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Abstract
Clustering is an essential technique for network analysis, with applications in a diverse
range of fields. Although spectral clustering is a popular and effective method, it fails to
consider higher-order structure and can perform poorly on directed networks. One
approach is to capture and cluster higher-order structures using motif adjacency
matrices. However, current formulations fail to take edgeweights into account, and thus
are somewhat limited when weight is a key component of the network under study.
We address these shortcomings by exploring motif-based weighted spectral clustering
methods. We present new and computationally useful matrix formulae for motif
adjacency matrices on weighted networks, which can be used to construct efficient
algorithms for any anchored or non-anchored motif on three nodes. In a very sparse
regime, our proposed method can handle graphs with a million nodes and tens of
millions of edges. We further use our framework to construct a motif-based approach
for clustering bipartite networks.
We provide comprehensive experimental results, demonstrating (i) the scalability of
our approach, (ii) advantages of higher-order clustering on synthetic examples, and (iii)
the effectiveness of our techniques on a variety of real world data sets; and compare
against several techniques from the literature. We conclude that motif-based spectral
clustering is a valuable tool for analysis of directed and bipartite weighted networks,
which is also scalable and easy to implement.

Keywords: Motif, Spectral clustering, Weighted network, Directed network,
Community detection, Graph Laplacian, Bipartite network

1 Introduction
Networks are ubiquitous in modern society; from the internet and online blogs to protein
interactions and human migration, we are surrounded by inherently connected struc-
tures (Kolaczyk and Csárdi 2014). The mathematical and statistical analysis of networks
is therefore an important area of modern research, with applications in a diverse range
of fields, including biology (Albert 2005), chemistry (Jacob and Lapkin 2018), physics
(Newman 2008) and sociology (Adamic and Glance 2005).
A common task in network analysis is that of clustering (Schaeffer 2007). Network clus-

tering refers to the partitioning of a network into “clusters”, so that nodes in each cluster
are similar (in some sense), while nodes in different clusters are dissimilar. For a review
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of approaches, see for example (Fortunato 2010) or (Fortunato and Hric 2016). Spec-
tral methods for network clustering have a long and successful history (Cheeger 1969;
Donath and Hoffman 1972; Guattery and Miller 1995), and have become increasingly
popular in recent years. These techniques exhibit many attractive properties including
generality, ease of implementation and scalability (Von Luxburg 2007); in addition to
often being amenable to theoretical analysis by using tools from matrix perturbation the-
ory (Stewart and Sun 1990). However, traditional spectral methods have shortcomings,
particularly involving their inability to consider higher-order network structures (organi-
zations above the level of individual nodes and edges), which have become of increasing
interest in recent years (Rosvall et al. 2014; Benson et al. 2016; Benson et al. 2018); and
their insensitivity to edge directions1 (Cucuringu et al. 2019b). Such weaknesses can lead
to unsatisfactory results, especially when considering directed networks. Motif-based
spectral methods have provenmore effective for clustering directed networks on the basis
of higher-order structures (Tsourakakis et al. 2017), with the introduction of the motif
adjacency matrix (MAM) (Benson et al. 2016). While weights can be important in net-
work clustering (Newman 2004), to the best of our knowledge, thesemotif-basedmethods
have not been comprehensively investigated on weighted networks. Thus, in this paper,
we focus on extending these methods to the family of weighted directed networks.

Contribution In this paper, we explore motif-based spectral clustering methods with
a focus on addressing these shortcomings by generalizing motif-based spectral meth-
ods to weighted directed networks. Our main contributions include a collection of new
matrix-based formulae for MAMs on weighted directed networks, and a motif-based
approach for clustering bipartite networks.We also provide computational analysis of our
approaches, demonstrations of scalability and comprehensive experimental results, both
from synthetic data (variants of stochastic block models) and from real world network
data. Finally, we provide a thoroughly tested, scalable implementation of our proposed
matrix-basedMAM formulae in both Python and R, which can be found at https://github.
com/wgunderwood/motifcluster.

Paper layout Our paper is organized as follows. In Section 2, we describe our graph-
theoretic framework which provides a natural model for real world weighted directed
networks and weighted bipartite networks. In Section 3 we develop our methodology,
and state and prove new matrix-based formulae for MAMs. We explore the com-
putational complexity of our approaches and demonstrate their scalability on sparse
graphs. In Section 4 we explore the performance of our approaches on several synthetic
examples. We demonstrate the utility of considering weight and higher-order struc-
ture, and compare against non-weighted and non-higher-order methods. In Section 5,
we apply our methods to real world data sets, demonstrating that they can uncover
interesting divisions in weighted directed networks and in weighted bipartite net-
works. We compare our performance to standard methods and highlight our ability
to avoid misclassification. Finally, in Section 6 we present our conclusions and discuss
future work.

1Although there are some spectral approaches which do consider edge direction e.g. (Rohe et al. 2016; Satuluri and
Parthasarathy 2011).

https://github.com/wgunderwood/motifcluster
https://github.com/wgunderwood/motifcluster
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2 Framework
In this section, we give notation and definitions for our graph-theoretic framework, with
the aim of being able to define our weighted generalizations of motif adjacencymatrices in
Section 3. The motif adjacency matrix (Benson et al. 2016) is the central object in motif-
based spectral clustering, and serves as a similarity matrix for spectral clustering. In an
unweighted MAM M, the entry Mij is proportional to the number of motifs of a given
type that include both of the vertices i and j.

Notation Graph notation is notoriously inconsistent in the literature; in this work, a
graph is a triple G = (V , E ,W ) where V is the vertex set, E ⊆ {

(i, j) : i, j ∈ V , i �= j
}
is

the edge set and W : E → (0,∞) is the weight map. A graph G ′ = (V ′, E ′) is a sub-
graph of a graph G = (V , E) (write G′ ≤ G) if V ′ ⊆ V and E ′ ⊆ E . It is an induced
subgraph (write G′ < G) if further E ′ = E ∩ (V ′ × V ′). A graph G′ = (V ′, E ′) is iso-
morphic to a graph G = (V , E) (write G′ ∼= G) if there exists a bijection φ : V ′ → V
with (u, v) ∈ E ′ ⇐⇒ (φ(u),φ(v)) ∈ E . An isomorphism from a graph to itself is
called an automorphism. Where it is not relevant or understood from the context, we may
sometimes omit the weight mapW.
As we are considering directed weighted graphs, it is convenient to consider five indi-

cator matrices that capture the different possible relationships between pairs of nodes,
namely the directed indicator matrix J, the single-edge indicator matrix Js, the double-
edge indicator matrix Jd, the missing-edge indicator matrix J0, and the vertex-distinct
indicator matrix Jn:

Jij := I{(i, j) ∈ E} ,
(Js)ij := I{(i, j) ∈ E and (j, i) /∈ E} ,
(Jd)ij := I{(i, j) ∈ E and (j, i) ∈ E} ,
(J0)ij := I{(i, j) /∈ E and (j, i) /∈ E and i �= j} ,
(Jn)ij := I{i �= j} ,

where I is an indicator function. Furthermore, we consider the following three weighted
adjacency matrices, corresponding to directed edges, single edges, and double edges,
respectively:

Gij := W ((i, j)) I{(i, j) ∈ E} ,
(Gs)ij := W ((i, j)) I{(i, j) ∈ E and (j, i) /∈ E} ,
(Gd)ij :=

(
W ((i, j)) + W ((j, i))

)
I{(i, j) ∈ E and (j, i) ∈ E} .

We can extend to the setting of undirected graphs by constructing a new graph, where
each undirected edge is replaced by a bi-directional edge.

Definition 1 (Motifs and anchor sets) A motif is a pair (M,A) whereM = (VM, EM)

is a (weakly) connected graph with VM = {1, . . . ,m} for some small m ≥ 2, and an anchor
set is A ⊆ VM with |A| ≥ 2. If A �= VM, we say the motif is anchored, and if A = VM
we say it is simple. We say thatH is a functional instance ofM in G ifM ∼= H ≤ G, and
we say that H is a structural instance of M in G if M ∼= H < G. When an anchor set is



Underwood et al. Applied Network Science            (2020) 5:62 Page 4 of 41

not given, it is assumed that the motif is simple. Figure 1 shows all the simple motifs (up to
isomorphism) on at most three vertices.

Structural instances occur when an exact copy of the motif is present in the graph: i.e.
edges present (resp. not present) in the motif are present (resp. not present) in the graph.
Functional instances are less restrictive, and occur when the motif is present in a graph,
but potentially with extra edges.
Anchor sets (Benson et al. 2016) can be thought of as the set of locations in a motif

that we consider important for the motif structure. For example we could consider the
2-path motif M9, and try to cluster together nodes which appear at the start or end of
a 2-path, but maybe not in the middle. Then we can define the anchor set as the subset
of motif vertices which should not be separated. InM9, the start and end vertices would
correspond to A = {1, 3} (Fig. 1). Anchor sets are crucial for defining the collider and
expander motifs given in Section 3.2.
Finally, we require one additional definition before we can state our generalization of

MAMs to weighted networks.

Definition 2 (Anchored pairs) Let G be a graph and (M,A) a motif. Suppose H is an
instance ofM in G. Define the anchored pairs of the instanceH as

A(H) := {{φ(i),φ(j)} : i, j ∈ A, i �= j, φ is an isomorphism fromM toH
}
.

This is the set of pairs of vertices for which both vertices lie in the image of the motif ’s
anchor set, under some isomorphism from the motif to the instance.

3 Methodology
In this section we detail our methods for motif-based spectral clustering of weighted
directed networks. Firstly we define our weighted generalizations of motif adjacency
matrices (MAMs) (Definition 3.1). We further provide computationally useful formu-
lae for weighted MAMs (Proposition 3.1), and discuss their applications to clustering

Fig. 1 All simple directed motifs on at most three vertices
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(Section 3.3). Finally we present a complexity analysis of our method for computing
weighted MAMs (Proposition 3.3), and empirically demonstrate the scalability of our
approach (Section 3.4).

