system, its social units (such as individuals, communities,

institutions, governments, etc.), and its technical units (urban infrastructure) to

recover from hazards while maintaining functional continuity of their substituents

and as a whole, and mitigating negative impacts of future hazards through practice

of resilience planning.

Building on this definition, this study focuses on social aspect of urban resilience and

concentrates on affected neighborhoods and demographics in cases of disruption to

better understand the weaknesses, strengths, and the level of functional continuity of

mobility network of Boston. Understanding the underlying characteristics of mobility

networks are vital in mitigating the negative impacts of hazards and improving urban

resilience.

Mobility and social resilience

Urban areas consist of many interconnected and interdependent systems. These sys-

tems include the urban ecology, urban infrastructure, social networks, governance net-

works, and others. Enhancing urban resilience requires understanding these systems

and improving upon them individually and collectively. The social aspect of urban re-

silience requires social integration of people with different races and income levels

(Fonseca et al. 2019). Social integration stands at the opposite of social segregation; the

former benefits social resilience and the latter hinders it.

Social segregation limits housing opportunities and has serious detrimental impact

on educational outcomes (Condron et al. 2013), it creates concentrated poverty

(Massey and Fischer 2006) and crime (Peterson and Krivo 2010). On the other hand,

social integration creates greater solidarity and trust (Angell 1947), improves longevity

and well-being in communities (Moen et al. 1989), benefits social mobility (Peach

2005), helps communities to be resilient to perturbations (Folke et al. 2010), and

provides access to coping mechanisms (Ramirez-Valles et al. 2010) as well as low-

ering conflict and crime (Crutchfield et al. 1982). Social segregation disproportion-

ately affects socially disadvantaged and underrepresented groups, whose struggles

are further exacerbated by lack of urban policy coordination, disproportionate in-

frastructural investments (Lucas and Porter 2016, Rode et al. 2018). While the resi-

dential and neighborhood segregation remain important, urban social segregation

needs to be understood and inspected in dynamics of everyday life such as social

networks and mobility (Wissink et al. 2016). Studies of transportation infrastruc-

ture have revealed inequalities in mobility opportunities (Elliott and Urry 2010).

Thus, many studies focused on “mobility related social exclusion” (e.g. Schwanen

et al. 2015, Lucas 2012).
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To improve social resilience in urban areas it is vital to understand the level of social

segregation in a city. Social segregation has two aspects: a well-studies spatial aspect

known as residential segregation, and segregation on a dynamic level (Erbe 1975) that

has not been extensively studied mostly due to lack of available data that captures mo-

bility on spatial and temporal scale. The technological advancements of the last decade

now present researchers with unprecedented data that can be used to innovatively

study urban dynamics, one of such is social media data (e.g. Shelton et al. 2015,

Gabrielli et al. 2013). The availability of data presents a vast array of opportunity for

urban researchers to reveal hidden inequities of mobility patterns in urban area. Section

2.3 summarizes the relevant literature on urban mobility. Urban mobility can reveal in-

sights into the dynamic segregation or perhaps the dynamic integration of an urban

area. Dynamic segregation here goes beyond spatial segregation and refers to social seg-

regation in everyday interactions. Dynamic integration on the other hand refers to so-

cially diverse interactions that are not bounded by spatial constraints. This study builds

a mobility network of Boston using Twitter data and investigates the racial and income

segregation of the network.

Urban mobility

In recent years urban mobility studies have taken advantage of the field of network sci-

ence to advance the field. Urban mobility networks are geospatial networks in which

each node has a two-dimensional location property that can be used to place the node

on a plane, such as a map. If the network can be placed on a map in a way that its

edges do not intersect, then the network is considered planar (Barthélemy 2011). Al-

though many spatial networks, such as an individual’s travel pattern or roads networks

are planar (e.g. Masucci et al. 2013), not all spatial networks depict a planar network

(Barthélemy 2011). The network of this study is a non-planar network that is an aggre-

gation of planar individuals’ mobility networks.

One property of many geospatial networks is spatial embeddedness. A spatially em-

bedded network suggests that nodes that are in spatial proximity of each other have a

higher chance of being connected to each other and the connection probability of two

nodes decay with increase of distance (Bullock et al. 2010). The Spatial embeddedness

is mostly used in generating random graphs and the objectives are mostly mathematical

to understand influence that geometric distances have on the merely topological con-

nections (Picciolo et al. 2012). However, in real world networks, the relationship be-

tween two nodes cannot be determined merely by the spatial organization of its nodes

and shared affinities and community structures can have enormous impact on the be-

havior of the network as well as edge distribution (Bullock et al. 2010). As the network

of this study is based on actual individuals’ location, this study does not look into

spatially embedding the network to avoid suppressing the actual patterns that exists in

the network.

