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Abstract

The position of a node in a social network, or node centrality, can be quantified in
several ways. Traditionally, it can be defined by considering the local connectivity of
a node (degree) and some non-local characteristics (distance). Here, we present an
approach that can quantify the interaction structure of signed digraphs and we
define a node centrality measure for these networks. The basic principle behind our
approach is to determine the sign and strength of direct and indirect effects of one
node on another along pathways. Such an approach allows us to elucidate how a
node is structurally connected to other nodes in the social network, and partition its
interaction structure into positive and negative components. Centrality here is
quantified in two ways providing complementary information: total effect is the
overall effect a node has on all nodes in the same social network; while net effect
describes, whether predominately positive or negative, the manner in which a node
can exert on the social network. We use Sampson’s like-dislike relation network to
demonstrate our approach and compare our result to those derived from existing
centrality indices. We further demonstrate our approach by using Hungarian school
classroom social networks.
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Introduction
Sociology is about the study of human social relations and how humans interact. More

often than not we engage in intricate webs of social interactions, and making sense of

them is by no means a simple task. In the past few decades, sociologists have tried and

succeeded in delineating patterns of social interactions by the means of social network

analysis. Individual human beings and their social interactions form a network. One

important aspect of social network research from the graph perspective is how to

quantify the position an individual occupies in a network. This particular development

of social network research is quite intuitive since it is reasonable to envisage a linkage

between the behavior of individuals, their network position and the structural corre-

lates of group dynamics. Generally speaking, all this boils down to two simple and
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related questions: first, how central is a network position; and second, are central posi-

tions important from a functional viewpoint?

There already exist several classical measures for quantifying the centrality of an indi-

vidual in a social network. The simplest one is degree centrality that uses only local in-

formation, or the number of immediate neighbor a node has in this case, to quantify

nodal centrality. There are also more complicated ones that use less-local information,

these include geodesic-based measures such as closeness and betweenness centralities

(Bonacich 1987; Wasserman and Faust 1994), and path or walk-based measures like in-

formation centrality (Stephenson and Zelen 1989) and Katz centrality (Kats 1953).

More recently, given the fact that real social networks are large and are often character-

ized by the presence of interconnected communities, classical concepts of nodal cen-

trality have been extended to incorporate two components (Cherifi et al. 2019;

Ghalmane et al. 2019a, 2019b). One component measures a node’s local influence

within a community, and the other quantifies its global influence on others in different

communities.

With the tool of quantifying nodal centrality at our disposal, the next step is to link

centrality with functions. Several studies have demonstrated the positive association be-

tween individuals’ centrality in a network and their work performances (Ahuja et al.

2003; El-Khatib et al. 2015); while others have shown empirically that central network

positions are important and advantageous in various animal social groups (Wey et al.

2008; Jordán 2009; de Silva et al. 2011). The concept of node centrality as a proxy to

importance has also been adapted by physicists and biologists and applied in these

fields too. For instance, it has been suggested that several physical and biological net-

works are robust against random errors simply because the majority of connections are

centered around a few highly connected nodes called hubs (Albert et al. 2000; Callaway

et al. 2000). In ecology, for example, centrality indices have been used to predict the

importance of species in ecological communities and the possible effects of their re-

moval on the ecosystem (Dunne et al. 2002; Jordán et al. 2006; Estrada 2007).

Although there are methods for quantifying centrality for directed graphs (e.g. di-

rected betweenness centrality (Borgatti et al. 2002)), and there has been a huge

amount of research made on signed graphs (e.g. loop sign and structural balance

(Cartwright and Harary 1956; Antal et al. 2006); spread of information and social

influence (Li et al. 2015; He et al. 2019); and community detection (Traag and

Bruggeman 2009; Esmailian and Jalili 2015)), it is only until recently that methods

measuring node centrality for networks of signed interactions start to emerge. For

instance, Bonacich and Lloyd (2004) developed a status measure by using eigen-

vector, where a high status node usually has many positive relations with other

members of the same clique and negative relations with members of other cliques.

In a very different context, Smith et al. (2014) developed Political Independence

Index (PII) to quantify the power of a node by assessing its social dependence on

others; and a powerful node here is the one that avoids dependence on its allies

and is also less likely to be threatened by its adversaries. Furthermore, Everett and

Borgatti (2014) developed a negative centrality measure where a node with fewer

negative ties to important nodes is more central; and they further combined this

concept with Hubbell’s centrality measure for positive ties (Hubbell 1965) and pro-

posed PN centrality for signed digraphs.

Liu et al. Applied Network Science            (2020) 5:46 Page 2 of 26



In this paper, we present a different approach for quantifying nodal centrality for

signed digraphs. Our methodology is based on three intuitive assumptions. First, the

likelihood of an individual being affected by one of his/her friends depends on the size

of his/her social circle (Dunbar 2018). If an individual has many acquaintances then the

probability of he/she being affected by one of them should be small. In contrast, if an

individual has only a few acquaintances, say in the extreme case where he/she has only

one friend, then the probability of this individual being affected by his/her sole ac-

quaintance should be high. Second, effects such as social influence and sentiments can

spread among individuals (Fowler and Christakis 2008; Chan et al. 2018); and following

the logic behind our first assumption mentioned above, it is not unreasonable to con-

sider the effect of i on j via k as the product of two probabilities, namely the effect of i

on k and the effect of k on j. Third, basing on the notion of transitivity and structural

balance, which has been frequently studied on signed social networks (Cartwright and

Harary 1956; Du et al. 2016; He et al. 2019), if the effect of i on k and the effect of k on

j are of the same signs, then their product, or namely the effect of i on j via k, should

be positive; whereas if the effect of i on k and the effect of k on j are of the opposite

signs, then the effect of i on j via k should be negative. With those assumptions in

mind, the basic idea behind our approach is to consider how positive and negative ef-

fects from a node i can propagate through a network. By doing so we can quantify both

positive and negative effects of a node i on another node j up to a give number of steps,

and then aggregate such information for all js in order to obtain a new centrality meas-

ure for node i. A node i has high centrality if it can affect others (including itself) with

strong effects via many different pathways. Our approach is of instrumental nature and

has its root in ecology (Müller et al. 1999; Jordán et al. 2003; Liu et al. 2010); and here

in this paper we employ and generalize this concept for social network analysis. Since

our concept here involves how effects can propagate from a node to others in all direc-

tion and pathways, we note that it is also akin to those node centrality measures basing

on walks between nodes, this includes for example Katz centrality (Kats 1953) and ex-

ponential centrality (Estrada 2012; Benzi et al. 2013). What differs is that, here a walk

from nodes i to j constitutes of several edges, each of which has its own probability of

passing on the effect; thus the effect of nodes i on j via a walk is the product of prob-

abilities of those constituting edges. And through the multiplication of signs, effect as-

sociated with a walk can be positive or negative. We also note that there has been

research on how a node can influence another in the context of regulation of cellular

pathways (Campbell et al. 2011). Although such a study considers the signs of edges in

a pathway, but it considers pathways as paths instead of walks. Thus, effects there, un-

like those in our concept, strictly do not travel in all directions. Furthermore, influence

of a node on another defined there is based on the number of paths between them

(and subtracting the number of negative paths from positive ones); and in contrast, our

concept here envisages effect along a pathway as the product of probabilities of consti-

tuting edges.