3.1 Weightedmotif adjacency matrices

Generalizing unweighted measures to weighted networks is non-trivial and application-
dependent, and there are typically many possible valid choices. For example, see the
approaches for motif weighting proposed by (Onnela et al. 2005) and (Benson et al. 2018).
It is often helpful to first consider the generalization of the measure to multi-edges (New-
man 2004). We can then view positive integer-weighted edges as multi-edges, and extend
to positive real-weighted edges in a natural way.
Thus, we begin by considering the weight to place on a motif which contains multi-

edges. A first option might be to consider the minimum number of multi-edges lying on
any edge of the motif. This would capture the number of fully edge-disjoint instances
of the motif. Another option would be to count the number of unique instances of the
motif (possibly counting individual edges more than once), giving the total weight as the
product of the number of multi-edges between each pair of nodes in the instance. Alter-
natively, as a compromise between these two schemes, we might consider the number of
distinct motifs present, were the multi-edges distributed evenly among all the edges in the
motif (allowing fractional edges for simplicity). This gives the arithmetic mean weighting
scheme which is used in Onnela et al. (2005); Benson et al. (2018); Mora et al. (2018) and
Simmons et al. (2019).
As an illustrative example of how this choice can affect clustering, Fig. 2 shows how

different motif weighting schemes prefer to divide a network in different ways. Here, we
treat the undirected edges as bi-directional edges and consider the fully-connected trian-
gle motifM4. The “minimum” approach has no preference between Cut 1 and Cut 2, with
all motifs having a weight of 1, and in this example is equivalent to the simple unweighted
case. However the “mean” weighting approach (which, up to a scaling factor, is equivalent
to summing the edge weights) prefers Cut 1 (cutting motifs of mean-weight 2 and 1 rather

Fig. 2 An example illustrating that different weighting schemes prefer different motif cuts: the four triangles
have mean-weights of 2, 1, 53 and 5

3 , and product-weights of 6, 1, 3 and 3 respectively whereas the minimum
edge weight in each triangle is 1. Thus, the minimum formulation cannot distinguish between the cuts,
whereas, under the mean formulation Cut 1 gives a cut of size 9, and Cut 2 gives a cut of size 10. On the other
hand, under the product formulation, Cut 1 gives a cut of size 7, and Cut 2 gives a cut of size 6. Hence the
mean formulation prefers Cut 1 and product formulation prefers Cut 2
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than 5
3 and 5

3 ), while the “product” approach prefers Cut 2 (cutting motifs of product-
weight 3 and 3 rather than 6 and 1). Further, although they ostensibly concern bipartite
networks, Section 4.5 exhibits some of the effects of different weighting schemes on the
performance of motif-based clustering, and Section 5.3 provides real world motivation
for using mean-weighted motifs.
Each of these approaches has merits. The “minimum” approach might be natural when

dealing with flow networks, where low-count multi-edges could indicate bottlenecks or
points of unreliability. The “product” approach is useful if we want to consider each pos-
sible set of edges to be a separate entity, while the “mean” approach is appropriate if we
consider the motif to be a single object and wish to count the total number of edges it
contains, perhaps as some notion of capacity.
When considering weighted edges however, these approaches have some mathematical

differences, particularly in how they handle the presence of large weights. For example,
suppose that a graph contains just a few heavy edges. Were two of these heavy edges to
appear together in a motif instance, the product formulation would assign a very large
total weight to that instance, possibly completely dominating any other instances. On
the other hand, using the mean formulation ensures that the total weight of any instance
remains on the same scale as the individual edge weights. By taking the minimum edge
weight, it may be that the heavy edges do not contribute to any motif weights at all.
With these points in mind, and following (Mora et al. 2018) and (Simmons et

al. 2019), we use the “mean-weighted” approach in this paper, defining the weight
of a motif instance by its average (mean) edge weight. We acknowledge that other
weighting schemes may be more appropriate in some circumstances2. For example,
(Onnela et al. 2005) introduces several weighting schemes related to the geometric and
arithmetic means of the edge weights. Further, these are special cases of the generalized
p-means weighting scheme detailed by Benson et al. (2018).
Now that we have chosen a motif weighting scheme, we can define our weighted gen-

eralizations of motif adjacency matrices. We note that while a weighted extension was
considered by Wang et al. (2018), in this paper we provide the first thorough exploration,
including computational analysis, fast software implementations and comprehensive real
world and synthetic experiments.

Definition 3.1 (Weighted motif adjacency matrices) Let G = (V , E ,W ) be a weighted
graph on n vertices and let (M,A) be a motif. The functional and structural (mean-
weighted) motif adjacency matrices (MAMs) of size n × n of (M,A) in G are given
by

Mfunc
ij := 1

|EM|
∑

M∼=H≤G
I
{{i, j} ∈ A(H)

} ∑

e∈EH
W (e) ,

Mstruc
ij := 1

|EM|
∑

M∼=H<G
I
{{i, j} ∈ A(H)

} ∑

e∈EH
W (e) .

When W ≡ 1 and M is simple, the (functional or structural) MAM entry Mij (i �= j)
simply counts the (functional or structural) instances ofM in G containing i and j. When
M is not simple,Mij counts only those instances with anchor sets containing both i and j.

2For convenience our software package implements three weighting schemes: product, mean and a scheme which
ignores the weights.
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MAMs are always symmetric, since the only dependency on (i, j) is via the unordered set
{i, j}. In order to state Proposition 3.1, we need one more definition.

Definition 3.2 (Anchored automorphism classes) Let (M,A) be a motif. Let SM be the
set of permutations on VM = {1, . . . ,m} and define the anchor-preserving permutations
SM,A = {σ ∈ SM : {1,m} ⊆ σ(A)}. Let ∼ be the equivalence relation defined on SM,A by:
σ ∼ τ ⇐⇒ τ−1σ is an automorphism ofM. Finally the anchored automorphism classes
are the quotient set S∼

M,A := SM,A
/ ∼ .

The motivation for this definition of anchored automorphism classes is as follows: sup-
pose we are looking for instances of (M,A) in G which contain nodes i and j. We set
k1 = i and km = j (where m is the number of nodes in the motif – note we could use any
two fixed indices instead of 1 and m here), and choose some other nodes {k2, . . . , km−1}.
We want to find all mappings of vertices in M to our chosen vertices in G by u �→ kσu
such that (i) vertices in A are mapped to i and j, and (ii) mappings which correspond to
the same instance are not counted more than once. These conditions are precisely the
same as requiring σ ∈ S∼

M,A .

Proposition 3.1 (MAM formula) Let G = (V , E ,W ) be a graph with vertex set
V = {1, . . . , n} and let (M,A) be a motif on m vertices. For any i, j ∈ V and with k1 = i,
km = j, the functional and structural MAMs of (M,A) in G are given by

Mfunc
ij = 1

|EM|
∑

σ∈S∼
M,A

∑

{k2,...,km−1}⊆V
J funck,σ Gfunc

k,σ , (1)

Mstruc
ij = 1

|EM|
∑

σ∈S∼
M,A

∑

{k2,...,km−1}⊆V
Jstruck,σ Gstruc

k,σ , (2)

where Jfunck,σ is equal to one (and zero otherwise) if M appears as a functional (likewise for
structural) instance on the m-tuple of distinct vertices k = (k1, . . . , km) in G, under the
mapping u �→ kσu; and in that case, Gfunc

k,σ is the average edge weight of that instance:

J funck,σ :=
∏

E0
M

(Jn)kσu,kσv

∏

Es
M

Jkσu,kσv

∏

Ed
M

(Jd)kσu,kσv ,

Gfunc
k,σ :=

∑

Es
M

Gkσu,kσv +
∑

Ed
M

(Gd)kσu,kσv ,

Jstruck,σ :=
∏

E0
M

(J0)kσu,kσv

∏

Es
M

(Js)kσu,kσv

∏

Ed
M

(Jd)kσu,kσv ,

Gstruc
k,σ :=

∑

Es
M

(Gs)kσu,kσv +
∑

Ed
M

(Gd)kσu,kσv ,

and the summations and products are over the missing edges, single edges and double edges
ofM as follows:

E0
M := {(u, v) : 1 ≤ u < v ≤ m : (u, v) /∈ EM, (v,u) /∈ EM} ,

E s
M := {(u, v) : 1 ≤ u < v ≤ m : (u, v) ∈ EM, (v,u) /∈ EM} ,

Ed
M := {(u, v) : 1 ≤ u < v ≤ m : (u, v) ∈ EM, (v,u) ∈ EM} .

Proof See Proof B.1.
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3.2 Motif adjacency matrices for bipartite graphs

We also extend our formulation to weighted bipartite networks, by considering certain 3-
node anchored motifs. These are used to create separate similarity matrices for each part
of a bipartite graph.

Definition 3.3 A bipartite graph is a directed graph where the vertices can be parti-
tioned as V = S � D, such that every edge starts in S and ends in D. We refer to S as the
source vertices and toD as the destination vertices.

Our method for clustering bipartite graphs uses two anchored motifs; the collider and
the expander (Fig. 3). For both motifs the anchor set isA = {1, 3}. These motifs are useful
for bipartite clustering because when restricted to the source or destination vertices, their
MAMs are the adjacency matrices of the weighted projections (Chessa et al. 2014) of the
graph G (Proposition 3.2). In particular they can be used as similarity matrices for the
source and destination vertices respectively. Note that if a bipartite graph is connected,
then so are the projections onto its source or destination vertices.

Proposition 3.2 (Colliders and expanders in bipartite graphs) Let G = (V , E ,W ) be
a directed bipartite graph. Let Mcoll and Mexpa be the structural or functional MAMs of
Mcoll andMexpa respectively in G. Then

(Mcoll)ij = I{i �= j}
∑

k∈D
(i,k),(j,k)∈E

1
2

[
W ((i, k)) + W ((j, k))

]
, (3)

(Mexpa)ij = I{i �= j}
∑

k∈S
(k,i),(k,j)∈E

1
2

[
W ((k, i)) + W ((k, j))

]
. (4)

Proof See Proof B.2.

We note that there are other options available for constructing projections of weighted
bipartite graphs, such as the approach in (Stram et al. 2017), which, similarly to our frame-
work, uses sums of edge weights over shared neighbors. Another relevant line of work is
that of (Zha et al. 2001), who proposed a certain minimization problem on the bipartite
graph, showing that an approximation solution could be obtained via a partial singular
value decomposition of a suitably scaled edge weight matrix.

Fig. 3 The collider and expander motifs.
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3.3 Clustering the motif adjacency matrix

A motif adjacency matrix can be construed as a general pairwise similarity measure, and
as such, can be analyzed directly as a new weighted undirected graph. Following (Benson
et al. 2016), one of the most interesting applications is identifying higher-order clusters
with spectral methods, leveraging the fact that the similarity is based on motifs.
To extract clusters, we use a standard approach from the literature on spectral cluster-

ing, based on the spectrum of the random-walk Laplacian, followed by k-means++ (see
Appendix C). To this end, we need to define two parameters: l is the number of random-
walk Laplacian eigenvectors to use, and k is the number of clusters for k-means++
(see Algorithm 1). We detail our approach for general directed weighted networks in
Algorithm 2, and for weighted bipartite networks in Algorithm 3.

3.3.1 Cluster evaluation

When ground-truth clustering is available, we compare it to our recovered clustering
using the Adjusted Rand Index (ARI) (Hubert and Arabie 1985). The ARI between two
clusterings has expected value 0 under random cluster assignment, and maximum value
1 denoting perfect agreement between the clusterings. A larger ARI indicates a more
similar clustering, and hence closer to the ground truth.

3.3.2 Connected components

In order for spectral clustering to produce nontrivial clusters from a graph, it is neces-
sary to restrict the graph to its largest connected component. When forming MAMs,
even if the original graph is (weakly or strongly) connected, there is no guarantee that
the (symmetric) MAM is connected too. Hence we restrict the MAM to its largest con-
nected component before spectral clustering is applied. While this may initially seem to
be a flaw with motif-based spectral clustering (since some vertices may not be assigned to
any cluster), in fact it can be useful: we only attempt to cluster vertices which are in some
sense “well connected” to the rest of the graph. This can result in fewer misclassifications
than with traditional spectral clustering, as seen in Section 5.2, where we also investigate
MAM regularization as an alternative strategy for dealing with disconnected MAMs.