Human travel patterns have been of interest to many scholars. There have been sev-

eral studies on general mobility patterns confirming that human travel patterns follow

a mathematically described two-parameter continuous-time random walk model, a

power-law distribution (e.g., Brockmann et al. 2006; Gonzalez et al. 2008; Song et al.

2010a, b). Such studies focus on travel patterns during normal circumstances when
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there are no instances of disruption. Furthermore, a few studies have focused on under-

standing human mobility before, during, and after natural hazards, which disrupt nor-

mal traveling patterns. For example, one study constructs London’s metro

infrastructure network and identifies the points of vulnerability to understand their im-

plications on the system’s resilience (Chopra et al. 2016). Wang and Taylor (2015) con-

ducted a study that focuses on the significance of human mobility disruption during

tropical typhoons to help with disaster response management. However, when consid-

ering resilience, the literature is focused on understanding the role of mobility patterns

on infrastructural resilience of urban areas, ignoring the social aspect of such networks.

Social resilience and diversity play a vital role in urban resilience as social exclusion is a

consequence of the lack of resilience in spatial fragmentation processes (Cumming

2011). Geography is coupled with human interaction and is a key feature for context-

ualizing social relationships (Toole et al. 2015). Puura et al. (2018) used mobile phone

call detail record (CDR) data to infer social relations as well as individual mobility and

found out that the more extensive and individual’s network of calling partners, the

more mobile they are highlighting the role of human interaction in mobility. Lack

of social resilience will affect excluded groups in many ways among which is the

lack of coping mechanisms in cases of physical and socio-economic disruptions

(Chaves et al. 2008).

On the other hand, the study of social networks has gained prominent attention from

a different range of disciplines as well (e.g. Watts 2004; Easley and Kleinberg 2010).

However, they are mainly focused on the social dimension, leaving out the interac-

tions between humans and the physical space (Wang et al. 2011). Recently, re-

searchers have started to treat urban mobility as urban geosocial networks and

analyze their unique properties using approaches from network science. Phillips

et al. (2019) used geocoded twitter data for 50 large US cities to develop a “struc-

tural connectedness” measure that is based on everyday travel patterns of people

from different neighborhoods in a city and identifies whether people from different

neighborhoods travel to all other neighborhoods in equal proportion. They uncover

valuable information such as neighborhoods that act as hubs, lack of mobility be-

tween some neighborhoods, and the relationship between mobility and structural

connectedness. In light of the new development, the aim of this study is to exam-

ine the network structure of the mobility in Boston as a case study to better

understand the underlying characteristics of mobility networks on urban resilience

from a social perspective.

Urban mobility resilience vs. transportation system resilience

While urban mobility and transportation systems deeply integrate and are often-times

coupled with one another, they are different in essence and thus regard different resili-

ence features. The studies on the resilience of mobility networks, especially with a focus

on social aspects, requires different methodologies and tools from the ones on trans-

portation systems. We distinguish transportation and mobility in this paper as follows:

the static set of mediums by which humans move are referred to as transportation, and

the movement itself is mobility. Transportation is the infrastructures that are largely in

place, whereas mobility is not limited to them.
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Transportation resilience is looked upon from engineering and infrastructure per-

spectives and is referred to as the ability of the system to maintain its demon-

strated level of service or restore itself to that level in a timely manner (Freckleton

et al. 2012). Minimizing operational loss is another concern of transportation resili-

ence (Pant 2012).

Although there have been numerous studies on resilience from different perspectives,

there are few studies that focus on urban mobility resilience. Cutter et al. (2008) looks

at mobility as a social system interacting with a defined geographical space and refers

to resilience as the system’s capacity to absorb disturbance and return to a fully func-

tional state that advances the state of the system through learning (Adger et al. 2005;

Klein et al. 2003). Fernandes (2017) refers to the resilience of urban mobility as “cap-

acity to persist, ability to adapt, and the potential to transform the city when confronted

with a threat.” Wiles et al. (2012) study resilience concepts in the gerontology field and

express that mobility resilience “might refer to an individual’s personal mobility in

terms of whether they are able to walk, whether they have a car, or whether they are

physically fit, but also to broader environmental elements of mobility, such as whether

there is an accessible high-quality public transport system or other forms of collective

transport, whether a neighborhood has high ‘walkability’, or what road conditions are

like and the degree to which a person feels safe to use them”.

