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Abstract

Supplier Impersonation Fraud (SIF) is a rising issue for Business-to-Business companies.
The use of remote and quick digital transactions has made the task of identifying
fraudsters more difficult. In this paper, we propose a data-driven fraud detection
system whose goal is to provide an accurate estimation of financial transaction
legitimacy by using the knowledge contained in the network of transactions created
by the interaction of a company with its suppliers. We consider the real dataset
collected by SIS-ID for this work.
We propose to use a graph-based approach to design an Anomaly Detection System
(ADS) based on a Self-Organizing Map (SOM) allowing us to label a suspicious
transaction as either legitimate or fraudulent based on its similarity with frequently
occurring transactions for a given company. Experiments demonstrate that our
approach shows high consistency with expert knowledge on a real-life dataset, while
performing faster than the expert system.

Keywords: Fraud detection, Graph-based feature engineering, Financial networks, B2B
network

Introduction
Fraud is a recurring issue in many domains such as credit card transactions, insurance,
telecommunication, and finance. Supplier Impersonation Fraud (SIF) is a specific case
of identity theft, targeting a company rather than an individual. This type of financial
fraud is widespread, resulting in the loss of hundreds of thousands Euros in 2018, and
ranked 1st most frequent fraud affecting French companies in the latest survey about
cyber-criminality conducted in 2019 by Euler Hermes and DFCG (2019). Supplier imper-
sonation consists of a fraudster impersonating a member of a company providing goods
and services to another, in order to trigger a payment on an account controlled by the
fraudster AIG (2019).
We can illustrate SIF with a toy example. Let C be a company that produces comput-

ers. In order to acquire the necessary components for the fabrication, C buys electronic
chips from S. Let F be a fraudster. A SIF takes place when F diverts a payment from C
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originally destined to S, usually by impersonating S in C’s eyes. Such an impersonation
can take several forms: the tampering of an invoice from S (similar to phishing attacks),
impersonating a high-ranking employee of S and requesting the next payments to be paid
on an account controlled by the fraudster, or even requesting the payment of imaginary
goods and services on behalf of S.
As more and more companies are using digital tools to process transactions due to

numerous advantages provided by digitalization, the risk of supplier impersonation has
never been higher. However, the tools and systems required to detect SIF have not
evolved at the same pace, and still mostly rely on expert-based input and monitoring.
This approach might not be the most suitable to handle the increasing volume of digital
transactions. Thus, the need for automated, data-driven SIF detection system arises.
In this work, we present GraphSIF, a SIF detection system that uses a Business-To-

Business (B2B) transactions dataset to construct a graph modeling the relationships
between client and supplier companies in a B2B ecosystem, and describe how these rela-
tionships can be used to derive useful knowledge in order to assert the legitimacy of
transactions.
We use the transaction network to create a time-evolving behavior sequence sum-

ming up the evolution of the graph through time. We then compare the new graph
created by adding a suspicious transaction to the behavior sequence and investigate
the potential discrepancy it introduces. If this discrepancy is low then the trans-
action is considered as legitimate, and if the discrepancy is high then the transac-
tion is considered as likely fraudulent. In order to quantify this discrepancy, a Self-
Organizing Map (SOM) is trained on the behavior sequence, and a clustering algorithm
is used to quantify the similarity of the tested graph with the ones in the behavior
sequence.
Finally, we analyze the results of GraphSIF using a set of transactions labeled by experts

from the SiS-id company, in order to evaluate its performance, and investigate its poten-
tial shortcomings. We found that GraphSIF with the selected parameters shows high
consistency with the expert system when focusing on low-legitimacy transactions.

Contributions

The contributions of this paper are the following: a graph-based feature engineering pro-
cess relying on a bipartite graph constructed from transactions between companies in a
B2B context, a classification system that uses Self-Organizing Maps and K-means cluster-
ing to investigate the legitimacy of a new transaction, and a comprehensive evaluation of
the proposed classification system using data from a real-life B2B ecosystem.

Previous work

This paper extends the conference paper (Canillas et al. 2019) presented in Complex Net-
works 2019, by proposing a more thorough description of the algorithms used to perform
the fraud detection process, and by proposing an analysis of the system’s performance on
a large number of companies.

Related work
Due to the sensitivity of the data linked to supplier fraud detection for victim compa-
nies, we have not been able to find any publicly available research work directly related
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to SIF. However, we can find several systems designed for fraud detection that also use a
network-based approach:
In Sadowksi and Rathle (2014) several network-based fraud detection use-cases are

introduced, showing examples of successful use of graph theory to detect bank fraud,
insurance fraud and e-commerce fraud. However, the authors focus on specific industrial
examples without proposing a formalized evaluation of their solution.
Akoglu, Tong and Koutra Akoglu et al. (2015) propose a survey on anomaly detec-

tion using graphs, notably in the domain of telecommunication fraud detection. An
approach closely related to our own is found in Akoglu et al. (2010) where an egonet
(1-step neighborhood graph) is used to derive features describing a node. However, this
approach is applied to a static graph that does not evolve through time, contrary to our
approach. The analysis of dynamic graphs through the use of windows, as it is the case
in our work, is akin to the ideas developed in Priebe et al. (2005) and Mongiovì et al.
(2013) where the graphs are analyzed using a moving window and detecting anoma-
lous connectivity variation Priebe et al. (2005) or edges p-value variation (Mongiovì et
al. 2013). To the best of our knowledge there is no previous attempt at combining a
window-based analysis as seen in Priebe et al. (2005) with the feature approach used in
Akoglu et al. (2015).
Van Vlasselaer et al. (2016) proposes an approach somewhat similar to ours, using