3.3.3 Motif choice

The selection of a motif is essentially equivalent to selecting a similarity measure between
nodes in the network, as the (i, j)th entry in the MAM corresponds to the similarity
between nodes i and j used for our clustering procedure. This selection can be impor-
tant, as we will see in Section 4.4, where the choice of motif can have a significant impact
on the clusters obtained. For motif selection, considerations for weighted networks are
largely similar to those for unweighted networks. Thus much of this discussion will mir-
ror that of (Benson et al. 2016), although we will highlight the areas where weight may
cause deviations.
The first criterion for motif selection is the application domain. This may involve

choosing motifs which are related to specific features of the application domain, essen-
tially specializing the similarity measure to the task at hand. For example, in several
fields, some motifs may be more relevant or have very different properties; e.g. the feed
forward structure in biological networks (Mangan and Alon 2003), various triadic struc-
tures in sociology (Wasserman et al. 1994), or the motif M5 in food web networks
(Benson et al. 2016). For weighted networks the procedure is very similar, but care must
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be taken to simultaneously select a motif and a weighting scheme (Section 3.1), in order
to capture the similarity measure of interest.
Again following (Benson et al. 2016), in the case where there is no application domain

guidance, more principledmethods formotif choice are also available. For example, sweep
profiles (Shi and Malik 2000) or their motif-coherence counterparts (Benson et al. 2016)
can be used to identify motifs which give more clearly distinguished clusters. In the
weighted case, these methods require weighted generalizations of the appropriate quan-
tities. We give an example of the application of weighted generalizations of these sweep
profiles to real world data in Section 5.2. Finally, one could consider every motif (or a
subset of motifs) and then explore each in turn. We demonstrate this approach in our
migration experiment in Section 5.1, where we plot the geographic spread of our clusters
and then validate on a subset of motifs by considering the cut imbalance ratio scores.

3.3.4 Functional vs. structural MAMs

There is also a choice of whether to use functional or structural MAMs for motif-based
clustering, and their different properties make them suitable for different circumstances.
Firstly, note that 0 ≤ Mstruc

ij ≤ Mfunc
ij for all i, j ∈ V . This implies that the largest connected

component of Mfunc is always at least as large as that of Mstruc, meaning that sometimes
more vertices can be assigned to a cluster by using functional MAMs. However, structural
MAMs are more discerning about finding motifs, since they require both “existence” and
“non-existence” of edges.

3.4 Computational analysis

For motifs on at most three vertices, we provide two fast and potentially parallelizable
matrix-based procedures for computing weighted MAMs: one for dense regimes and one
for sparse regimes. In this section, we explore and demonstrate the scalability of these two
approaches.

3.4.1 Dense approach

First, Proposition 3.3 bounds the number of matrix operations required to compute a
weighted MAM, for a motif on at most three vertices, using our dense formulation. In
practice, additional symmetries of the motif often allow computation with even fewer
matrix operations (Appendix A).

Proposition 3.3 (Complexity of MAM formula) Let G be a (weighted, directed) graph
on n vertices, and suppose that the n×n directed adjacency matrix G of G is known. Then,
computing the adjacency and indicator matrices and calculating a MAM, for a motif on
at most three vertices, using Eqs. (1) and (2) in Proposition 3.1, involves at most 18 matrix
multiplications, 22 entry-wise multiplications and 21 additions of n × n matrices.

Proof See Proof B.3.

Thus as we have a fixed bound on the number of each operation for any motif, and
as each operation is performed on a matrix of the same size, our approach scales with
the largest complexity of these operations. In dense matrices, element-wise products and
additions areO(n2) and naive matrix multiplication isO(n3). Therefore, in a naive imple-
mentation for a graph on n vertices, the overall complexity of our dense approach is
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O(n3), and the memory requirement is O(n2). We note that somewhat faster algorithms
are available for multiplication of large dense matrices, such as the O(n2.81) algorithm
given by Strassen (1969).
A list of functional MAM formulae for our dense approach, for all simple motifs on at

most three vertices, as well as for the collider and expander motifs (used in Section 3.2), is
given in Table 5 in Appendix 6. These formulae are generalizations of those stated in Table
S6 in the supplementary materials of (Benson et al. 2016) (a list of structural MAMs for
triangular motifs in unweighted graphs). Note that the functional MAM formula for the
two-vertex motif Ms yields the symmetrized adjacency matrix M = G + GT, which can
be used for traditional spectral clustering (Appendix C1), as in (Meilă and Pentney 2007).

3.4.2 Sparse approach

Real world networks are often sparse (Leskovec and Krevl 2014), and operations with
sparse matrices are significantly faster: in sparse matrices with b non-zero entries,
element-wise products and additions are O(b), and matrix multiplications are O(bn).
Therefore, we give a slightly different approach with a better computational running time
(Section 3.4.3) on sparse graphs, which can extend to graph sizes that are infeasible for
our dense approach.
For motifs on at most three vertices, the formulae in Propsition 3.1 are simply sums of

terms of the form A ◦ (BC), where A,B and C are adjacency or indicator matrices, and ◦
represents the entry-wise (Hadamard) product. If the directed graph has n vertices and b
edges, then most of the adjacency and indicator matrices have at most b non-zero entries.
For these matrices, we can compute the (possibly dense) matrix BC in O(bn) time, and
then the matrix A ◦ (BC) in O(n2) time. Summing them together is also done in O(n2)
time.3

However, when considering motifs with missing edges, we use the dense indicator
matrices J0 and Jn. This is problematic as now the term BC can contain a dense matrix,
which can be an issue both for computational reasons4 andmore importantly, formemory
requirements. To address this, we rewrite these two matrices as

Jn = 1 − I ,

J0 = 1 − (I + Js + JTs + Jd)

= 1 − (I + J̃) ,

where 1 is a matrix of 1s, and expand out the resulting formulae. Element-wise and
matrix products with 1 and I are at most O(n2) so are computationally simple, and do
not require generating dense matrices. This allows scaling simply using standard linear
algebra libraries.
For sparse graphs the key limitation of this approach is in fact not CPU, but memory

(RAM) as while B and C might be sparse, BC may not be. The worst case density of BC
for B and C indicator matrices of a connected graph is n2 (e.g. a star graph).5 However,

3By exploiting sparsity the sums and element-wise products could be faster thanO(n2), but as the complexity is
dominated by the matrix multiplication, we do not explore this further.
4Although there are sparse-dense matrix multiplication algorithms that address this.
5See https://math.stackexchange.com/questions/1042096/bounds-of-sparse-matrix-multiplication.

https://math.stackexchange.com/questions/1042096/bounds-of-sparse-matrix-multiplication
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in practice the density is often substantially lower than this, allowing our approaches to
scale to very large graphs (Section 3.4.3).

3.4.3 Empirical computational speed

In this section, we demonstrate the scalability of our two approaches to computing
MAMs. We showcase the running times of four different random graph ensembles. For
the first two ensembles, we use the directed Erdős-Rényi (ER) model (Erdős et al. 1959)
in which each directed edge between n nodes exists independently with probability p. We
consider two regimes, a very sparse regime (p = 10

n ) and a less sparse regime (p = 100
n ).

For the last two ensembles, we use the undirected Barabási-Albert (BA) model (Barabási
and Albert 1999). In this model, the graph is initialized with m nodes, and n − m nodes
are then added sequentially, with each node connecting to m previously placed nodes,
and with probability of connection proportional to the current degree of each previously
placed node, resulting in a graph with a skewed (power-law) degree distribution.We again
consider two regimes, a very sparse regime (m = 10) and a less sparse regime (m = 100).
In each of these four ensembles, the expected number of edges in the graph scales asO(n).
We measure the performance of computing a functional MAM for a representative

sample of motifs: one triangle motifM1, the 2-starM8, and a motif with a bi-directional
edge,M11. We do not include the time taken to generate the graph in either the sparse or
the dense matrix form. To make this a fair test, we use an optimized Python environment
from the Data Science Virtual Machine image on an E64s v3 Azure virtual machine with
64 vCPUs and 432GiB of RAM.
The results are summarized in Fig. 4. In the denser graphs (ER: p = 100

n , BA:m = 100),
we note that for smaller graphs (i.e for n less than ≈ 104) the dense approach tends to
perform as well as, and in many cases exceeds, the performance of the sparse approach,
highlighting the advantage of using this approach in denser graphs. For graphs above this
size and graphs in the sparser regime (ER: p = 10

n , BA: m = 10), the sparse approach
outperforms, handling graphs with over a million nodes and tens of millions of edges.
In the less sparse regime (ER: p = 100

n , BA: m = 100), we consider graphs of size up to
n = 105 nodes and of order 107 edges, for which our sparse approach takes less than 102

seconds for the ER model, and around 103 seconds for the BA model.
We note that the time required for each method is roughly constant across most of the

tested motifs. The exception is the sparse approach for M11, which takes substantially
less time than the other motifs in both of the ER regimes. We believe this to be related
to the bi-directional edge in M11 (not present in M1 or M8), which is rare in sparse
ER graphs, heavily reducing the amount of computation required. This is not seen in the
undirected BA graphs, where bi-directional edges are much more common, resulting in a
similar level of performance across all tested motifs in this regime. The various scenarios
we experimented with highlight the fact that our approach is highly scalable to very large
sparse graphs, including those with skewed degree sequences which often arise in real
world applications.

4 Applications to synthetic data
To validate our method, we consider three synthetic data sets as examples. We selected
each example to highlight a different aspect of our approach and to demonstrate
the advantages of considering a weighted higher-order clustering measure. Example 1
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Fig. 4 Run time for our two approaches. Top: Erdős-Rényi (ER) graph ensembles. Bottom: Barabási-Albert
(BA) graph ensembles. The left panels show very sparse graphs (ER: p = 10

n , BA:m = 10) and the right panels
show less sparse graphs (ER: p = 100

n , BA:m = 100). We average over five repeats, and error bars are one
sample standard deviation

demonstrates the importance of taking the edge weights into account when performing
higher-order clustering; Example 2 shows the value of higher-order clustering, demon-
strating that clustering using different motifs can yield different insights into the same
data; and finally, Example 3 demonstrates the value of our bipartite clustering scheme for
detecting structures in weighted bipartite networks.