The lack of research on mobility resilience motivated this study to develop a defin-

ition that can serve as a basis of this research. For this purpose, this study looks at

urban mobility in terms of one of many interconnected urban systems acknowledging

that urban mobility should be looked at as a system that involves the interactions of

humans with their surrounding built and ecological environment (Vermaas et al. 2011;

Clegg 2000).

Disruption in mobility networks vs. disruption in transportation networks

One of the studied ways of improving the resilience state of a transportation network is

through robust system architecture and introducing redundancy (Li 2016). In transpor-

tation networks, nodes are places and edges are the infrastructural means that connect

the two nodes, such as railroads and streets. Having more than one path between two

nodes in the network can reduce the chance of disconnection of the two nodes, al-

though tightly coupled networks can be more vulnerable due to faster spread of failure

(Vespignani 2010). Removal of a node in a transportation network –such as disruption

in a train station– is another challenge that can be overcome by reaching to the destin-

ation by another mode of transportation or taking another path to a neighboring node.

Studies on mobility networks, on the contrary, usually conceptualize the nodes and

edges differently from the ones on transportation networks. For example, in Phillips

et al. (2019), nodes are origin and destination block groups –such as home and work

locations– and edges are people who travel between two nodes regularly. Removal of a

node means economic or social disruption for people who travel on the edges con-

nected to that node. For example, natural disasters such as flooding, or man-made at-

tacks to the area can permanently or temporarily remove a node from the network;

meaning residents who depend on the removed nodes for work (or residence) will not

be able to access their destination (or origin). Thus they suffer from economic and
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social consequences. This study follows a similar way to build the mobility network in

Boston.

Motifs in mobility networks

Motifs are recurring patterns of connections within a network and can represent broad

ranges of phenomena (Milo et al. 2002). The abundance of triadic motifs in networks is

significantly correlated with stability or robustness of the network against perturbation

(Scherrer et al. 2008). It is expected that human social networks have highly connected

motifs to maximize information flow as opposed to, for example, a hierarchical military

network that information flow occurs only in one direction (Krause et al. 2007). Schnei-

der et al. (2013a) studied the motifs of individuals’ mobility patterns in Paris using mo-

bile phone call detail record (CDR) and found out that only 17 unique motifs explain

90% of mobility patterns. Jiang et al. (2017) used a similar approach using CDR data to

study the motifs of human mobility in Singapore and suggested using such patterns to

improve urban and resource planning.

These studies have focused on individuals’ mobility patterns and the resulting motifs.

In this study the network is an aggregated mobility network of all the individuals in the

data. Thus, the meanings behind motifs differ from the ones of individuals’ movements.

In a directed network there are sixteen different motifs with three nodes (they are listed

in Table 3). Table 1 represents example of situations in which a certain network motif

is abundant.

Methodology and data
Data

In numerous occasions, complete enumeration of data to create and analyze a real-

world network is not possible. The incompleteness of data is especially true in networks

that involve human mobility. However, with the popular use of smartphones and new

information technologies, the availability of geocoded data is helping to resolve this

problem, although not yet to the fullest. For example, a study used geocoded data from

public shared photos on Flicker to study individuals’ mobility patterns (Barchiesi et al.

2015). Another study used geocoded twitter data to investigate the “structural connect-

edness” of US cities based on everyday mobility patterns of residents (Phillips et al.

2019). The use of geocoded social media data has become very popular in urban re-

search domain, including urban activities and environmental studies (Heikinheimo

et al. 2020). A study found Twitter users to be representative of general demographics

of U.S. population (Wang and Taylor 2016). Although survey-based intra-urban

Table 1 Examples of abundance of certan motif types in a mobility network

Motif

Examples
of
abundance

Many nodes of the network are
not connected to each other.
The structure means there is a
lack of economic and social
mobility, and thus the nodes
are more vulnerable to
economic or social
disturbances.

The destination node in this
motif is socially and
economically accommodating
other nodes.
It allows for knowledge sharing
between all the nodes in the
motif. The origin nodes are
highly dependent on the
destination node.