In a nutshell, our concept of centrality here is of instrumental nature, and given a

network, we wish to quantify the effect of one node on another by tracking how such

an effect can spread from the source to the target. The sum of these effects reflects the

magnitude of its effect on the whole network. Intuitively, a node in an important or

central position of a network should easily have its effect spreading out to others. Thus
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the total effect a node has on the whole network can be regarded as a measure of the

centrality of its network position. In sociology terminology, such effects can be seen as

influence of one on others, and larger effect may imply larger influence; this in turn

might translate to the power of an actor in influencing others in the same social net-

work, and this consequently should affect the prestige of such actor. Our paper is orga-

nized as follows. First, we implement our concept of centrality and describe our

methodology for undirected and unsigned graphs; then extend it to signed graphs and

then to signed digraphs. Second, we apply our methodology to social network analysis

with three examples, specifically on quantifying nodal centrality: a) a toy network for

demonstration purpose; b) Sampson’s monastery social network dataset (Sampson

1968) for comparing our methodology with those existing centrality measures from the

literature; and c) a classroom social network dataset as a case study. Finally, we discuss

the sociological implications of our results and the potential use of our methodology in

other fields of social network analysis.

Unsigned, undirected graphs

Let us consider a connected graph consisting of N nodes. The direct effect (i.e. one-

step effect) of i on j is:

aij ¼ 1
Dj

; ð1Þ

where Dj is the degree of node j and node i is one of its neighbors. For a pathway con-

sisted of more than one steps, we define the indirect effect from the starting node on

the ending node via this pathway as the product of the constituent direct effects (i.e. ef-

fects are multiplicative). For instance, consider a simple case where there is a 2-step

pathway i-k-j and the indirect effect of i on j through k is defined as:

aik � akj ¼ 1
Dk

� 1
Dj

: ð2Þ

We further assume that effects are additive: if there are only two 2-step pathways

linking i and j, one via k and the other via h, then the indirect effect of i on j through

the pathway i-k-j is given by (2) while the other effect through the pathway i-h-j is

given by:

aih � ahj ¼ 1
Dh

� 1
Dj

; ð3Þ

and the effect of i on j in 2 steps is the sum of these two indirect effects:

aik � akj þ aih � ahj: ð4Þ

In general, we define TEij,n as the total effect of i on j in n steps; and if there are m n-

step pathways from i to j, then TEij,n is the sum of those m indirect effects. We further

define an N ×N matrix TEn whose ijth element is TEij,n.

Note that direct effects and indirect effects defined above can be interpreted in terms

of probability. Direct effect of i on j (i.e. aij) can be regarded as the probability of j be-

ing affected by its neighbor i as far as one step effects are concerned. While the indirect

effect of i on j in two steps is equivalent to the probability of j being affected by i if we
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consider all pathways of length two ending with j. More specifically, the probability of j

being affected by i along one particular pathway of length two is the product of the two

constituent direct effects along that pathway (i.e. product of two probabilities); and the

probability of j being affected by i in two steps along any pathways is the sum of all in-

direct effects of length two from i to j (i.e. sum of probabilities).

Since there may exist several pathways of various lengths between any two nodes, in

order to quantify the effect of one node on another, all pathways of different lengths

should be taken into account. Here, we define the cumulative total effect of i on j up to

n steps as:

CTEij;n ¼ g 1ð ÞTEij;1 þ g 2ð ÞTEij;2 þ g 3ð ÞTEij;3 þ…g nð ÞTEij;n; ð5Þ

which is simply the sum of total effects each weighted by a function g(l), where l is the

corresponding number of steps considered. Here, each TEij is weighted to account for

the possibility that indirect effects of longer pathway lengths should intuitively be

weaker than those of shorter pathway lengths. We then construct the CTEn matrix

where the ijth element is CTEij,n. Lots of useful information are provided by the inter-

action matrix CTEn. First, the ith row encodes the information on how i influences all

others including itself, while the ith column records how every node affects node i.

Thus, such information can be regarded as the interaction profile of a particular node i.

The sum of the ith row is the total effect of i on the whole network, and can be inter-

preted as a centrality measure for node i up to n steps:

ηi;n ¼
XN

j¼1

CTEij;n: ð6Þ

The sum for the jth column is the total effect received by j up to n steps:

μ j;n ¼
XN

i¼1

CTEij;n: ð7Þ

Signed, undirected graphs, and digraphs

The above methodology can be extended to signed graphs when direct effects are re-

defined appropriately. First, we define i-jS as the link connecting i and j. The super-

script S is the sign of interaction: it is either positive (+ 1) or negative (− 1). Let node j

has Dj neighbors, and the direct effect of i on j is defined as:

ci − jS ¼ S � 1
Dj

¼ S � aij: ð8Þ

Since direct effects are now either positive or negative, and indirect effects by defin-

ition are the products of direct effects, the indirect effects of i on j can then be parti-

tioned into two components, one positive and one negative. We define Eij,n+ as the sum

of positive effects of i on j for n steps, and similarly, we define Eij,n- for negative effects.