4.1 Directed stochastic block models

For these tests we use weighted and unweighted directed stochastic block models
(DSBMs), a broad class of generative models for directed graphs (Nowicki and Snijders
2001). An unweighted DSBM is characterized by a block count k, a list of block sizes
(ni)ki=1, and a connection matrix F ∈[ 0, 1]k×k . We define the cumulative block sizes
nci = ∑i

j=1 nj, and the total graph size n = nck . These are used to construct the group
allocations gi = min{r : ncr ≥ i}, and finally a graph G is generated with adjacency matrix
entries

Gij = Ber(Fgi,gj) · I{i �= j}, (5)

with all Bernoulli random variables sampled independently. A weighted DSBM is
constructed in a similar manner (see for example (Mariadassou et al. 2010) and
(Aicher et al. 2014)), but also requires a weight matrix � ∈[ 0,∞)k×k . In this case, the
weighted adjacency matrix entries are generated by the following mixture model

Gij = Ber(Fgi,gj) · Poi(�gi,gj) · I{i �= j}, (6)

with all Bernoulli and Poisson random variables sampled independently. Note that the
Bernoulli variable now no longer directly corresponds to edge existence, since there
is always a non-zero chance of the Poisson variable being zero, which sets Gij = 0
and thus removes the edge. We assume a DSBM is unweighted unless stated other-
wise. We evaluate performance using the Adjusted Rand Index (ARI) (Rand 1971), as in
Section 3.3.1.
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4.2 Bipartite stochastic block models

We define the unweighted bipartite stochastic block model (BSBM) with source block
count kS , destination block count kD , source block sizes (niS)

kS
i=1, destination block sizes

(niD)
kD
i=1, and bipartite connection matrix Fb ∈[ 0, 1]kS×kD as the unweighted DSBM with

block count k = kS+kD , block sizes (ni)ki=1 =
(
(niS)

kS
i=1, (n

i
D)

kD
i=1

)
, and connectionmatrix

F =
(
0 Fb
0 0

)

.

A weighted BSBM with bipartite weight matrix �b ∈[ 0,∞)kS×kD can similarly be con-

structed by using a weighted DSBM with weight matrix � =
(
0 �b
0 0

)

. Note that this is

a generalization of the model in (Florescu and Perkins 2016).

4.3 Example 1

In this example we demonstrate the advantages of taking edge weights into account when
detecting higher-order structures. We compare Algorithm 2 with two clusters (k = 2)
and two eigenvectors (l = 2), against two standard approaches. The first comparison is
random-walk spectral clustering using a symmetrized weighted matrix, which captures
the ability of non-motif-basedmethods to uncover the underlying structure. This is equiv-
alent to Algorithm 2 with motifMs. Secondly, we compare against our own motif-based
approaches, but with all edge weights set to 1, similar to the formulation of (Benson et al.
2016).
To demonstrate the advantages of our approach, we consider an example for which (i) a

higher-order structure is present, and (ii) weight is important in the structure. Construct-
ing higher-order structures in a stochastic block model is challenging, as by definition all
the edges are independent. Thus the block structure in a DSBM with strongly connected
blocks is captured by density rather than by the existence of motifs (although these are
correlated).
To this end, we construct clusters that consist of several blocks, and introduce a higher-

order structure between blocks of the same cluster. For this example, we use two clusters
(Fig. 5 (upper panel)), each one consisting of two blocks each of size 100, for a total of
n = 400 nodes. Each cluster ({V(1)

1 ,V(2)
1 } and {V(1)

2 ,V(2)
2 }) consists of two blocks with

strong uni-directional (probability p = 0.25) connections with potentially large weights
(Poisson with mean w1). The two clusters are then linked by weaker inter-block con-
nections with potentially smaller weights (Poisson with mean 50). By design, this model
has strong heavy-weighted uni-directional structures, and is thus well captured by M8
andM10, both of which capture uni-directional structure. Thus, following (Benson et al.
2016) rather than focusing on an individual motif, we use the sum of both MAMs.
The lower panel of Fig. 5 displays the results for functional motifs (structural

motifs in Appendix D). As our procedure only clusters the largest connected MAM
component, we compute ARI over this component. For w1 = 50, all edges
have the same expected weight, and thus the performances of weighted and non-
weighted motifs are equal. In the mid-range of weights (50 < w1 ≤ 90), our
approach outperforms both of the others, indicating the advantages of accounting for
weights.
Finally, for large weights (w1 > 90), we are (on average) slightly outperformed by Ms,

the symmetrized weighted adjacencymatrix, although the error bars are overlapping. One
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Fig. 5 Top: DSBM parameters for Example 1. We note that the DSBM has been constructed to favor
weighted motifs. The left and middle panels display the connection matrix and weight matrix (Eq. 6). In the
right panel, a schematic diagram of the structure, blocks of the same color belong to the same cluster and
larger arrows represent connections with higher probabilities and larger edge weights. Bottom: Exploring
the performance of MAMs based onM8 andM10 on the model in the upper panel. Each block contains 100
nodes. We compare both to the unweighted case, and to the symmetrized case. We perform 100 repeats,
and error bars are one sample standard deviation

possible reason for this is that while using M8 and M10 gives a strong signal, it also
introduces noise when motifs with heavy and non-heavy weighted edges span clusters.
The pattern on structural motifs is similar (Fig. 16 in Appendix D), with two key differ-

ences: first, the non-weighted motifs have a larger ARI (≈ 0.7 vs. ≈ 0.3), and second, the
weighted motif equals or outperformsMs. We hypothesize the following possible reason
for this phenomenon: in this model, motifs on three nodes which span clusters can form
triangles, whereas those within clusters cannot (due to the probability-0 connections).
Hence versions of the non-triangle motifsM8 andM10 are able to filter out some of the
noise described in the previous paragraph, leading to better performance.
Finally, we note that this example has been designed to highlight the advantages of our

motifs; and several other structures were considered which do not have this property.
When applying this to real world data, it is important to consider the correct motif to use,
as discussed in Section 3.3.3.

4.4 Example 2

In the second example, we explore the value of higher-order clustering, by demonstrating
that clustering using different motifs can give different albeit potentially equally valu-
able insights. We showcase this with two experiments. First, we consider the case where,
due to the construction of the network, certain motifs are better at detecting the under-
lying structure in different parameterization regimes. Second, expanding on our first
example, we consider a DSBM where, by construction, the network does not have strong
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densely connected blocks, and thus different motifs highlight distinct and equally relevant
groupings in the network.

4.4.1 Experiment 1

For the first experiment, we use the DSBM with k = 2, n1 = n2 = 100 (so n = 200) and

F =
(
0.2 q1
0.05 0.2

)

, as depicted in the upper panel of Fig. 6.

We test the performance of Algorithm 2 across a few structural motifs with parameters
k = l = 2 on this model (functional motifs in Appendix D). It can be seen that the motifs
perform well in different regions, with M1 outperforming other methods in the regime
0.3 ≤ q1 ≤ 0.7, and also performing well outside this range. For large values of q1, motif
M9 performs best. For lower values of q1,M2 has a slightly higher average ARI, although
the difference is within the standard errors. This altogether demonstrates the impor-
tance of selecting the right motif. Furthermore, we compare againstMs, the symmetrized
weighted adjacency matrix, and each presented motif outperforms this baseline.
We also observe an artifact in this plot: for certain motifs, the performance drops

away at q1 = 0 (triangles) and at q1 = 1 (all motifs). For these parameter values, the
MAM becomes entirely disconnected, with each of the two groups in its own connected
component. As our clustering scheme only considers the largest connected component
(Section 3.3.2), we then obtain an ARI of 0. In real world graphs, we would recommend
investigating all reasonably large connected components or, depending on the application,
employing some form of regularization (see Section 5.2).
We note that there is a bi-modality with certain motifs, notable with M9 performing

well for small and large values of q1, a feature not present within the functional motifs

Fig. 6 Top: DSBM parameters for Example 2 Experiment 1. Left panel, the connection matrix for this model
(Eq. 5). Right panel, a schematic diagram of the structure: larger arrows represent connections with higher
probabilities. Bottom: Performance on this benchmark using structural MAMs. We compare with standard
symmetrizationMs . We perform 100 repeats, and error bars are one sample standard deviation
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(Fig. 17). We believe this is due to the fact that structural motifs act as a filter: with high
values of q1, it is difficult to form 2-paths (M9) between groups without also forming
triangular motifs, which would not contribute towards a structural MAM.

4.4.2 Experiment 2

In this experiment, we demonstrate the ability of MAMs to uncover different structures.
We construct a DSBM with 8 groups of size 100 (n = 800) with block structure given by
the diagram in the left panel of Fig. 7: we place edges which match the block structure
with probability 0.5 (i.e. Fab = 0.5 if there is an arrow from a to b in the diagram), and
0.0001 otherwise, in order to maintain connectivity.
Following Example 1, in this DSBMwe do not have the usual strongly connected groups:

in fact, each group has a close to zero probability (0.0001) of within-group connections.
Thus, while there are clearly 8 groups with unique connection patterns, there does not
exist a “correct” division of the nodes into densely connected groups, but rather, different
motifs highlight different structures.
We display the results of using functional motifs with Algorithm 2 with k = l = 2

in Fig. 7 (structural results are similar in Fig. 18). Each column represents the structure
uncovered by one of the motifs. For robustness, we perform the experiment on 100 repli-
cates, and place the resulting partitions side by side in each column. For each motif, the
columns are sorted within block in order to promote contiguity of the colors across each
block.
We observe that (by design) this graph has 3 different clusterings, highlighted by dif-

ferent motifs. First, M8 (a 2-star with the edges pointing outwards (Fig. 1)). Each pair of
connected blocks is connected by this motif. However, there is a much stronger connec-
tion when this motif is part of the higher-order structure. Thus, when we cluster using
M8, we obtain two consistent clusters consisting of {V1,V2,V4} and {V5,V7,V8}, each of
which is united by this motif at a block level. The remaining blocks without this block

Fig. 7 Left: Diagram of the block structure for Example 2 Experiment 2: edges in the diagram are present
with probability 0.5, all other edges are present with probability 0.0001 (including edges within blocks).
Right: The detected groups found by each method, with k = 2 and l = 2, with the exception of the last
column which has k = 8, l = 3. We test 100 replicates and present the results as columns in the plot. The
nodes are ordered by block, and colors represent the group allocations in a given block for each motif-based
method. We order replicates (i.e. columns) within each motif to highlight similarities, the columns are sorted
within block in order to promote contiguity of the colors across each block. While the clustering assignments
may contain some errors, the results are relatively robust across replicates
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level structure (V3 and V6) are then essentially randomly placed into one of the two clus-
ters, giving the behavior observed in Fig. 7. We observe a similar structure with the other
motifs:M9 (a 2-path) splits the graph into the two groups characterized by their 2-paths,
{V1,V2,V3,V5} and {V4,V6,V7,V8}; and finally M10 (a 2-star with the edges pointing
inwards) splits the graph into the two clusters based on this structure, namely, {V1,V4,V6}
and {V3,V5,V8} (with a similar behavior toM8 for the remaining blocks). Thus, we con-
clude that our MAMs can obtain very different and equally valid structures in the same
graph.
Finally, we compare withMs which is equivalent to clustering withG+G�. Under sym-

metrization, this graph is a ring of indistinguishable blocks. Therefore, the best possible
division is to arbitrarily divide the ring into two roughly equal-sized pieces. Considering
Fig. 7, we observe this behavior with many different divisions, and no pair of blocks is
consistently placed within the same cluster. For completeness we also compare against
Ms with k = 8 and l = 3, which divides the network into the 8 blocks of the under-
lying DSBM. Although this is a specially constructed example, it highlights the different
equally valid structures that can be uncovered, emphasizing the importance of consider-
ing the correct motif (see Section 3.3.3) and demonstrating the value of this procedure
above standard spectral clustering.