There is a richness of mobility
happening between different
parts of the network. The
connectivity allows social and
economic upward mobility. The
structure can also be resilient
to economic or social
disturbances.
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mobility data is available for many cities, such data sources most often are not available

on geographically small resolution and they lack enough detail for arriving at empirical

insights (Heikinheimo et al. 2020). Twitter data has also the added potential of captur-

ing locations other than home and work locations that are on individuals’ regular travel

patterns.

The use of Twitter data in understanding mobility in recent years has been prevalent,

as the location-sharing technology has made it possible for researchers to take advan-

tage of exceptional access to direct records of human activities in urban areas (Hawelka

et al. 2014). Hawelka and his colleagues used almost a billion tweets to map the mobil-

ity profiles of different nations and later validated their findings using global tourism

statistics and concluded that Twitter is exceptionally useful for understanding and

quantifying mobility patterns (Hawelka et al. 2014). Jurdak et al. (2015) analyzed six

million geo-coded tweets in Australia and demonstrated that Twitter could be a reliable

source for studying human mobility patterns.

This study uses geotagged twitter data from October 2013 to March 2015. Each entry

of a geotagged tweet contains the complete information of that micro-message includ-

ing the user ID, tweet ID, time stamp, latitude, and longitude. The data is then aggre-

gated to the block group defined by the U.S. Census. A user has to tweet from a

specific block group 5 times or more to assume that the block group is in his/her rou-

tine travel trajectory. The final data consists of 25,585 data points. Origin and destina-

tions have been inferred from the time of the tweets. If the user tweets any time

between 8 pm and 8 am, the location is treated as the origin. The location is treated as

destination if the tweet’s timestamp is within the time range of 8 am to 8 pm. Using the

timestamps to assess origin and destination is a common assumption among similar

studies (e.g. Rashidi et al. 2017; Gao et al. 2014). Moreover, we used time stamps to

count the number of tweets by each user from each block group that are at least 12 h

apart from each other. For example, if a user tweets 10 times from the same block

group between 6 pm and 6 am the next day, this is counted as one occurrence and it is

most likely their home location. We look for at least 12 h intervals as a proxy for the

timespan that most people spend at home and avoid counting home locations multiple

times a day that would create self-loops. In certain hours of a day social media activity

peaks (Toivonen et al. 2019) and multiple tweets by a user can produce incorrect data.

In the final network of the study 62% of the users only travel between two nodes, while

31% have three nodes on their regular mobility pattern, and only 7% have four or more

nodes (block groups) on their regular travel. The average separation degree for all the

users is 1.38.

A block group defined by the Census Bureau is a combination of census blocks that

are collectively a subdivision of a census tract. On average there are 39 census blocks

in a block group. A block is the smallest geographic entity for which tabular sample

data is published by the decennial census (United States. Bureau of the Census 1994).

Despite availability of data on a census block scale, this study uses block groups as

nodes of the network and aggregates users’ data to a block group basis to ensure ethical

use of data and unfeasibility of identifying any individual based on their mobility

pattern.

After cleaning the dataset, a network of mobility among the block groups is formed.

In this network each node is a block group and each weighted edge represents the
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number of individuals that regularly travel between the two nodes. For this study, we

excluded edges with their weights less than 10 which are the edges with fewer than 10

people traveling between a dyad of two block groups. We removed these edges so the

network only focuses on more regular travel patterns. The removed edges represented

45% of the total number of edges but only 8% of the total weight of the network. In the

final network there are 417 nodes and 2321 edges. There is a total of 610 block groups

in Boston and the network of this study represents 68.3% of them. The distribution of

the nodes covers all neighborhoods of Boston. To investigate representativeness of our

data, we investigated the relationship between the population of block groups and

number of users in each block group and found a linear statistically significant relation-

ship between population and number of users with p-value of less than 0.05 and R-

squared of 0.69. This finding underlines that the data is representative of the size of the

population. However, there could still be bias in data in terms of racial representation.

Since the data covers all neighborhoods of Boston, including majority non-white neigh-

borhoods and on the basis of previously-discussed representativeness of Twitter data,

we assume that this network is representative of the population in Boston in terms of

size, race, and income.

The socio-economic characteristics –such as income level and race– of each block

group are attached to each node as the node attributes to understand the underlying

socio-economic characteristics of the mobility network. This data is obtained from the

US Census Bureau.

Network measures

The following network measures are used in this study:

� Each node is a block group. Section 3.1 contains more explanation on nodes of the

network.

� Weighted edges are the number of people traveling between two nodes. Wij is the

weight of the edge going from node i to node j.