We then construct two interaction matrices En+ and En- whose ijth elements are Eij,n+
and Eij,n- respectively. Next, we separately work out the positive cumulative effect and

its negative counterpart as:

CEij;nþ ¼ g 1ð ÞEij;1þ þ g 2ð ÞEij;2þ þ g 3ð ÞEij;3þ þ…g nð ÞEij;nþ; ð9Þ
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CEij;n − ¼ g 1ð ÞEij;1 − þ g 2ð ÞEij;2 − þ g 3ð ÞEij;3 − þ…g nð ÞEij;n − : ð10Þ

We can do this for all node pairs and organize positive and negative effects in the

CEn+ and CEn- matrices, respectively. For a given node i, the corresponding rows and

columns in CEn+ and CEn- may be combined as a single vector representing the inter-

action profile of node i. Note that the cumulative total effect matrix CTEn simply

equals to:

CTEn ¼ CEnþ þ CEn −j j: ð11Þ

Eq 11 defines the total effects between all node pairs up to n steps regardless of the

signs of interactions. A new interaction matrix can be derived from CEn+ and CEn-, by

simply adding them up:

NEn ¼ CEnþ þ CEn − ; ð12Þ

which is also a square matrix where the ijth element records the net effect of node i on

node j. There is a major difference between interaction matrices CTEn and NEn: while

the former has positive entries in it, the latter has entries that may take also zero or

negative values.

From interaction matrix NEn, we define the following indices:

ηi;n;net ¼
XN

j¼1

NEij;n; ð13Þ

μ j;n;net ¼
XN

i¼1

NEij;n: ð14Þ

(13) is the net effect exerted by a node i up to n steps on the whole network, while

(14) is the net effect it received from the whole network. Note that, in contrast to the

case for unsigned graph, (13) can be positive, negative or zero, indicating whether node

i affects the network positively, negatively or effectively none at all (as the positive ef-

fect and negative effect that i exerts cancel out each other). Furthermore, (14) can now

take a value from the interval [−n,n]: a positive value for node i indicates that the effect

it receives from the network is mainly positive, while a negative value means the effect

it receives is predominately negative. There might be cases where node i receives a net

effect of zero implying that positive effect it receives cancels out negative effect. Finally,

for signed digraphs, let i→ jS denotes the directed link from node i to node j, indicating

i influences j in a positive or negative manner as determined by S. Let Din
j be the num-

ber of neighbors influencing j (i.e. we only count the number of links directed towards

j, or simply its in-degree), then the magnitude of the unsigned direct effect from i on j

is:

aij ¼ 1

Din
j

; ð15Þ

with the sign of interaction, the signed direct effect from i on j is thus:

ci→ jS ¼ S � 1

Din
j

¼ S � aij: ð16Þ
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Importantly, in digraphs it is possible that a node is not reachable from another; thus,

when quantifying the indirect effect of node i on node j, we only consider those path-

ways via which i can reach j. With these differences in mind, methods developed for

signed graphs can be applied directly here.

The form of weighting function g(l) and choosing the number of steps n

In (5), (9) and (10), effects of different lengths l are weighted by a function g(l). This is

to account for the possibility that indirect effects of longer pathway lengths should in-

tuitively be weaker than those of shorter pathway lengths. Here, we intend to keep our

approach general and do not explicitly specify g(l). However, g(l) should be in principle

a decreasing function of l, and one example is:

g lð Þ ¼ 1
lx
: ð17Þ

For simplicity, we have opted for the case where effects have equal weights through-

out this paper (i.e. g(l) = 1). Furthermore, we also need to choose a value for the max-

imum number of steps n in order to implement our methodology. Recently Chan et al.

(2018) have shown that sentiment and mood can propagate from an individual to an-

other via one intermediary; therefore an appropriate choice for n would be two. How-

ever, in this paper (unless stated otherwise), we extend this value slightly to three such

that effects travelling along other important pathways can be captured in our analysis.

For instance, with n = 3, we can also quantify looping-back effect in a triad (i.e.

i → j → k → i). To summarise, unless stated otherwise, we have used g(l) = 1 and n = 3

throughout this paper. Note that by doing so, effects from pathway length greater than

three will not be included in the calculation.

Fig. 1 A toy network with five nodes where solid and dotted lines represent respectively the positive and
negative relations between nodes

Liu et al. Applied Network Science            (2020) 5:46 Page 7 of 26



A toy network

We demonstrate our methodology on a simple toy network. Figure 1 is a toy network

with five nodes, A, B, C, D and E. In this network, solid lines represent positive ties

while dotted line represents negative ties. For simplicity, we apply our new method-

ology up to 2 steps with equal weights (i.e. g(l) = 1 and n = 3). Table 1 summarizes the

positive effect of one node on another up to 2 steps, while Table 2 summaries similar

information for negative effects. Let’s consider the effect of A on C up to two steps. A

can affect C in one step as well as in two steps. The one step effect of A on C is posi-

tive and is simply 1/3 (as C has three positive ties and no negative ties). For 2-step ef-

fects, A can affect C in two ways. One is via B, and the effect along pathway A-B-C is

1/2*1/3 = 1/6. One is via E, and the effect along pathway A-E-C is − 1/2*1/3 = − 1/6.

The positive effect of A on C up to 2 steps is 1/3 + 1/6 = 1/2, and its negative counter-

part is − 1/6. Thus the total effect of A and C up to 2 steps is 1/2 + 1/6 = 2/3; and the

net effect of A on C up to 2 steps is: 1/2–1/6 = 1/3. Total effect exerted by each node is

summarized in the last column of Table 3, and the net effect exerted by each node is

summarized in the last column of Table 4. We can observe that A has the strongest

total effect of 3.58, whereas D has the smallest total effect of 0.83. As for the net effect,

C has the largest magnitude of 1.42 and it mainly affects the whole network in a posi-

tive manner; whereas D has the smallest magnitude of 0.083 and it does this in a nega-

tive manner.

Comparison with other centrality measures

In this section we compare our methodology (with pathway length up to three with

equal weights, i.e. g(l) = 1 and n = 3) to three existing centrality measures designed for

signed relations, they are the status score, PII and PN indices (Bonacich and Lloyd

2004; Smith et al. 2014; Everett and Borgatti 2014). The dataset used is the like and the

dislike relations from Sampson’s monastery social network dataset (Sampson 1968).