4.5 Example 3

In our final example, we demonstrate clustering the source vertices of bipartite networks,
using the collider motif as in Algorithm 3. Clustering the destination vertices with the
expander motif is exactly analogous (by simply reversing edge directions), so we do not
demonstrate it explicitly. Note also that in bipartite graphs, all instances of the collider or
expander motifs are structural, so we need not compare functional and structural MAMs.
We illustrate this with two experiments. In the first one, we show that in certain net-

works, edge weights are important for our collider method to perform well. In the second
experiment, we compare against an alternative method for clustering weighted bipartite
networks, showing that under certain conditions, our collider method performs better.

4.5.1 Experiment 1

This example illustrates the advantages of using weights for bipartite clustering. We
use a weighted BSBM with block counts kS = kD = 2, block sizes n1S = n2S =
n1D = n2D = 100, bipartite connection matrix Fb =

(
0.15 0.1
0.1 0.15

)

, and bipartite

weight matrix �b =
(
w1 50
50 w1

)

, where w1 is a varying parameter. This network has

been constructed so that vertices in S1 are slightly more likely to connect to vertices
in D1 than to vertices in D2, and vice versa for S2. This makes the source vertex clus-
ters S1 and S2 weakly distinguishable when not considering edge weights. However,
the edge weights exhibit the same preferences, and this effect becomes stronger as w1
increases.
We test the performance of Algorithm 3 for clustering the source vertices (using the

collider motif ), with parameters kS = lS = 2 on this model. We compare the results
against those obtained by ignoring the edge weights. Fig. 8 shows that the weights in this
model allow the structure to be recovered well when the weighting effect is large enough.
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Fig. 8 Top: BSBM parameters for Example 3 Experiment 1. Left panel is the connection matrix, middle panel
is the weight matrix (see Eq. 6 and Section 4.2 for details), and right panel is a schematic diagram of the
structure. Bottom: performance of our bipartite collider method with and without edge weights. We
perform 100 repeats, and error bars are one sample standard deviation

4.5.2 Experiment 2

In this final experiment, we show the advantages of using the collider motif over simply
clustering using the matrix AAT, where A ∈[ 0,∞)|S|×|D| is the weighted bipartite adja-
cencymatrix of the graph (Chessa et al. 2014).We use a weighted BSBMwith block counts
kS = 2, kD = 3, block sizes n1S = n2S = n1D = n2D = n3D = 200, bipartite connection

matrix Fb =
(
0.9 0.3 0
0 0.3 0.9

)

, and bipartite weight matrix �b =
(
w1 1 0
0 1 w1

)

, where w1 is

a varying parameter.
This model has been constructed such that vertices in S1 are more likely to be con-

nected toD1 than toD2, and similarly vertices in S2 are more likely to be connected toD3
than toD2. However, the weights show a reverse preference (for w1 < 1, as in our model),
with larger weights assigned to the lower-probability edges. Note that in this regimewhere
weights are small, there is a significant probability of the Poisson weight variables being
zero, removing edges which might otherwise have had a high probability of existing.
The results are shown in Fig. 9, which illustrates that our collider method (Algorithm 3

with kS = lS = 2) is better at distinguishing the source vertex clusters S1 and S2 com-
pared to the method based on AAT. Although it must be made clear that the model
has been specifically constructed to do this, and that this effect occurs only for a lim-
ited parameter set, it gives an example of the different behavior observed when using
a product-based weight formulation (Section 3.1). We explore this further in real world
data in Section 5.3. For our collider method, the expected similarity between two source
vertices in the same cluster directly depends on w1, while the expected similarity between
two source vertices in different clusters is fixed. Hence for large enough values of w1,
our collider method performs well. However, for the AAT method, the expected similar-
ity between two source vertices in the same cluster depends on w2

1 (since AAT contains
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Fig. 9 Top: BSBM parameters for Example 3 Experiment 2. Left panel is the connection matrix, middle panel
is the weight matrix (see Eq. 6 and Section 4.2 for details), right panel is a diagram of the block structure, with
arrow widths representing connection probabilities. Bottom: performance of our bipartite collider method
vs. clustering based on AAT. We perform 100 repeats, and error bars are one sample standard deviation

squared edge weights), which in this model is small (as w1 < 1). Hence the AAT method
does not perform so well on this model.

5 Applications to real world data
This section details the results of our proposed methodology on a number of directed
networks arising from real world data sets. We show that weighted edges and motif-
based clustering allow various structures to be uncovered in migration data with the
US-MIGRATION network, while the US-POLITICAL-BLOGS network demonstrates how
motif-based methods can control misclassification error for weakly-connected vertices,
how sweep profiles can be used to select a motif, and how regularization can affect
clustering. Finally, we consider the bipartite territory-to-language network, UNICODE-
LANGUAGES, and show that when using our bipartite clustering method, mean-weighted
motifs can produce more desirable clusters than their unweighted or product-weighted
counterparts.

5.1 US-MIGRATION network

The first data set is the US-MIGRATION network (U.S. Census Bureau 2002), consisting
of data collected during the US Census in 2000. Vertices represent the 3075 counties in 49
contiguous states (excluding Alaska and Hawaii, and including the District of Columbia).
The 721 432 weighted directed edges represent the number of people migrating from
county to county, capped at 10 000 (the 99.9th percentile) to control large entries, as in
(Cucuringu et al. 2019b).
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We test the performance of Algorithm 2 with three selected motifs: Ms, M6 and M9
(see Fig. 1). Ms gives a spectral clustering method with naive symmetrization. M6 rep-
resents a pair of counties exchanging migrants, with both also receiving migrants from a
third. M9 is a path of length two, allowing counties to be deemed similar if they both lie
on a heavy-weighted 2-path in the migration network. These motifs give a representative
sample, including a triangle and a non-triangle motif, and results with the other motifs
(both functional and structural) can be found in Figs. 19 and 20 in Appendix E.
Figure 10 plots maps of the US, with counties colored by the clustering obtained using

Algorithm 2 with k = l = 7. The top row shows clusterings from the unweighted graph,
while those in the bottom row are from the weighted graph. The advantage of using
weighted graphs is clear, with the clustering showing better spatial coherence (compared
with the fragmented blue clusters produced by the unweighted graph). Furthermore, as
suggested in Section 3.3.3, the different motifs induce different similarity measures, and
thus uncover distinct structures. For example, weightedM6 andM9 both allocate a clus-
ter to the southern states ofMississippi, Alabama, Georgia and Tennessee, while weighted
Ms identifies the northern states ofMichigan andWisconsin. Also, weightedM9 favors a
larger “central” region, which includes significant parts of Colorado, Oklahoma, Arkansas
and Illinois.
It is also interesting to investigate the cut imbalance ratio (Appendix C4) (Cucuringu

et al. 2019b) associated with these clusters. For each pair of clusters, it measures the
imbalance of migration flow from one to the other. Figure 11 indicates, for each method,
the first (resp. second) pair of clusters which exhibit the largest (resp. second largest)
cut imbalance ratio, with migration mostly occurring from the red counties to the blue
counties. We note that the domestic migration report from this census (U.S. Census
Bureau 2003) states that the South had the most in-migration and out-migration, with
in-migration accounting for over 60% of the region’s total. In Fig. 11, this is only consis-
tently observed (by coloring the South blue) when using weighted three-node motifs. The
report also states that out-migration accounts for over 64% of migration involving the
Northeast, and this is witnessed only by the motifM9 (by coloring the Northeast red). It
is also worth mentioning that the pattern of flow from Northeast to South uncovered by

Fig. 10 Motif-based clusterings of the US-MIGRATION network, for various functional motifs. Each county
(node) is colored by its cluster allocation. Top row: clusterings from the unweighted graph. Bottom row:
clusterings from the weighted graph.Ms corresponds to using the symmetrized adjacency matrix
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Fig. 11 Cut imbalance for functional motif-based clusterings of the US-MIGRATION network, for various
motifs. For each method, the pairs of clusters with largest and second largest cut imbalance ratio are colored,
with most migration flow occurring from red to blue. Top two rows: clusterings from the unweighted
graph. Bottom two rows: clusterings from the weighted graph.Ms corresponds to using the symmetrized
adjacency matrix

M9 on the unweighted graph (top pair) and the weighted graph (second pair) bears sig-
nificant resemblance to the topmost imbalanced structure uncovered by the HERM-SYM
algorithm in Fig. 16 within (Cucuringu et al. 2019b).
Figure 12 displays the full cut imbalance ratio matrices (Appendix C4) associated with

each method. The (i, j)th matrix entry is positive if there is more migration flow from
cluster i to cluster j than from cluster j to cluster i (yielding an antisymmetric matrix),
and a value of ±1/2 indicates uni-directional flow. We see that weighted M6 and M9
produce clear “stripes” of blue and red in the matrices, where they identify clusters which
have more imbalanced migration. This again highlights the ability of weighted motifs to
uncover hidden structures (in this case corresponding to large-scale migration patterns).

5.2 US-POLITICAL-BLOGS network

The US-POLITICAL-BLOGS network (Adamic and Glance 2005) consists of data collected
two months before the 2004 US election. Vertices represent blogs, and are labeled by
their political leaning (“liberal” or “conservative”). Weighted directed edges represent the
number of citations from one blog to another. After restricting to the largest connected
component, there are 536 liberal blogs, 636 conservative blogs (total 1222) and 19 024
edges. The network is plotted in Fig. 13.
Firstly we use sweep profiles (Shi and Malik 2000) with a few selected motifs to moti-

vate the use of motif-based clustering on this network. To construct a sweep profile, we
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Fig. 12 Cut imbalance ratio matrices for functional motif-based clusterings of the US-MIGRATION network, for
various motifs. Entry (i, j) is positive if most of the flow is in the direction i → j. Top row: clusterings from the
unweighted graph. Bottom row: clusterings from the weighted graph.Ms corresponds to using the
symmetrized adjacency matrix

order the vertices according to the first non-trivial eigenvector of the random-walk Lapla-
cian, and select a splitting point based on minimizing an objective function; in this case
the Ncut score (see Appendix C). Figure 14 exhibits visibly sharper minima for motifs
M3 andM8 than forMs (which corresponds to traditional spectral clustering), indicat-
ing that motif-based methods can produce more well-defined clusters (for the vertices
contained in the largest connected component of the MAM) than traditional methods on
this network.
In fact, traditional two-cluster spectral clustering performs very poorly on this net-

work, with one of the clusters containing just four vertices (circled in Fig. 13), which
are very weakly connected to the rest of the graph. However, motif-based clustering per-
forms significantly better. As discussed in Section 3.3.2, our framework tries to reduce
the misclassification error by only clustering the nodes which are in the largest connected
component of the MAM, and are therefore in some sense well connected to the graph. In

Fig. 13 Left: the US-POLITICAL-BLOGS network. Right: ARI score against number of clustered vertices, across
various motifs