� Density (q) is a redundancy measure for the whole network that shows the fraction

between the total number of links (m) and the maximum possible number of links (
n�ðn − 1Þ

2 ).

q ¼ 2m
n� n − 1ð Þ

� Node connectivity is the minimum number of nodes that needs to be removed for

the network to be disconnected.

� Network motifs are recurring patterns of connections in a network.

� Network communities are locally dense subgraphs of the network that are formed in

real-world networks (Yang and Leskovec 2015).

Network communities

The communities of this network are detected using Louvain modularity algorithm.

Each community is a combination of nodes which are more likely to be connected to

each other rather than to nodes from outside of their community. In the context of a

mobility network, people who live in the same network community are more likely to
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mobilize within their own network community. We would like to emphasize that a net-

work community is merely characterized by modularity which uses edge weights and

distribution of the weights among different nodes as features. The network community

concept is not influenced by geographical neighborhoods or and should not be con-

fused with social and geographical communities.

Modularity in a network is a measure to assess the network community structure.

Modularity is based on the edge connectedness in the communities where the nodes in

the same community are more likely to connect to each other rather than to nodes

from different communities. Thus, a community is a locally relatively dense subgraph

of the network. The optimal community structure happens when the modularity of the

network is maximized. Modularity for the whole network can be calculated through the

following equation (Barabási 2016):

M ¼
Xnc

c¼1

Lc
L

−
kc
2L

� �2
" #

Where L is the total weights of all the links in the network, Lc is the total weights of

all the links within the community C and kc is the total degree in that community. The

community structure in this study is detected using the Louvain algorithm (Blondel

et al. 2008). This algorithm, starts with each node as a separate community and calcu-

lated modularity for the while network. At each iteration the algorithm merges two

communities and recalculates modularity. If the modularity had increased, the algo-

rithm keeps the nodes in the same community and repeats this process. If the modular-

ity had decreased, the algorithm removes the node from the last step from the

community. The model iterates over these steps many times until it arrives at the high-

est modularity score, at which point moving one node from a community to another

will only decrease modularity. The complexity of this model and the number of itera-

tions increases as nlog2n with increase in n as number of nodes (Lancichinetti and For-

tunato 2009).

Motif detection

The motifs of this network have been identified using Cytoscape, and opensource plat-

form for complex network analysis (Shannon et al. 2003). To understand the level of

abundance of a certain motif, z-scores are used. Z-scores are defined as the difference

in the frequency of the motif and its mean frequency in a set of sufficiently large ran-

domized networks divided by the standard deviation of frequency values in the ran-

domized network (Milo et al. 2002). In simpler words, the number of appearances of a

certain motif in a network is compared to the number of its appearances in a random

network of the same size. In this study each motif type in a community is compared to

a set of 10,000 randomized networks with degree preservation to arrive at the Z-scores.

Z-scores are then normalized to enable comparison of their significance across different

communities with different sizes and are defined as (Ma et al. 2008):

Ni ¼ Zi
P ffiffiffiffiffiffi

Z2
i

q
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The normalized z-scores of each motif along with more discussions are presented in

section 4.4.

Results
Mobility communities

The outcome of Louvain modularity algorithm divides the nodes into 21 different com-

munities, with some of the communities consisting of less than 5 nodes. This study

only focuses on the 7 major detected communities. A network community represents a

subset of nodes that are densely connected to each other and a node is more probable

to be connected to another node in the same community compared to nodes outside of

the community. In the context of this mobility network, traveling within each commu-

nity is more probable than traveling outside of the community. Each node (block

group) in the network has sociodemographic attributes such as percentage of white

population, percentage of non-white population, median income, and educational at-

tainments. These attributes are used to uncover social unbalances in this network. Fig-

ure 1a highlights the 7 biggest network communities in different colors. Mobility is

more probable between nodes that are in the same community. G0 in orange includes

64 nodes, G1 in pink includes 60 nodes, G2 includes 57 nodes in green, G3 includes 54

nodes in blue, G4 includes 51 nodes in purple, and G5 and G6 include 50 yellow and

30 red nodes respectively. Although the network communities only follow network

structural measures such as modularity, the nodes in each community are also geo-

graphically clustered. Figure 1b shows nodes that more than 50% of their population

are either white or other races. Figure 1a and b share some resemblance in the segrega-

tion patterns. The percentage of white population versus other races in each commu-

nity is shown in Fig. 1c. Figure 2 shows the distribution of white and non-white

population of Boston among different communities with the number of people on the

left vertical axis and the percentage on the right axis. Other than G3, the six other mo-

bility communities are not racially balanced, indicating that it is more probable that mi-

norities and whites travel within themselves. This social mobility segregation is not

present in G3 where the whites and other races are more in balance with one another.