We follow the work of Bonacich and Lloyd (2004) and present separately the like re-

lation and the dislike relation between 18 monks (Figs. 2 and 3). Basing on the like rela-

tion there are visually two cliques with the majority of the links among the clique

members. Using the same partition of monks we can observe that most dislike relations

are between cliques (note that there is no dislike relation in clique A but there are

some in clique B). The status score of Bonacich and Lloyd (2004) shows that members

of those two cliques have scores of opposite signs (Table 5): clique A members have

positive scores while clique B members have negative scores. Regardless signs, it can be

Table 1 Positive effect of one node on another up to 2 steps for the toy network shown in Fig. 1.
Each cell records the positive effect from one node in a particular row on another node in a
particular column

A B C D E

A 0.583 0.667 0.5 0 0.167

B 0.333 0.292 0.417 0 0.167

C 0.375 0.625 0.417 0 0.5

D 0 0 0 0.25 0.125

E 0.083 0.167 0.333 0.25 0.292

Liu et al. Applied Network Science            (2020) 5:46 Page 8 of 26



observed that in clique A, Peter (i.e. PETER) has the highest score because it is not only

the most popular individual in clique A (i.e. involving in many like relations with other

clique members), but it also has many dislike relations with members of clique B (i.e.

having negative ties with members of disvalued or rival clique can promote one’s sta-

tus). In contrast, Bonaventure (i.e. BONAVEN) is as popular as Peter in clique A but

his status score is low because he lacks negative ties with members of clique B. Similar

reasoning applies to members of clique B. Gregory, Basil, Elias, Simplicius (i.e. GREG,

BASIL, ELIAS, SIMP) have the most negative scores as they have many negative ties

with members of clique A.

Applying PII index (Smith et al. 2014) to the Sampson like-dislike relation network

shows completely different result. PII measures the power of a node which can be de-

fined on how its neighbours are dependent on it. In essence, a node is at a powerful

position if all of its interacting neighbours have no connections to other nodes. The ef-

fect of negative relation can drastically decreases a node’s power because it potentially

feels threatened by its adversaries. Here PII index suggests that Bonaventure has by far

the largest PII score whereas the remaining monks have relatively very low PII scores

(Table 5). Note that all monks with the exception of Bonaventure have negative relation

with some others, and this decrease their power. In contrast, Bonaventure has the lar-

gest PII scores for two reasons: first is that he has no negative relation with others; and

second, his interacting neighbours all have negative relations with some others, which

in turn increases Bonaventure’s power.

The PN index developed by Everett and Borgatti (2014) extends and generalizes the

notion of having tie to a central node increases one’s centrality to cover signed di-

graphs. A node with positive ties to important nodes tends to have higher centrality,

whereas negative ties tend to decreases one’s centrality. Applying the PN index to the

Sampson’s like-dislike relation network, one can observe that Bonaventure has the

Table 2 Negative effect of one node on another up to 2 steps for the toy network shown in Fig.
1. Each cell records the negative effect from one node in a particular row on another node in a
particular column

A B C D E

A 0 0 −0.167 −1 − 0.5

B 0 0 0 −0.25 −0.125

C −0.125 0 0 −0.25 −0.125

D −0.25 −0.125 − 0.083 0 0

E −0.25 −0.125 − 0.083 0 0

Table 3 Total effect of one node on another up to 2 steps for the toy network shown in Fig. 1.
Each cell records the total effect from one node in a particular row on another node in a particular
column. The last column records the total effect each node has on the whole network

A B C D E Total effect

A 0.583 0.667 0.667 1 0.667 3.583

B 0.333 0.292 0.417 0.25 0.292 1.583

C 0.5 0.625 0.417 0.25 0.625 2.417

D 0.25 0.125 0.083 0.25 0.125 0.833

E 0.333 0.292 0.417 0.25 0.292 1.583
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highest PN score (Table 5) as he is involved in the highest number of positive relations

while engaged in no negative relations. PN index suggests that the least central monks

are Basil, Elias and Simplicius as they have several negative ties with other important

individuals (Fig. 3).

Basing on our methodology, as far as total effect exerted by an individual is con-

cerned, Peter, Gregory and Basil are the most important individuals (Table 5). This is

because they have many ties with others regardless signs, and this renders them higher

influence on others in the same network. However, if we consider the net effects they

exerted on the whole network, then Gregory is a positive interactor while Peter and Bail

are negative interactors. As far as the net effect is concerned, Bonaventure and Am-

brose are the two individuals with the strongest positive effect, whereas Basil, Elias,

Simplicius and Peter mainly exert negative effects on the network. Figure 4 is a scatter

plot showing clearly the relationship between total effect and net effect of each monk.

We suggest that examining the centrality of individuals should take into account both

total effect and net effect: total effect provides information on the influence, both posi-

tive and negative, one exerts on the whole network; while net effect tells us in what

way, predominately positively or negatively, an individual affects the whole network.

Furthermore, we determined the similarity between each pair of centrality indices.

Here two measures were used to quantify similarity: one is the well-known Kendall

Table 4 Net effect of one node on another up to 2 steps for the toy network shown in Fig. 1.
Each cell records the net effect from one node in a particular row on another node in a particular
column. The last column records the net effect each node has on the whole network

A B C D E Net effect

A 0.583 0.667 0.333 −1 −0.333 0.25

B 0.333 0.292 0.417 −0.25 0.042 0.833

C 0.25 0.625 0.417 −0.25 0.375 1.417

D −0.25 −0.125 − 0.083 0.25 0.125 −0.083

E −0.167 0.042 0.25 0.25 0.292 0.667

Fig. 2 The like relation between 18 monks from Sampson’s Monastery social network dataset (Sampson
1968). Monks are arranged into two cliques as in Bonacich and Lloyd (2004)
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rank correlation coefficient from standard statistics; and the other is the rank-biased

overlap approach (RBO) from information science (Webber et al. 2010). Results are

summarized in Table 6. We also determined the correlation between those Kendall

rank correlation coefficients and those RBO values; and a high rank correlation coeffi-

cient (τ = 0.911, p < 0.01) between these two sets of similarity measures indicates

consistency in two different approaches for assessing the similarity between centrality

Fig. 3 The dislike relation between 18 monks from Sampson’s Monastery social network dataset (Sampson
1968). Monks are arranged into two cliques as in Bonacich and Lloyd (2004)

Table 5 Different centrality values calculated on the like-dislike relation network from Sampson’s
Monastery social network dataset. TE and NE stand for total effect and net effect as derived from
our new methodology, all other values were calculated using UCINET (Borgatti et al. 2002)

Monk Status PII PN TE NE

Romul −0.174 0.306 1.007 2.175 0.460

Bonaventure −0.188 2.523 1.159 2.154 0.937

Ambrose −0.248 0.249 1.008 2.872 0.796

Berthold −0.319 0.190 0.861 3.076 0.157

Peter −0.420 −0.605 0.671 5.025 −0.290

Louis −0.219 0.332 0.963 2.443 0.381

Victor −0.365 −0.051 0.800 3.433 −0.110

Winfrid 0.081 0.937 1.114 2.496 0.897

John 0.142 −0.138 0.870 2.522 −0.134

Gregory 0.292 0.396 0.880 4.174 0.366

Hugh 0.088 0.478 0.985 2.478 0.576

Boniface 0.123 0.424 1.011 2.782 0.727

Mark 0.217 0.256 0.955 3.149 0.508

Albert 0.072 0.610 0.959 1.981 0.328

Amand 0.030 −0.300 0.911 3.222 0.156

Basil 0.254 0.379 0.680 4.196 −0.754

Elias 0.282 −0.210 0.761 3.085 −0.643

Simplicius 0.287 0.774 0.890 2.736 −0.247
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indices. In general, the similarity between each pair of centrality indices is not high,

however there are two exceptions. First, the PII index and the total effect have moder-

ate negative correlation (− 0.438), and their RBO value is the lowest in Table 6 (0.162).