Underwood et al. Applied Network Science            (2020) 5:62 Page 24 of 41

Fig. 14 Sweep profiles for different motifs on the US-POLITICAL-BLOGS network.Ms corresponds to using the
symmetrized adjacency matrix

this dataset, the choice of motif determines the trade-off between the number of vertices
assigned to clusters, and the accuracy of those clusters (see Fig. 13 for a plot of ARI score
against number of vertices clustered). For example, motifM9 clusters 1197 vertices with
an ARI of 0.82, while the more strongly connectedM4 only clusters 378 vertices, with an
improved ARI of 0.92. This is because the largest connected component of the MAMwill
be smaller for more strongly-connected motifs such asM4.
To explore the classification performance of our reduced clustering method, we com-

pare its effectiveness with other approaches from the literature. Table 1 gives the ARI,
number of clustered vertices, normalizedmutual information (NMI) (Nguyen et al. 2009),
and percentage error for various motifs on this network. We note that both of the motifs
M3 andM8 outperform the NMI score of 0.72 given by the degree-corrected stochastic
blockmodel in (Karrer and Newman 2011), and improve on the percentage error of 4.66%
given by the normalized spectral clustering procedure in (Li 2017), at the expense of not
assigning every vertex to a cluster.
We further compare our proposed method to an alternative approach for dealing with

disconnected vertices; namely regularization.We follow the method suggested by (Joseph
et al. 2016) and (Zhang and Rohe 2018) using the regularized Laplacian Lτ

rw = I − (D +
τ I)−1(G+τ1/n), where 1 is a matrix of all ones and τ is a tuning parameter. Table 2 shows
how using this regularized Laplacian with τ ∼ d̄ (the mean weighted vertex degree),
can improve the ARI performance of traditional (top row) and motif-based (second and
third rows) spectral clustering while still assigning all of the vertices to clusters. However
this regularization method is unable to reach the ARI scores of over 0.9 achieved by our
proposed method of motif-based clustering on the largest connected component of the
MAM (Table 1). Furthermore, regularization is sensitive to the choice of tuning parameter
τ , and the default setting of τ = d̄ suggested by (Zhang and Rohe 2018) and (Qin and
Rohe 2013) performs rather poorly here.

Table 1 Performance of motif-based clustering on the US-POLITICAL-BLOGS network

Motif ARI Number of clustered vertices NMI Percentage error

Ms 0.00 1222 0.00 48.2%

M3 0.90 586 0.83 2.6%

M8 0.84 1160 0.75 4.1%
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Table 2 ARI scores for regularized traditional and motif-based spectral clustering on the
US-POLITICAL-BLOGS network
τ

d̄
10 5 2 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0.001

Ms 0.08 0.14 0.28 0.36 0.49 0.81 0.80 0.81 0.81 0.82 0.82 0.00 0.00

M3 0.00 0.00 0.01 0.02 0.04 0.10 0.14 0.17 0.24 0.25 0.25 0.00 0.00

M8 0.05 0.07 0.13 0.28 0.49 0.58 0.62 0.65 0.71 0.75 0.80 0.80 0.80

5.3 UNICODE-LANGUAGES bipartite network

The UNICODE-LANGUAGES network (KONECT: The Koblenz Network Collection 2019)
is a bipartite network consisting of data collected in 2014 on languages spoken around the
world. Source vertices are territories, and destination vertices are languages. Weighted
edges from territory to language indicate the number of inhabitants (GeoNames 2019)
in that territory who speak the specified language. After removing territories with fewer
than one million inhabitants, and languages with fewer than one million speakers, there
are 155 territories, 270 languages and 705 edges remaining. We then restrict the net-
work to its largest connected component, and in doing so remove the territories of Laos,
Norway and Timor-Leste, and the languages of Lao, Norwegian Bokmål and Norwegian
Nynorsk. We test Algorithm 3 with parameters kS = lS = kD = lD = 6 on this network
(such that each cluster in Table 3 contains at least 1% of the world’s population), compar-
ing three different motif weighting schemes: unweighted motifs, mean-weighted motifs
and product-weighted motifs, as in Section 3.1. For the source vertices, Fig. 15 plots maps
of the world with territories colored by the recovered clustering.

Table 3 Clustering the territories from the UNICODE-LANGUAGES network using the mean-weighted
collider motif

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

India Iran Mexico Russia China Japan

United States DR Congo Colombia Ukraine Indonesia S. Korea

Brazil Afghanistan Argentina Uzbekistan Vietnam N. Korea

Pakistan Saudi Arabia Peru Belarus Malaysia

Bangladesh Syria Venezuela Tajikistan Taiwan

Nigeria Côte d’Ivoire Ecuador Kyrgyzstan Cambodia

Philippines Burkina Faso Guatemala Turkmenistan Hong Kong

Ethiopia Niger Cuba Georgia Singapore

Germany Mali Bolivia Moldova Panama

Egypt Senegal Paraguay Latvia Mongolia

Turkey Tunisia El Salvador Estonia

Thailand Chad Nicaragua

France Guinea Costa Rica

United Kingdom Somalia Uruguay

Italy Burundi Eq. Guinea

Myanmar Haiti

South Africa Benin

Spain Azerbaijan

Tanzania Togo

Kenya Libya

· · · · · ·
|Cluster 1| = 87 |Cluster 2| = 29 |Cluster 3| = 15 |Cluster 4| = 11 |Cluster 5| = 10 |Cluster 6| = 3
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Fig. 15 Clustering the territories from the UNICODE-LANGUAGES network, using the collider motif. Top:
clustering the unweighted graph.Middle:motifs weighted using mean edge weight. Bottom:motifs
weighted using product of edge weights

Focusing first purely on the clusters produced by mean-weighted motifs, we observe
balanced clusters with good spatial coherence (middle panel in Fig. 15), from which
some language groups can be easily recognized. The top 20 territories (by population)
in each cluster for this mean-weighted scheme are given in Table 3. Cluster 1 is by far
the largest cluster, and includes a wide variety of territories. Cluster 2 contains sev-
eral Persian-speaking and African French-speaking territories, while Cluster 3 mostly
captures Spanish-speaking territories in the Americas. Cluster 4 includes the Slavic terri-
tories of Russia and some of its neighbors. Cluster 5 covers China, Hong Kong, Mongolia
and some of South-East Asia. Cluster 6 is the smallest cluster and contains only Japan and
the Koreas.
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For the destination vertices, we present the six clusters obtained by Algorithm 3 with
mean-weighted motifs. Table 4 contains the top 20 languages (by number of speakers) in
each cluster. Cluster 1 is the largest cluster and contains some European languages and
dialects of Arabic. Cluster 2 is also large and includes English, as well as several South
Asian languages. Cluster 3 consists of many indigenous African languages. Cluster 4 cap-
tures languages from South-East Asia, mostly spoken in Indonesia andMalaysia. Cluster 5
identifies several varieties of Chinese and a few other Central and East Asian languages.
Cluster 6 captures more South-East Asian languages, this time from Thailand, Myanmar
and Cambodia.
Next, we return to the source vertices (territories) and compare the mean-weighted

scheme with the unweighted and product-weighted schemes, as illustrated in Fig. 15.
Unlike the mean-weighted approach, the unweighted partition fails to identify the
Chinese-speaking territories, which is likely to be related to the fact that this scheme
is unable to account for the large number of speakers in China. Further, it does not
identify Mexico and Argentina with other Spanish-speaking territories in the Americas.
Finally, the product-weighted motifs make no distinctions at all between territories in the
Americas, Africa and Western Europe, and instead identify a few much smaller clusters.

6 Conclusion and future work
Contribution We have introduced generalizations of MAMs to weighted directed
graphs and presented new matrix-based formulae for calculating them, which are easy to
implement and scalable. By leveraging the popular random-walk spectral clustering algo-
rithm, we have proposed motif-based techniques for clustering both weighted directed

Table 4 Clustering the languages from the UNICODE-LANGUAGES network using the mean-weighted
expander motif

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Spanish English Swahili Indonesian Chinese Thai

Arabic Hindi Kinyarwanda Javanese Wu Chinese N.E. Thai

Portuguese Bengali Somali Malay Korean Khmer

French Urdu Luba-Lulua Sundanese Xiang Chinese N. Thai

Russian Punjabi Kikuyu Madurese Hakka Chinese S. Thai

Japanese Telugu Congo Swahili Minangkabau Minnan Chinese Shan

German Marathi Luyia Betawi Gan Chinese Pattani Malay

Turkish Vietnamese Ganda Balinese Kazakh

Persian Tamil Luo Buginese Uighur

Italian Lahnda Sukuma Banjar Sichuan Yi

Egyptian Arabic Filipino Kalenjin Achinese Mongolian

Polish Gujarati Lingala Sasak Zhuang

Nigerian Pidgin Kannada Nyankole Makasar Tibetan

Ukrainian Pushto Gusii Lampung Api

Dutch Malayalam Kiga Rejang

Algerian Arabic Oriya Soga

Moroccan Arabic Burmese Luba-Katanga

Hausa Bhojpuri Meru

Azerbaijani Amharic Teso

Uzbek Oromo Nyamwezi

· · · · · · · · ·
|Cluster 1| = 120 |Cluster 2| = 90 |Cluster 3| = 25 |Cluster 4| = 15 |Cluster 5| = 13 |Cluster 6| = 7
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graphs and weighted bipartite graphs. We demonstrated using synthetic data examples
that accounting for edge weights and higher-order structure can be essential for good
cluster recovery in directed and bipartite graphs, and that different motifs can uncover
different but equally insightful clusters. Applications to real world networks have shown
that weighted motif-based clustering can reveal a variety of different structures, and
that it can reduce misclassification rate, performing favorably in comparison with other
methods from the literature.