Fig. 1 a shows the community structure of the network based on modularity, detected via the Louvain
algorithm. b shows the nodes with more than 50% white vs. nodes with more than 50% minorities. c
shows the percentage of white vs. other races in each community
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There are three points that are worth mentioning here:

1. The mobility communities are spatially governed. Even with the current influence

of technology on our everyday lives, geography is still very much valid. Although

information technology shrinks time and space in many ways, the geographic space

still plays a significant role in social phenomena (Sheldon 2014). The findings align

with the ones from previous research. For example, Wang et al. (2018) found that

although marginalized residents travel longer distances on a daily basis, they are

also less likely to travel to non-poor white neighborhoods. Phillips et al. (2019)

have also shown that spatial social segregation affects the connectedness of the

neighborhoods and limits travels between two neighborhoods with different socio-

economic status.

2. We also observe that the composition of G3 community suggests a high level of

social cohesion –social cohesion is the extent of connectedness among groups in

society (Kawachi and Berkman 2000). We hypothesize that the spatial placement of

this network community and its nodes (block groups) to numerous diverse services

play a key role in this phenomenon. For example, the nodes in G3 are clustered

around boundaries of neighborhoods such as Back Bay (a hub for financial and

leisure activities in Boston), Longwood (a hub for medical services and sciences),

Northeastern University, and Boston University. The diversity of people who travel

to these educational, medical, and leisure hubs create a diverse mobility

community. The drivers of such social cohesion observed in the mobility network

deserve further investigation.

3. Communities such as G0, G1, and G5 are more segregated than other

communities. G0 and G1 are majority poor black suburban neighborhoods of

Boston, including Dorchester, Mattapan, Roxbury, and Dudley Square

neighborhoods, which all have locally low median housing values and median

household income (Compared to other neighborhoods of Boston). G5 includes

non-poor white areas of the city, including downtown, financial district, Charles-

town, and Beacon Hill areas. These neighborhoods have some of the highest me-

dian household incomes and median housing values in the city of Boston. There

can be numerous factors in play other than income and housing values, such as

Fig. 2 The distribution of white and non-white population of Boston among different communities
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accessibility to public transportation, or availability of job opportunities, which will

be the focus of future work.

Other characteristics of the network communities

Sociodemographic attributes of each node (block group) other than race, which was

discussed in section 4.1 is used to uncover inequities of this network. These features

along with some other main network properties of the communities are presented in

Table 2. Community G3 which is racially more balanced than other communities (ratio

of white to non-white population is close to 1), has the highest density, indicating that

the subgraph is more well-connected within itself compared to others, a fact that is also

reflected in its highest average degree. It has the highest node connectivity among the

seven communities, meaning that 6 nodes need to be removed to fragment the sub-

graph into two parts. Again, majorly white communities have more network structural

advantages, such as higher density and node connectivity, and support community re-

silience to a higher degree than communities with more minority population. For ex-

ample, G0 is a majority white community with a white to non-white ration of 3. It has

considerably higher median income and higher percentage of college-educated popula-

tion. It has the second highest average node degree and node connectivity which allows

the community to be more resilient to perturbations. On the other hand, communities

such as G0 or G1 which high percentage of non-white population and low median in-

come, have considerably lower network densities and average node degrees, both indi-

cators of not well-connected communities. Their node connectivity is 1, meaning by

just removing 1 node the community can become disconnected. Such communities are

vulnerable to perturbations.

Multinomial regression

We performed multinomial regression analysis in which the network communities are

captured in a multinomial dependent variable with 7 categories. The independent vari-

ables are socioeconomic characteristics of the nodes including, percentage of white

population, percentage of black population, percentage of other races, and median

household income. Multinomial regression, a type of logit regression is used to find

causality between a categorical independent variable with two or more categories, and a

group of dependent variables.