And second, the PN index and the net effect show strong and positive correlation

(0.791), and their RBO value is the largest in Table 6 (0.890). A node will have a high

PII score if its interacting neighbours have no other relations with others (i.e. those

neighbours are all dependent entirely on the focal node), but such a node should have

low total effect here as it has fewer channels to influence others in the same network.

Thus this explains the negative correlation between PII score and total effect. The

strong positive correlation between PN index and net effect here suggests that both

methodologies might provide similar information on node centrality despite the fact

that they respective are derived in different contexts. According to our methodology, a

node can influence others in a profound and positive manner if it has positive ties with

important nodes; whereas negative ties to important nodes can be efficient channels

through which one can exert negative influence to others. Thus, all this amount to

similar centrality property that PN index was intended to portray, and therefore ex-

plains the high correlation between those two measures.

A case study using a Hungarian high school social network dataset

In this section we apply our methodology to a high school social network dataset (with

pathway length up to three and equal weights, i.e. g(l) = 1 and n = 3), and examine

whether boys and girls are different in terms of how they affect others, as well as how

Fig. 4 A scatter plot showing the relationship between total effect (ηi,n) and net effect (ηi,n,net) for individual
monks derived from applying our methodology on Sampson’s like-dislike relation network
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they are being affected by others in the same class. Furthermore, we also examine

whether various effects derived from our methodology are related to their mood in the

corresponding class. We used data from eight Hungarian classes sampled over a 3-year

period. The classes belonged to Budapest secondary schools, kids were either aged 12–

15 or 15–18 years old during the survey. On each sampling date, we recorded the gen-

der and the feeling score for all students and asked them to nominate their friends and

enemies. The feeling score is a rough measurement of how they feel in the school ran-

ging on an integer scale from very bad (1) to very good (5). After the data were col-

lected, all students’ names were replaced with unique ID numbers such that the

identity of individual students can never be revealed. The full dataset and a brief sum-

mary are provided in the supplementary information, and Fig. 5 provides an example of

a classroom social network derived from our dataset.

For each student in a dataset, we count the number of friend-nominating ties and the

number of enemy-nominating ties he/she makes, and define those as Fout and Eout re-

spectively. Furthermore, we determine the number of friend-nominating ties and the

number of enemy-nominating ties he/she receives, and let these be Fin and Ein respect-

ively. Note that Fin can be regarded as the popularity of a student, Fout can be seen as a

measure how unpopular a student is (i.e. public enemy). Figure 6 shows the distribu-

tions of those four quantities for the whole dataset. It can be seen that Fout and Fin have

bell-shaped distributions slightly skewed to the right, with an average around four. In

contrast, Eout and Ein have highly skewed distributions to the right where the majority

of the students make or receive no or very few enemy ties. There is no correlation be-

tween the number of friends (i.e. Fout) and the number of enemies (i.e. Eout) a student

nominates (r < 0.01, p = 0.982). In contrast, there is some negative correlation between

the number of friend-nominating ties (i.e. Fin) and the number of enemy-nominating

ties (i.e. Ein) a student receives (r = − 0.30, p < 0.01), indicating that popular individuals

have fewer enemies. There is also some correlation between the numbers of friend-

nominating ties one makes and receives (r = 0.41, p < 0.01), showing that outgoing indi-

viduals tend to be popular in the class. And lastly, there is weak correlation between

the numbers of enemy-nominating ties one makes and receives (r = 0.12, p < 0.01).

For each class, we constructed an influence network from a friendship network as fol-

lows. First, we assume a friend-nominating tie from student i to student j meaning that

i believes j is his/her friend; therefore we assume that j can influence i positively. Sec-

ond, for the enemy-nominating tie, if i nominates j, then we assume j can influence i

negatively. We calculated the total effect and the net effects (both exerted and received)

for individual students in their respective networks by using our methodology up to

three steps (i.e., n = 3), and investigated how they correlate with the numbers of friend

Table 6 Measuring similarity between pairs of centrality indices from Table 5. In each cell, the first
value is Kendall rank correlation coefficient and the second value is RBO similarity value. TE and NE
stand for total effect and net effect as derived from our new methodology

PII PN TE NE

Status 0.216, 0.522 −0.072, 0.310 0.059, 0.407 −0.098 0.400

PII 0.477, 0.678 −0.438, 0.162 0.399, 0.682

PN −0.542, 0.148 0.791, 0.890

TE −0.386, 0.238
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and enemy-nominating ties (Table 7). We found that the numbers of friend and

enemy-nominating ties one receives tend to correlate with the total effect he/she exerts

on the whole social network (i.e. Fin and TE, Ein and TE). This translates to a setting

where popular individuals or public enemies tend to affect the whole social network

more than their lesser counterparts. However, total effect alone cannot tell us in what

way an individual affect others. Once the sign and the direction of social interactions

are taken into account, we can observe that the number of friend-nominating ties one

receives correlate strongly with the net effect he/she exerts on the whole social network

(i.e. Fin and NE exerted). This implies that popular individuals affect the whole social

network in a more positive way. In contrast, the number of enemy-nominating ties one

receives shows strong negative correlation with the net effect he/she exerts on others

(i.e. Ein and NE exerted), implying that public enemies tend to affect the whole social

network in a more negative manner. One other interesting observation from our ana-

lysis is that, the net effect received by an individual tends to correlate positively with

the number of nominated friends (i.e. Fout and NE received), but negatively with the

number of nominated enemies (i.e. Eout and NE received); and the magnitude of the

correlation for the latter relationship is almost twice that of the former. This suggests

that, while making friends might have some positive effect on an individual, but making

enemies can certainly affect him/her more and in a very negative manner.