Future work There are limitations to our proposed methodology, which raise a number
of research avenues to explore. While our matrix-based formulae for MAMs are sim-
ple to implement and scalable, there is scope for further computational improvement.
As mentioned in (Benson et al. 2016), fast triangle enumeration algorithms (Demeyer et
al. 2013; Wernicke 2006; Wernicke and Rasche 2006) may offer superior performance at
scale for triangular motifs, butMAMs formotifs withmissing edges are inherently denser.
The implementation could also be optimized to further exploit any sparsity structures in
the network, rather than relying on general-purpose linear algebra libraries. More recent
work on combinatorial graphlet counting (Ahmed et al. 2015) or vertex orbit counting
(Pashanasangi and Seshadhri 2020) could also potentially yield further computational
improvements. Another shortcoming of our matrix-based formulae is that, unlike motif
detection algorithms such as FANMOD (Wernicke and Rasche 2006), they do not eas-
ily extend to motifs on four or more vertices. While we believe that this extension is in
principle possible using tensor operations rather than matrix operations, it is currently
beyond the scope of the work.
We have seen that choosing the correct motif for clustering a network can play a crucial

role (Section 4.4), and while we have suggested somemethods for doing so (Section 3.3.3),
it may be that other techniques can also be used to guide the motif selection process.
We would also be interested in seeing more approaches to dealing with disconnected
MAMs, perhaps involving some criterion for when a connected component is “large
enough” to be worth keeping, or a deeper exploration of regularizationmethods formotif-
based spectral clustering. Extensions to our methodology could involve further analysis
of the differences between functional and structural MAMs, between different types of
Laplacians (Von Luxburg 2007), or between different weighted stochastic graph models,
perhaps following an exponential family method (Aicher et al. 2013). Also, connections
between motif-based clustering and hypergraph partitioning (Li and Milenkovic 2017; Li
and Milenkovic 2018; Veldt et al. 2020) would be worth further investigation.
Further experimental work would also be interesting. We would like to explore the util-

ity of our framework on additional real data, and suggest that collaboration networks such
as (Leskovec and Krevl 2007), transportation networks such as the airports network in
(Frey and Dueck 2007), and bipartite preference networks such as (Clauset et al. 2007)
could be interesting. Direct comparison of results with other state-of-the-art clustering
methods from the literature could also be insightful; suitable benchmarks for perfor-
mance include theHermitianmatrix-based clusteringmethod in (Cucuringu et al. 2019b),
the Motif-based Approximate Personalized PageRank (MAPPR) in (Yin et al. 2017), and
TECTONIC from (Tsourakakis et al. 2017). Other established and fast methods from the
literature on directed networks include SAPA (Satuluri and Parthasarathy 2011) and DI-
SIM (Rohe et al. 2016), which respectively perform a degree-discounted symmetrization;
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and a combined row and column clustering into four sets using the concatenation of the
left and right singular vectors.
Further potential extensions of our work pertain to the detection of overlapping clus-

ters, allowing nodes to belong to multiple groups (Li et al. 2016), to the detection of
core–periphery structures in directed graphs (Elliott et al. 2019a), as well as implications
for existing methods on network comparison (Wegner et al. 2018), anomaly detection in
directed networks (Elliott et al. 2019b), and ranking from a sparse set of noisy pairwise
comparisons (Cucuringu 2016). Furthermore, incorporating our pipeline into deep learn-
ing architectures is another avenue worth exploring, building on the recent MOTIFNET

architecture (Monti et al. 2018), a graph convolutional neural network for directed graphs,
or SIGAT (Huang et al. 2019), another recent graph neural network which incorporates
graph motifs in the context of signed networks which contain both positive and negative
links (Cucuringu et al. 2019a).

Appendix A: Motif adjacencymatrix formulae
We give explicit matrix-based formulae for mean-weighted motif adjacency matrices M
for all simple motifs M on at most three vertices, along with the anchored motifs Mcoll
and Mexpa. Entry-wise (Hadamard) products are denoted by ◦. Table 5 gives our dense
formulation of functional MAMs. For the dense formulation of structural MAMs, simply
replace Jn, J, andGwith J0, Js, andGs respectively. For the sparse formulation of functional
MAMs, replace Jn with 1−I, and expand and simplify the expressions as in Section 3.4. For
the sparse formulation of structural MAMs, replace J and G with Js and Gs respectively.
Also replace J0 with 1 − (I + J̃), where J̃ = Js + JTs + Jd, and expand and simplify the
expressions.

Appendix B: Proofs
Proof B.1 (Proposition 3.1, MAM formula) Consider Eq. 1. We sum over functional
instances M ∼= H ≤ G such that {i, j} ∈ A(H). This is equivalent to summing over
{k2, . . . , km−1} ⊆ V and σ ∈ S∼

M,A, such that ku are all distinct and

(u, v) ∈ EM =⇒ (kσu, kσv) ∈ E . (†) (7)

This is because the vertex set {k2, . . . , km−1} ⊆ V indicates which vertices are present
in the instance H, and σ describes the mapping from VM onto those vertices: u �→ kσu.
We take σ ∈ S∼

M,A to ensure that {i, j} ∈ A(H) (since i = k1, j = km), and that instances
are counted exactly once. The condition (†) is to check thatH is a functional instance of
M in G. Hence

Mfunc
ij = 1

|EM|
∑

M∼=H≤G
I
{{i, j} ∈ A(H)

} ∑

e∈EH
W (e)

= 1
|EM|

∑

{k2,...,km−1}

∑

σ∈S∼
M,A

I {ku all distinct, (†)}
∑

e∈EH
W (e) .

For the first term, by conditioning on the types of edge in EM:
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Table 5 Dense formulation of mean-weighted functional motif adjacency matrices

Motif C C′ Mfunc

Ms G + GT

Md
1
2Gd

M1 JT ◦ (JG) + JT ◦ (GJ) + GT ◦ (JJ) 1
3

(
C + CT

)

M2

JT ◦ (JdG) + JT ◦ (GdJ) + GT ◦ (JdJ)

+ JT ◦ (JGd) + JT ◦ (GJd) + GT ◦ (JJd)

+ Jd ◦ (JG) + Jd ◦ (GJ) + Gd ◦ (JJ)

1
4

(
C + CT

)

M3

J ◦ (JdGd) + J ◦ (GdJd) + G ◦ (JdJd)

+ Jd ◦ (JdG) + Jd ◦ (GdJ) + Gd ◦ (JdJ)

+ Jd ◦ (JGd) + Jd ◦ (GJd) + Gd ◦ (JJd)

1
5

(
C + CT

)

M4 Jd ◦ (JdGd) + Jd ◦ (GdJd) + Gd ◦ (JdJd)
1
6C

M5

J ◦ (JG) + J ◦ (GJ) + G ◦ (JJ)

+ J ◦ (JGT) + J ◦ (GJT) + G ◦ (JJT)

+ J ◦ (JTG) + J ◦ (GTJ) + G ◦ (JTJ)

1
3

(
C + CT

)

M6 J ◦ (JGd) + J ◦ (GJd) + G ◦ (JJd) + Jd ◦ (JTG) Gd ◦ (JTJ) 1
4

(
C + CT + C′)

M7 J ◦ (JdG) + J ◦ (GdJ) + G ◦ (JdJ)
Jd ◦ (JGT) + Jd ◦ (GJT)

+ Gd ◦ (JJT)
1
4

(
C + CT + C′)

M8 J ◦ (GJn) + G ◦ (JJn) Jn ◦ (JTG) + Jn ◦ (GTJ) 1
2

(
C + CT + C′)

M9

J ◦ (JnG
T) + G ◦ (JnJ

T) + Jn ◦ (JG)

+ Jn ◦ (GJ) + J ◦ (GTJn) + G ◦ (JTJn)

1
2

(
C + CT

)

M10 J ◦ (JnG) + G ◦ (JnJ) Jn ◦ (JGT) + Jn ◦ (GJT) 1
2

(
C + CT + C′)

M11

Jd ◦ (GJn) + Gd ◦ (JJn) + Jn ◦ (JdG)

+ Jn ◦ (GdJ) + J ◦ (GdJn) + G ◦ (JdJn)
1
3

(
C + CT

)

M12

Jd ◦ (JnG) + Gd ◦ (JnJ) + Jn ◦ (JGd)

+ Jn ◦ (GJd) + J ◦ (JnGd) + G ◦ (JnJd)
1
3

(
C + CT

)

M13 Jd ◦ (GdJn) + Gd ◦ (JdJn) + Jn ◦ (JdGd)
1
4

(
C + CT

)

Mcoll Jn ◦ (JGT) 1
2

(
C + CT

)

Mexpa Jn ◦ (JTG) 1
2

(
C + CT

)

I {ku all distinct, (†)} =
∏

E0
M

I{kσu �= kσv}

×
∏

Es
M

I{(kσu, kσv) ∈ E}

×
∏

Ed
M

I{(kσu, kσv) ∈ E and(kσv, kσu) ∈ E}

=
∏

E0
M

(Jn)kσu,kσv

∏

Es
M

Jkσu,kσv

∏

Ed
M

(Jd)kσu,kσv

= J funck,σ .

Assuming {ku all distinct, (†)}, the second term is
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∑

e∈EH
W (e) =

∑

Es
M

W ((kσu, kσv)) +
∑

Ed
M

(W ((kσu, kσv)) + W ((kσv, kσu)))

=
∑

Es
M

Gkσu,kσv +
∑

Ed
M

(Gd)kσu,kσv

= Gfunc
k,σ

as required. For Eq. 2, we simply change (†) to (‡) to check that an instance is a structural
instance

(u, v) ∈ EM ⇐⇒ (kσu, kσv) ∈ E (‡)

Now for the first term, the following holds true

I {ku all distinct, (‡)} =
∏

E0
M

I{(kσu, kσv) /∈ E and(kσv, kσu) /∈ E}

×
∏

Es
M

I{(kσu, kσv) ∈ E and(kσv, kσu) /∈ E}

×
∏

Ed
M

I{(kσu, kσv) ∈ E and(kσv, kσu) ∈ E}

=
∏

E0
M

(J0)kσu,kσv

∏

Es
M

(Js)kσu,kσv

∏

Ed
M

(Jd)kσu,kσv

= Jstruck,σ .

Assuming {ku all distinct, (‡)}, the second term is given by

∑

e∈EH
W (e) =

∑

Es
M

W ((kσu, kσv)) +
∑

Ed
M

(W ((kσu, kσv)) + W ((kσv, kσu)))

=
∑

Es
M

(Gs)kσu,kσv +
∑

Ed
M

(Gd)kσu,kσv

= Gstruc
k,σ .

Proof B.2 (Proposition 3.2, Colliders and expanders in bipartite graphs) Consider Eq. 3
and the collider motifMcoll. Since G is bipartite,Mfunc

coll = Mstruc
coll =: Mcoll, and by Table 5,

Mcoll = 1
2 Jn ◦ (JGT + GJT). Hence

(Mcoll)ij = 1
2
(Jn)ij (JGT + GJT)ij

= I{i �= j}
∑

k∈V

1
2

(
JikGjk + GikJjk

)

= I{i �= j}
∑

k∈V

1
2
I

{
(i, k), (j, k) ∈ E

} [
W ((i, k)) + W ((j, k))

]

= I{i �= j}
∑

k∈D
(i,k),(j,k)∈E

1
2

[
W ((i, k)) + W ((j, k))

]
.

Similarly for the expander motifMexpa = 1
2 Jn ◦ (JTG + GTJ), which yields Eq. (4):
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(Mexpa)ij = 1
2
(Jn)ij (JTG + GTJ)ij

= I{i �= j}
∑

k∈S
(k,i),(k,j)∈E

1
2

[
W ((k, i)) + W ((k, j))

]
.

Proof B.3 (Proposition 3.3, Complexity of MAM formula) Suppose m ≤ 3 and consider
Mfunc. The adjacency and indicator matrices of G are given by

(1) J = I{G > 0} ,
(2) J0 = I{G + GT = 0} ◦ Jn ,

(3) Js = J − Jd ,

(4) Gd = (G + GT) ◦ Jd ,

(5) Jn = I{In×n = 0} ,
(6) Jd = J ◦ JT ,

(7) Gs = G ◦ Js ,

and computed using four additions and four element-wise multiplications. J funck,σ is a
product of at most three factors, and Gfunc

k,σ contains at most three summands, thus

∑

k2∈V
J funck,σ Gfunc

k,σ

is expressible as a sum of at most threematrices, each of which is constructed with at most
one matrix multiplication (where {kσ r , kσ s} �= {i, j}) and one entry-wise multiplication
(where {kσ r , kσ s} = {i, j}). This is repeated for each σ ∈ S∼

M,A (at most six times) and the
results are summed. Calculations are identical forMstruc.