Table 2 Other characteristics of the network communities

G0 G1 G2 G3 G4 G5 G6

Network Measures

Density 0.014 0.022 0.028 0.078 0.056 0.064 0.067

Node connectivity 1 1 3 6 4 2 2

Average node degree 2.193 2.879 4.8 10.642 7.098 9.282 4.967

Highest node degree 7 13 55 43 28 47 37

Socio-economic characteristics

Median household income (USD) 20,126 22,286 52,645 20,629 29,274 71,017 25,642

Percentage college educated 18.11 24.99 50.06 44.81 59.80 63.00 24.67

White to non-white ratio 0.219 0.351 1.857 0.923 2.125 3 0.562
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There are 366 nodes in the network communities. We randomly chose 183 nodes

which will account for 50% of the network communities as the input to train our

model. Then we used the other half of the network as a test dataset. Because the num-

ber of observations in our dataset is small (366 data points in total) we chose a 50–50

train and test split in order to have a big-enough test set to allow for meaningful accur-

acy discussion. The regression model achieved 63.4% accuracy. Figure 3 is the confu-

sion matrix of the model that shows the number of nodes that have been placed

correctly on the right communities using the regression model on the diagonal cells.

This result indicates that more than 60% of the dynamic segregation that is present in

Boston’s mobility network can be explained by the spatial racial and income segrega-

tion of the city.

Network motifs

Table 3 presents the number of different triadic motifs in the identified network com-

munities. Communities G0 through G6 have 64, 58, 58, 59, 60, 59, and 42 nodes re-

spectively. Because of the closeness of the community sizes it is therefore possible to

compare the number of motif occurrences in the communities, which are presented in

Table 3. However, Z-score for each motif in different networks was obtained as a meas-

ure of statistical significance, which is the basis for the heatmap in Fig. 3.

Figure 4 represents a heatmap of the significance of different motif type in each com-

munity. The Z-score and normalized Z-scores of the motifs represented in the heatmap

are all negative, indicating that all motifs have low presence in the network as com-

pared to randomized networks albeit with significant differences. The low presence

could be a result of lack of connectivity or presence of hubs. As shown in Fig. 3, occur-

rences of all motif types especially motifs with more edges– are more significant in

Fig. 3 Confusion matrix resulting from multinomial regression analysis in which the dependent variable is
network communities and the independent variables are percentage of white population, percentage of
black population, percentage of other races, and median household income
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communities G3, G4, and G5, while communities G1, G2, and G6 mostly have less

firmly connected triads, and community G0 has the least number of every triadic motif

type. However, Table 3 shows that the number of unconnected triple nodes –motif

code 003– in communities G0 and G1 is significantly higher than other communities.

The nodes in unconnected triads are not isolated nodes and they are connected to

other nodes in (and in some cases out of) their community. However, the significant

presence of unconnected triads shows the community is not very well connected and

thus vulnerable to perturbations.

Moreover, communities with the least dense triads G0, G1, and G6 are the communi-

ties with a higher percentage of the non-white population. Mobility communities with

a higher percentage of white population –such as G4–and more racially balanced com-

munities –such as G3– tend to have a more significant presence of highly connected

triadic motifs. Densely connected triadic motifs facilitate community and social

Table 3 Number of appearances of each triadic motif in identified network communities

Code Motif G0 G1 G2 G3 G4 G5 G6

003 38,439 30,686 25,273 17,434 15,980 14,223 2728

012 3047 2883 3373 4494 3150 3663 1082

102 118 539 329 1874 1153 1009 55

021D 16 25 31 99 47 77 42

021 U 17 23 143 127 113 166 72

021C 20 20 46 145 78 109 42

111D 3 16 32 212 132 125 19

111 U 3 19 15 157 45 94 6

030 T 0 4 10 48 14 27 10

030C 1 0 0 1 1 1 1

201 0 1 0 54 26 24 1

120D 0 1 4 42 19 25 2

120 U 0 1 2 33 21 16 0

120C 0 2 1 18 8 13 0

210 0 0 1 42 25 22 0

300 0 0 0 24 13 6 0

Fig. 4 Heatmap of normalized Z-scores of different triadic motif types in different mobility communities
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resilience through knowledge sharing and interactions beyond cultural and economic

boundaries.

Bigger motifs

The highest frequency motifs of degree 4, 5 and 6 in the entire network and seven

major communities are shown in Table 4. Each motif’s frequency is listed beneath it.

There are a few major observations here worth mentioning. First, all motifs are low in

density indicating that major parts of the network have low densities despite the pres-

ence of some locally dense subgraphs.

Secondly, the frequent motifs in G2 and G3, and to a lesser degree G4 are very simi-

lar to the frequent motifs of the entire network, showing the domination of these three

communities in shaping the patterns of connection in the entire network.