More interesting information can be gained from our analysis of this particular data-

set using our methodology. First, there is some positive correlation between an individ-

ual’s exerted net effect and received net effect (r = 0.34, p < 0.01); this demonstrates that

if one influences others more positively then he/she will also receive more positive ef-

fects from others (Fig. 7). Furthermore, it appears that the majority of nodes are

positive-positive interactors (i.e. the top-right quadrant of Fig. 7) and a substantial

amount of nodes are either positive-negative or negative-positive interactors (the top-

left and bottom-right quadrants of Fig. 7), while only very few nodes are negative-

negative interactors (bottom-left quadrant of Fig. 7). Second, taking into account infor-

mation on gender, we partitioned all observations into male and female groups; and

calculated the mean total effect and the mean net effects exerted and received for each

sex, and determined their associated 95% confidence intervals by using bootstrap. We

Fig. 5 Social network constructed by using data collected for class h in December 2005 (i.e. class h 0512
dataset). Girls and boys are represented by open circles and filled circles respectively. Thick lines are friend-
nominating ties while thin lines are enemy-nominating ties. The size of the nodes reflects the feeling score
of the students: larger the node size higher the feeling score
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found that boys (mean total effect = 3.05, 95%CIs = 2.95–3.16) tend to exert signifi-

cantly stronger total effect on the whole class than girls do (mean total effect = 2.75,

95%CIs = 2.67–2.83). Moreover, we found that boys (mean net effect exerted = 1.05,

95% CIs = 0.96–1.14) marginally tend to influence the network more positively than

girls (mean net effect exerted = 0.97, 95% CIs = 0.89–1.03). Also, boys tend to receive

significantly more positive net effects (mean net effect received = 1.20, 95% CIs = 1.13–

1.25) than girls do (mean net effect received = 0.83, 95% CIs = 0.78–0.90).

Lastly, we also tested how various effects calculated using our methodology are asso-

ciated with an individual’s feeling score. Since feeling was scored discretely using a scale

Fig. 6 Frequency distributions for: Fout, the number of friends one nominates; Fin, the number of friend-
nominating ties one receives; Eout, the number of enemies one nominates; and Ein, the number of enemy-
nominating ties one receives

Table 7 Correlation coefficient between numbers of friend and enemy-nominating ties and the
effects calculated from our methodology. Numbers in parenthesis are p-values for the significance
of the corresponding correlation analysis

Fout Fin Eout Ein

TE 0.012 (0.540) 0.396 (< 0.01) − 0.029 (0.150) 0.552 (< 0.01)

NE (exerted) 0.280 (< 0.01) 0.685 (< 0.01) −0.143 (< 0.01) − 0.716 (< 0.01)

NE (received) 0.355 (< 0.01) 0.188 (< 0.01) − 0.714 (< 0.01) −0.205 (< 0.01)
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from one to five, for each effect type we calculated the mean effect for each feeling

score and determined its 95% confidence intervals by bootstrap. Figure 8 (top figure)

shows that there is no apparent pattern showing the relationship between total effect

and feeling scores. Again, it is only once the direction and sign of social interactions

are being taken into account, we then start to see interesting patterns. Figure 8 (middle

figure) also shows that, for low to mid feeling scores, there is little difference between

them in terms of their exerted net effects; however, for higher feeling scores, they tend

to have much more positive exerted net effects. The relationship between effect size

and feeling score is even more apparent for received net effects as shown in Fig. 8 (bot-

tom figure): increasing feeling scores meets an increase in received net effect in a more

positive manner. All in all, higher feeling scores are associated with strong and positive

net effects (both exerted and received). We also investigated how other centrality indi-

ces for signed graphs are associated with feeling scores. We calculated status score, PII

and PN centralities for this dataset by using UCINET (Borgatti et al. 2002). For each

centrality index we calculated its mean for each feeling score and determined its 95%

confidence intervals by bootstrap. Figure 9 shows that higher feel scores are also associ-

ated with higher centrality values. However, there are some overlaps in the 95% confi-

dence intervals, therefore the trend here is not as pronounced as the trend for net

effects.

Testing the effect of step length on total effects and net effects

In this study, a step length of two was used in our demonstrative example using the toy

network, and a step length of three was used in our analysis of Sampson’s monastery

dataset and Hungarian school dataset. In this section we examine how step length n

can affect total effect and net effect. Again, we analysed Sampson’s monastery dataset

and quantified for each monk his total effect and net effect up to n steps with n varies

from one to ten. Kendall rank correlation coefficient between total effect up to n steps

and that up to n-1 steps was then calculated. Figure 10 shows that correlation coeffi-

cient (i.e. thin solid line) quickly increases and attains the value of one after three steps.

This suggests that centrality ranking of monks as measured by the total effect stabilizes

and remains the same after only three steps. As for net effect, correlation coefficient

also quickly increases and stabilizes after four steps (thin dotted line in Fig. 10). In this

case, correlation coefficient approaching a value very close to one suggests that

rankings of monks are very similar for n beyond four. Centrality rankings of those

monks, as measured by total effect and net effect, stabilise so quickly might be due

to the small size of the social network such that effects can spread out quickly. In

order to investigate the effect of social network size on this, we also performed the

same analysis on a larger classroom social network shown in Fig. 5. In this case,

centrality ranking of students (thick solid line and thick dotted line in Fig. 10) sta-

bilizes at a slower rate than that for Sampson’s monk social network. Thus, in

order to use our methodology, one might suggest that a cut-off value for n should

be chosen basing on when centrality ranking stabilizes. Although this might be a

good cut-off for n, but we suggest that the value of n chosen should also be

guided by empirical studies on how far social influence can spread from one indi-

vidual, and this warrants future research.
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Comparison with centrality indices for unsinged and undirected networks

In the last part of our analysis, we provide results on how our centrality indices com-

pared to those classic centrality indices developed for unsinged and undirected net-

works (Bonacich 1987; Stephenson and Zelen 1989; Wasserman and Faust 1994).

Degree centrality is the simplest one measuring the number of connection a node has;

and eigenvector centrality is a degree-related index that also takes into account the im-

portance of a node’s connected neighbours. Betweenness centrality is a shortest path-

related measure counting the number of times a node appearing in all shortest paths in

a network. Closeness centrality is another shortest path-related measure quantifying

the distance between the focal node and all others in the same network (i.e. how close

they are). Katz centrality measures the centrality of a node by quantifying the contribu-

tions from all other nodes, with more distant nodes being penalized more than less dis-

tant ones. All of those indices translate to a notion that important nodes are those

occupying important position in a network. Therefore, our intuition suggests that

nodes ranking high in those centrality indices should have large total effect on the

whole network. The reason is that by being in an important position, a node can affect

many others, or effects can spread from it to many others, in a fewer number of steps.