Appendix C: Spectral clustering
We provide a summary of traditional random-walk spectral clustering and show how it
applies to motif-based clustering.

Overview of spectral clustering

For an undirected graph, the objects to be clustered are the vertices of the graph, and a
similaritymatrix is provided by the graph’s adjacencymatrixG. To cluster directed graphs,
the adjacency matrix must first be symmetrized, perhaps by considering G + GT (Meilă
and Pentney 2007). This symmetrization ignores information about edge direction and
higher-order structures, and can lead to poor performance (Benson et al. 2016). Spectral
clustering consists of two steps. Firstly, eigendecomposition of a Laplacianmatrix embeds
the vertices into R

l. The k clusters are then extracted from this space.

Graph laplacians

The Laplacians of an undirected graph are a family of matrices which play a central role in
spectral clustering. While many different graph Laplacians are available, we focus on just
the random-walk Laplacian, for reasons concerning objective functions, consistency and
computation (Von Luxburg et al. 2004; Von Luxburg 2007). The random-walk Laplacian
of an undirected graph G with (symmetric) adjacency matrix G is given by

Lrw := I − D−1G,

where I is the identity and Dii := ∑
j Gij is the diagonal matrix of weighted degrees.
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Graph cuts

Graph cuts provide objective functions which we seek to minimize while clustering the
vertices of a graph.

Definition 3.4 Let G be a graph. LetP1, . . . ,Pk be a partition of V . Then the normalized
cut (Shi and Malik 2000) of G with respect to P1, . . . ,Pk is

NcutG(P1, . . . ,Pk) := 1
2

k∑

i=1

cut(Pi, P̄i)

vol(Pi)
,

where cut(Pi, P̄i) := ∑
u∈Pi, v∈V\Pi Guv and vol(Pi) := ∑

u∈Pi Duu.

Note that more desirable partitions have a lower Ncut value; the numerators penal-
ize partitions which cut a large number of heavily weighted edges, and the denominators
penalize partitions which have highly imbalanced cluster sizes. It can be shown (Von
Luxburg 2007) that minimizing Ncut over partitions P1, . . . ,Pk is equivalent to find-
ing the cluster indicator matrix H ∈ R

n×k minimizing Tr
(
HT(D − G)H

)
subject to

Hij = vol(Pj)
− 1

2 I{vi ∈ Pj} (†), and HTDH = I . Solving this problem is in general NP-
hard (Wagner and Wagner 1993). However, by dropping the constraint (†) and applying
the Rayleigh Principle (Lütkepohl 1996), we find that the solution to this relaxed prob-
lem is that H contains the first k eigenvectors of Lrw as columns (Von Luxburg 2007). In
practice, to find k clusters it is often sufficient to use only the first l < k eigenvectors of
Lrw.

Cut imbalance ratio

Given a partition of a directed graph, cut imbalance ratio gives a notion of flow imbalance
between each pair of clusters.

Definition 3.5 Let G be a graph. Let P1, . . . ,Pk be a partition of V . Then the cut
imbalance ratio (Cucuringu et al. 2019b) of G from Pi to Pj is

CIRG(Pi,Pj) := 1
2
cut(Pi,Pj) − cut(Pj,Pi)

cut(Pi,Pj) + cut(Pj,Pi)
,

where cut(Pi,Pj) := ∑
u∈Pi, v∈Pj Guv.

The cut imbalance ratio takes values in [− 1
2 ,

1
2 ], with positive values indicating more

flow from Pi to Pj and negative values indicating more flow from Pj to Pi. The cut
imbalance ratio matrix is the antisymmetric k × k matrix with (i, j)th entry equal to
CIRG(Pi,Pj).

Cluster extraction

Once Laplacian eigendecomposition has been used to embed the data intoRl, the clusters
may be extracted using a variety of methods. We propose k-means++ (Arthur and Vassil-
vitskii 2007), a popular clustering algorithm for data in R

l, as an appropriate technique.
It aims to minimize the within-cluster sum of squares, based on the standard Euclidean
metric on R

l. This makes it a reasonable candidate for clustering spectral data, since
the Euclidean metric corresponds to notions of “diffusion distance” in the original graph
(Nadler et al. 2006).
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Random-walk spectral clustering

Algorithm 1 gives random-walk spectral clustering (Von Luxburg 2007), which takes a
symmetric connected adjacency matrix as input. We drop the first column of H (the first
eigenvector of Lrw) since although it should be constant and uninformative, numerical
imprecision may give unwanted artifacts. It is worth noting that although the relaxation
used in Appendix C.3 is reasonable and often leads to good approximate solutions of the
Ncut problem, there are cases where it performs poorly (Guattery and Miller 1998). The
Cheeger inequality (Chung 2005) gives a bound on the error introduced by this relaxation.

Motif-based random-walk spectral clustering

Algorithm 2 gives motif-based random-walk spectral clustering. The algorithm forms
a motif adjacency matrix, restricts it to its largest connected component, and applies
random-walk spectral clustering (Algorithm 1) to produce clusters. The most computa-
tionally expensive part of Algorithm 2 is the calculation of theMAMusing a formula from
Table 5, as noted by (Benson et al. 2016) for their unweighted MAMs. The complexity of
this is analyzed in Section 3.4.

Bipartite spectral clustering

Algorithm 3 gives our procedure for clustering a bipartite graph. The algorithm uses the
collider and expander motifs to create similarity matrices for the source and destination
vertices respectively (as in Section 3.2), and then applies random-walk spectral clustering
(Algorithm 1) to produce the partitions.

Algorithm 1: Random-walk spectral clustering
Input: Symmetric adjacency matrix G, number of clusters k, dimension l
Output: Partition P1, . . . ,Pk

1 function RWSpectClust(G, k, l):
2 Construct the weighted degree matrix Dii ← ∑

j Gij

3 Construct the random-walk Laplacian matrix Lrw ← I − D−1G
4 Let H have the first l eigenvectors of Lrw as columns
5 Drop the first column of H
6 Run k-means++ on the rows of H with k clusters to produce P1, . . . ,Pk
7 return P1, . . . ,Pk

Algorithm 2:Motif-based random-walk spectral clustering

Input: Graph G, motifM, number of clusters k, dimension l
Output: Partition P1, . . . ,Pk

1 function MotifRWSpectClust(G,M, k, l):
2 Construct the motif adjacency matrixM of the graph G with motifM
3 Let M̃ beM restricted to its largest connected component, C
4 P1, . . . ,Pk ← RWSpectClust(M̃, k, l)
5 return P1, . . . ,Pk
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Fig. 16 Exploring the performance of structural MAMs based onM8 andM10 on Example 1 (see Fig. 5). Each
block contains 100 nodes. We compare both to the unweighted case, and to the symmetrized case. We
perform 100 repeats, and error bars are one sample standard deviation

Appendix D: Additional synthetic results
In this section we present additional results for some of our synthetic experiments.

Example 1 In Fig. 16 we present the results for structural motifs, to complement the
functional motifs presented in the main paper. We note that when we consider structural
motifs, the unweighted motifs perform better but are still outperformed by our weighted
method.

Example 2 – Experiment 1 In Fig. 17 we present the results for the functional motifs
for Example 2 Experiment 1. As noted in the main paper, our approaches outperform the
baseline, but we do not observe the same bi-modal structure, withM1 outperforming all
approaches for q1 < 0.6, and without the recovery in performance for high values of q1.

Example 2 – Experiment 2 In Fig. 18 we present the structural version of Example 2
Experiment 2. We observe the same structures as we observe for the functional version,

Algorithm 3: Bipartite random-walk spectral clustering

Input: Bipartite graph G, source clusters kS , destination clusters kD , source
dimension lS , destination dimension lD

Output: Source partition S1, . . . ,SkS , destination partitionD1, . . . ,DkD
1 function BipartiteRWSpectClust(G, kS , kD , lS , lD):
2 Construct the collider motif adjacency matrixMcoll of the graph G
3 Construct the expander motif adjacency matrixMexpa of the graph G
4 Mcoll ← Mcoll[S ,S] ; � restrict rows and columns ofMcoll to S
5 Mexpa ← Mexpa[D,D] ; � restrict rows and columns ofMexpa toD
6 S1, . . . ,SkS ← RWSpectClust(Mcoll, kS , lS)
7 D1, . . . ,DkD ← RWSpectClust(Mexpa, kD , lD)
8 return S1, . . . ,SkS andD1, . . . ,DkD



Underwood et al. Applied Network Science            (2020) 5:62 Page 36 of 41

Fig. 17 Performance on Example 2 Experiment 1 using functional MAMs. We compare with the standard
symmetrizationMs . We perform 100 repeats, and error bars are one sample standard deviation

with motifs each highlighting a different but equally relevant structure. Finally the sym-
metrized adjacency matrix (Ms), for which each of the blocks are indistinguishable, does
not robustly identify the higher-order structures for k = 2, but can uncover the blocks
when clustering with k = 8 and l = 3.

Appendix E: Additional real world results
In this section we present additional results for some of our real world experiments.

US-MIGRATION network Fig. 19 plots clusterings obtained from the US-MIGRATION

network using all 15 weighted functional motifs. Note how the different motifs uncover
a variety of different clusterings, and also that they all display good spatial coherence.
For completeness, Fig. 20 shows the equivalent plots for structural motifs. Note that
motifs Md and M4 are bi-directional cliques on two and three vertices respectively,

Fig. 18 The detected groups uncovered by each method using structural motifs, with k = 2 and l = 2, with
the exception of the last column which has k = 8, l = 3. We test 100 replicates and present the results as
columns in the plot. We order and color the columns as in Fig. 7. While the clustering assignments may
contain some errors, the results are relatively robust across replicates
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Fig. 19 Weighted functional motif-based clusterings of the US-MIGRATION network, for all motifs on at most
three nodes. Each county (node) is colored by its cluster allocation

so their functional and structural MAMs are identical. The spatial coherence deterio-
rates for certain structural motifs, and cluster sizes are occasionally less balanced. We
believe this is to do with the high local density of the migration network, preventing
some motifs from appearing as structural instances in certain places (see Section 4.4 for
another example of structural motifs exhibiting this filtering property, which may or may
not be desirable, depending on the application). Note that this effect is most pronounced
for the motifs containing single edges (i.e. excluding Md, M4 and M13), because
structural instances of single edges require an edge in precisely one direction, filtering
out pairs of nodes which exhibit either no mutual migration or bi-directional mutual
migration.
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Fig. 20 Weighted structural motif-based clusterings of the US-MIGRATION network, for all motifs on at most
three nodes. Each county (node) is colored by its cluster allocation
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