Thirdly, the patterns of the frequent motifs in G0 and G1 significantly differ from

other communities. In G0 and G1 the flows tend to disperse from one node to others

whereas in other communities and more specifically G2, G3, and G5 flows merge and

meet in one node. This fact is an indication of fewer local attractions in G0 and G1

such as financial districts that can supply the job demands of the community. G2, G3

and G5, which have more attractive central nodes, are located in areas that are medical

or education or financial hubs in Boston area.

G4 is the only community with reciprocated flows, also known as bi-flows (two-direc-

tional flows) in the most frequent motifs. Bi-flows are strong features in a mobility

community as they show the co-independence of neighborhoods on one another and

can improve socio-economic resilience of the community. G4 is the Allston neighbor-

hood of Boston, which includes parts of Boston University as an educational hub, many

restaurants and bars as leisure hubs, and is home to socio-demographically diverse

residents.

Finally, G6 is the East Boston neighborhood, which includes Boston Logan Inter-

national Airport. The majority Hispanic population of East Boston has created a very

locally dense subgraph, which has a higher density than any other non-white commu-

nity in the network.

Limitations and future research
Although using geocoded social media data in research is becoming increasingly popu-

lar (e.g. Matamalas et al. 2016; Achrekar et al. 2011; Tremayne 2014; Grandjean 2016),

the use of twitter data encompasses limitations. While researchers have explored the

representativeness of Twitter data (Mislove et al. 2011; Wang and Taylor 2015), the

Table 4 Most frequent motifs of sizes 4, 5 and 6 in the network and its communities

Entire Network G0 G1 G2 G3 G4 G5 G6

Frequency 1354 205 41 352 355 215 327 202

Frequency 1894 549 27 692 668 409 669 329

Frequency 3012 1216 29 1684 1128 484 1114 381
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geotagged Twitter data might not be representative of the whole demographics. How-

ever, this study serves as a mandatory basis of advancing the field. Future research

should compare results from this study to the ones derived from other data sets. Also,

although we limit our analysis to frequent visits, there could be bias in the visits re-

ported in geotagged Twitter data which could impact the structure of the mobility net-

works in Boston. Moreover, our analysis on urban resilience has been focusing on

mobility network while other aspects of the system introduced in section 1.2. deserve

future investigations. Moreover, in the study of motifs, the presence or absence of

highly connected motifs can be an indicator of imbalance in resource distribution such

as job opportunities. Our future efforts will focus on investigating the underlying shap-

ing factors of such imbalance.

Conclusion
Studying the resilience of urban areas is not a trivial task but can be achieved through

studying urban systems. This study focuses on social resilience aspect of Boston’s urban

mobility network. This study builds the aggregated mobility network of Boston as one

of the urban systems that lie within the intersection of many disciplines. The essence of

such a network is to investigate the interactions between different parts of the city with

a block-group resolution. The resulting network illustrates that the spatial social segre-

gation in Boston is also present in the network community structures where six out of

seven main mobility communities in the network are racially and economically segre-

gated, indicating that racial minorities and lower-income demographics are more likely

to move within themselves rather than interacting beyond the economic and racial

boundaries. The results of this study align with findings of Dannemann et al. (2018)

where they used cell phone data to uncover dynamic social segregation in Santiago,

Chile. The result of the multinomial regression model indicates that spatial racial and

income segregation in Boston can be used to explain 63% of the segregation in mobility

network communities. Moreover, the study of motifs of the network communities

shows dissimilar patterns of interaction in different communities. The analysis of tri-

adic motifs shows that minority dominated communities lack well-connected triads.

Thus, the interactions between nodes in those communities are weaker than the white

dominated communities in which the abundance of denser triads are more significant.

Moreover, in minority dominated network communities the study of higher degree mo-

tifs reveals common dispersal patterns where people regularly tend to scatter to differ-

ent parts. However, in majorly white communities there are more nodes that attract

flows. In those communities, people tend to gather in a central node. This finding can

potentially be an indicator of the difference in economic opportunities available to dif-

ferent communities. The only racially balanced network community (G3) has the most

significant presence of dense triadic motifs and reflects strong interaction between

nodes that can possibly help improve community, social, and economic resilience.

Overall, the findings of this study stress the imbalance in social resilience that is hap-

pening through mobility. Dynamic racial segregation, such as the ones shown in this

study, can limit the ability of people interacting beyond social and economic boundaries

and potentially prohibits upward mobility for minorities.
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