Again, we analysed Sampson’s monastery social network data and quantified for each

monk his degree, betweenness, closeness, eigenvector and Katz centralities (Table 8),

and investigated the similarity between those indices and our indices proposed in this

paper. Again, like before, we employed Kendall rank correlation coefficient and RBO

value to measure the similarity between centrality indices. As expected, total effect cor-

relates with, or produces similar ranking patterns to those classic centrality indices

(Table 9). When the direction and the sign of social interactions are taken into account,

Fig. 7 A scatter plot of net effects exerted (ηi,n,net) and received (μi,n,net) by individual students after pooling
all results together from our analysis on the Hungarian high school dataset
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Fig. 8 (See legend on next page.)
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then such similarity starts to disappear. As suggested by our result, net effect calculated

by using our methodology shows weaker correlation or less similarity with those classic

centrality indices, and it even shows negative relationship with them (Table 9).

Discussion and conclusion
In this paper we have presented a simple method for quantifying the interaction struc-

ture for graphs, signed graphs and signed digraphs. This is achieved by considering

how a node can affect another via direct and indirect pathways. Once the interaction

structure of the whole network is determined, the nodal centrality can be calculated by

considering the total effect a node has on all nodes in the same network. The total ef-

fect of a node can be further partitioned into positive and negative components; and

subtracting the latter from the former results in a net effect which tells us in what way,

whether predominately positive or negative, a node affects the whole network. Our

methodology is based on a very different context to those from the literature, and we

have demonstrated weak correlations between our indices and those established indices

(with the exception of our net effect and the PN index). Therefore our approach here

should provide an alternative perspective on nodal centrality.

We note that our methodology of measuring node centrality is in essence a walk-

based approach. Two well-known walk-based approaches are Katz centrality (Kats

1953) and exponential centrality (Estrada 2012; Benzi et al. 2013), and their computa-

tion involves the multiplication of the adjacency matrix. The number of times the adja-

cency matrix is being multiplied equals to the length of a walk, and the ijth element of

the resulting matrix records the number of walks starting from node i and ending at

node j. Our approach also relies on walks between nodes, and this can be represented

in the form of matrix multiplication. In fact, our methodology, as presented in great de-

tail in the method section, can be succinctly represented in matrix multiplication form.

But what differs here from other walk-based approaches is that we replace adjacency

matrix with interaction matrix of step length one, where the ijth element of this matrix

is the direct effect of node i on node j, which is determined by the inverse of node j’s

in-degree. Ignoring the signs of interaction, centrality values calculated using our ap-

proach, or the total effect of individuals nodes, should show some correlation with

other walk-based centralities. And this is indeed the case as we have demonstrated

using Sampson’s monastery social network data, that there is strong correlation be-

tween our total effect and Katz centrality. But once the sign of interactions is taken into

account to calculate nodal centrality, we then obtain a very different centrality measure

(i.e. net effect) to Katz centrality.

Given the diversity of centrality measures we have at our disposal nowadays, it is nat-

ural to ask which centrality measure is the best one. We believe this depends on the

context one is interested in or on the subject matter. For instance, a recently developed

and more advanced measure that quantifies centrality in two dimensions has been

(See figure on previous page.)
Fig. 8 Mean total effect (top), mean net effect exerted (middle) and mean net effect received (bottom)
plotted against the feeling score of individual students after pooling all results together from our analysis
on the Hungarian high school dataset (crosses and bars are means and the 95% confidence
intervals respectively)
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Fig. 9 Mean status score (top), mean PII centrality (middle) and mean PN centrality (bottom) plotted
against the feeling score of individual students after pooling all results together from our analysis on the
Hungarian high school dataset (crosses and bars are means and the 95% confidence intervals respectively)
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shown to predict better disease control strategy in large social networks with intercon-

nected communities (Cherifi et al. 2019; Ghalmane et al. 2019a, 2019b); while simple

indices such as degree centrality can predict essential genes from the protein inter-

action network of yeast (Jeong et al. 2001). Moreover in biology, it has been shown that

host species with high closeness centrality in a food web tend to harbour many parasite

species (Chen et al. 2008); whereas closeness centrality performs poorly in predicting

the conservation of different enzymes across different bacterial species in a metabolic

network (Liu et al. 2007). In a more systematic manner, several studies have investi-

gated the relationship between difference centrality measures, and it has been found

that some are more closely related while some are not (Jordán et al. 2006; Oldham

et al. 2019), indicating some provide redundant information and some provide

complimentary information. And a more recent study has shown that the relationship

between different centrality measures varies depending on the topology and the density

of networks analysed (Oldham et al. 2019). All in all, given the fact that each centrality

index measures a different aspect of network position; we thus suggest that centrality

measures should not be used in isolation, and at least several should be tried out, in

order to gain a better picture of nodal centrality of the studied network.

The next step of research relating to our work here will be on how to correlate re-

sults derived from our methodology with sociological theory and phenomenon. A test-

able hypothesis is that, if a social group is predominately negative in its interaction

structure, will this correspond to a particular aspect of group behavior. For instance,

balance theory suggests that a balanced triad with the product of signs being positive

should promote group stability (Cartwright and Harary 1956; Lerne 2016). We can

Fig. 10 Correlation between effects up to step n and n-1 for various n from one to ten. Thin solid line
(TE_SAM) and thin dotted line (NE_SAM) respectively represent the results from total effect and net effect
calculated on Sampson’s monk social network. Thick solid line (TE_CLASS) and thick dotted line (NE_CLASS)
respectively represent the results from total effect and net effect calculated on the classroom social network
shown in Fig. 5
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simply adapt this idea and ask whether a social group with a more positive interaction

structure tend to have less conflict between its constituent individuals. The only finding

so far that relates our result with individuals’ attributes is from our analysis on the

Hungarian school classroom social networks. In that particular analysis, we have shown

that popular individuals and public enemies tend to affect the whole social network

more than others do, with the former do so in a positive manner and the latter in a

more negative manner. This result seems intuitive and obvious, and what is less

Table 9 Measuring similarity between pairs of centrality indices from Table 8. In each cell, the first
value is Kendall rank correlation coefficient and the second value is RBO similarity value. TE and NE
stand for total effect and net effect as derived from our new methodology

Btw Cls Eig Katz TE NE

Deg 0.616,
0.626

0.628,
0.786

0.841,
0.928

0.936,
0.917

0.936,
0.960

−0.433,
0.239

Btw 0.820
0.771

0.490,
0.615

0.556
0.772

0.791,
0.890

−0.255,
0.334

Cls 0.560,
0.840

0.936
0.917

0.936,
0.960

−0.433,
0.238

Eig 0.948
0.999

0.712,
0.875

−0.464,
0.158

Katz 0.765
0.879

−0.438
0.158

TE −0.386,
0.238

Table 8 Different centrality values calculated on the like-dislike relation network from Sampson’s
Monastery social network dataset by using centrality measures for unsigned and undirected
graphs. Deg, Btw, Cls, Eig and Katz are degree, betweenness, closeness, eigenvector and Katz
centralities. TE and NE stand for total effect and net effect as derived from our new methodology.
Deg, Btw, Cls and Eig were calculated using Netdraw (Borgatti et al. 2002)

Monk Deg Btw Cls Eig Katz TE NE

Romul 6 1.935 28 0.147 0.066 2.175 0.460

Bonaventure 6 1.885 28 0.151 0.066 2.154 0.937

Ambrose 8 4.493 26 0.199 0.087 2.872 0.796

Berthold 9 3.076 25 0.258 0.099 3.076 0.157

Peter 14 15.235 20 0.348 0.153 5.025 −0.290

Louis 7 2.267 27 0.196 0.077 2.443 0.381

Victor 10 4.127 24 0.281 0.110 3.433 −0.110

Winfrid 7 3.350 27 0.172 0.077 2.496 0.897

John 7 3.175 27 0.176 0.077 2.522 −0.134

Gregory 12 7.093 22 0.323 0.132 4.174 0.366

Hugh 7 2.700 27 0.181 0.077 2.478 0.576

Boniface 8 2.600 26 0.220 0.088 2.782 0.727

Mark 9 3.925 25 0.241 0.099 3.149 0.508

Albert 6 0.525 28 0.188 0.067 1.981 0.328

Amand 9 5.735 25 0.227 0.098 3.222 0.156

Basil 12 8.361 22 0.319 0.132 4.196 −0.754

Elias 9 3.269 25 0.256 0.099 3.085 −0.643

Simplicius 8 2.251 26 0.231 0.089 2.736 −0.247
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obvious is the finding that making friends might have some positive effect on an indi-

vidual, but making enemies can affect him/her more in a very negative manner. This

echoes findings from the literature that negative influence or negative effect tend to

have a stronger impact than positive ones (Baumeister et al. 2001; Dong et al. 2011;

Cheng et al. 2015). We further found that boys tend to affect the whole social network

more than girls do, and this is in line with the general observation that males tend to

be more influential than females (Eagly 1983; Carli 2001). Our results show that boys

marginally influence the network in a more positive manner than girls do; but the effect

received by boys are significantly more positive than that received by girls. Our gender-

related findings echo those from previous studies in psychology: mainly, boys tend to

report positive influences from peers than girls whereas girls tend to report more nega-

tive effects from peers than boys (Fujita et al. 1991; Bagozzi et al. 1999).

We have also shown that happier individuals tend to exert and receive more positive

net effects. We believe this is intuitive and suggests that our methodology is at least

sound in relating interaction structure and perceived personal feeling of individuals.

One of the most active fields of research regarding social networks is community de-

tection (Girvan and Newman 2002; Fortunato and Hric 2016; He et al. 2018) where

similar actors are being grouped in the same clusters forming various communities.

The majority of the methods rely on the pattern of connection in which case actors in

the same cluster should have more ties between them than with those from other clus-

ters. Here we conceptually offer a different approach. From our methodology, an inter-

action matrix can be constructed where the ijth element records the effect of node i on

node j. With a user-defined cutoff, node j is node i’s strong interactor if its effect is

greater than such a cutoff. From this we then derive a matrix of strong interactors

where the ijth element is one if node j is node i’s strong interactor. Note that in this

way, two nodes can be strong interactors even if they don’t have direct connection be-

tween them. Such a matrix can then be subjected to conventional community detection

analysis; and nodes that influence each other strongly and positively can be considered

to be in the same social group despite there might not be direct linkages between them.

However, exploring this possibility is beyond the scope of our paper here and we

should defer this till a later work. Another potential use of our methodology is in the

role analysis of actors in a social network. Role analysis also has a long tradition in so-

cial network analysis and it is often employed to reduce a complex social network to

simpler ones (White and Reitz 1983; Borgatti and Everett 1993). Traditionally, actors

with the same or similar connection pattern (i.e. structural and regular equivalence)

can be grouped in the same role class, this then results in a network of different role

classes. Here, we can do similar things by using the interaction matrix derived from

our methodology. Again, recorded in the interaction matrix is the effect of one node on

another, and the ith row of this matrix can be considered as the interaction profile of

node i (i.e. how it interacts with all others, including itself, in the network). Similarity

in the interaction profile between node pairs can be quantified using measures often

employed in role analysis. This then results in a similarity matrix between nodes that

can be used for conventional role analysis. Again, exploring this possibility is beyond

the scope of our paper here and we should defer this till a later work.

Finally, recent developments of centrality measurement have emphasized the import-

ance of incorporating the structure of large real-world social networks (Cherifi et al.
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2019; Ghalmane et al. 2019a, 2019b). Those networks are characterized by intercon-

nected communities. It has been suggested that centrality in this case should have two

components, one local and one global (or at least at some mesoscale), each respective

measures how a node influences those in the same community and others in other

communities. Although our methodology can investigate effects at the local, meso and

global scales by varying the number of steps n, but it does not considered the structure

of community-rich social networks in the way that was done in recent literatures.

Therefore, a fruitful aspect of future research on centrality analysis will be to extend

our methodology to taking into account the community structure of real-world social

networks.
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class “a” are in the file a.xlsx. Each file has several Excel spreadsheets. A spreadsheet with a label “YYMM” is the
social network data collected on month MM in year 20YY, and the data is organized in three columns: the first and
the second columns, namely “nominator” and “nominee”, contain the identifiers for the students; while the last
column, namely “relation”, contains whether the “nominator” nominates the “nominee” as a friend (coded “1”) or as
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