graphs to represent interactions between companies in order to detect social security
frauds. However, their work focuses on the application of social network algorithms
on large graphs of interconnected entities, whereas our work considers smaller neigh-
borhood graphs, focused on the behavior of a single company. In addition, the system
proposed in Van Vlasselaer et al. (2016) bases itself on a propagation algorithm and Ran-
dom Logistic Forests to perform their analysis, and does not make use of Self-Organizing
Maps.
Furthermore, most of the aforementioned research uses supervised algorithms as they

rely on the existence of known legitimate and fraudulent neighboring nodes to conduct
their analysis. Our work proposes an unsupervised approach that does not take into
account the legitimacy of neighboring nodes to propose a label, but instead uses the
topology of the ego network.
Finally, as our approach makes use of significant patterns found in the 2-step egonet

(the set of vertices found at most 2 edges away from the considered vertex) of a company,
a parallel can be drawn with the discovery of network motifs, for example, as presented in
Milo et al. (2002). However, the discovery of network motifs relies on the observation of
patterns occurring with a statistically significant number of occurrences compared with
random graphs showing similar topology. Our approach uses a different technique to cre-
ate patterns from the egonet, by investigating the remaining connected sub-graphs when
the ego node is removed. The techniques used in network motif analysis could however
be used to discover the occurrences of payment motifs across for a number of targeted
companies and thus assess if recurring payments behavior are shared in the payment
ecosystem.
To the best of our knowledge, our work is the first to use a graph-based approach paired

with Self-Organizing Maps in order to address the issue of SIF detection.
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Table 1 Structure of the History data record. The History dataset is composed of 950,929 records
collected from 6,063 companies over two years

Feature Type Description

Client Nominal (ID) Identification number of the client issuing the transaction.

Supplier Nominal (ID) Identification number of the supplier receiving the transaction.

Account Nominal (ID) Identification number of the bank account to which the money is transferred.

Date Timestamp (Month) Timestamp indicating the date when the transaction took place.

SiS-id fraud detection platform
While SIF is a widespread fraud, it is mostly dealt with internally by companies victim
of the fraud. There are three main reasons that motivate the lack of collaboration in SIF
detection: firstly, being public about being victim of a fraud can cause a breach of trust and
bad publicity for the company. Secondly, due to the competitive nature of the Business-to-
Business ecosystem, information about the relationship between a client and its suppliers
is a sensitive knowledge that could lead to economic attacks if divulged. Finally, having a
successful in-house fraud detection system provides an edge for the company that owns it,
and thus such a system would not be willingly shared with competitors. However, the cost
of creating andmaintaining complex fraud detection systems is sometimes prohibitive for
a large number of companies.
In this context, the company SiS-id1 proposes to act as a trusted third party focused on

Supplier Impersonation Fraud detection and mitigation. The company, started in 2016,
develops several SIF fraud mitigation tools that other companies can use “as a service”.
SiS-id emphasizes strongly on the privacy and security of the data shared by their clients
that they use to develop detection techniques. Currently, SiS-id proposes two SIF mitiga-
tion systems: firstly a fraud detection system based on the relationship network created
in the data shared by each of its clients, and secondly a secure repository for trusted bank
accounts corresponding to verified suppliers. In this paper, we propose a data-driven sys-
tem that proposes a way to improve SiS-id’s current expert-based system to perform SIF
detection.
The remainder of this section describes the dataset available to SiS-id to perform SIF

detection, along with the system they implemented on the platform.

History dataset

The SiS-id SIF detection system uses a set of historical transactions performed by SiS-id’s
clients. In this section, we describe this dataset in detail.
The set of B2B transactions used by the SiS-id detection system is an aggregation of

the payments performed by SiS-id’s client companies between July 2016 and July 2019.
These transactions consists of a feature vector of 4 features : client identification number,
supplier identification number, target account identification number, and date of the pay-
ment. For the sake of storage, all of the transactions involving the same client, supplier
and destination account during a single month are aggregated, resulting in the creation of
a fifth feature representing the number of similar transactions issued during the month.
The time granularity of the transaction is thus a month. Table 1 shows an overview of the
features.

1https://www.sis-id.com/

https://www.sis-id.com/
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The amount of payment is a feature found in most financial fraud detection systems (as
seen in Bolton et al. (2002)). However, this data is very critical for companies (as described
in “SiS-id fraud detection platform” section) , this feature was not shared with SiS-id by
the companies that agreed to collaborate on the creation of the History dataset. Indeed,
disclosing the amount of the transactions issued to their suppliers might divulge eco-
nomic insights regarding their financial well-being, as well as provide a useful baseline for
potential frauds. Thus, GraphSIF relies only on payments without their amounts.
In order to preserve the confidentiality of the data, a secure hash function is applied to

the three distinct identifiers (client, supplier, account) so that no link can be established
between the data in the history and real-life companies. While this mitigates the risks of
damage in case of data leak, it also means that the same company will have a different
identifier whether it has issued a transaction, or received a transaction.
At the time of writing, 950,929 transaction records are available in the History dataset.

These transactions are issued by 6,063 unique companies. This number is more than the
number of SiS-id’s client companies. This is explained by the fact that SiS-id’s client com-
panies can represent a group of several branches such as a multinational group. In this
case, each firm possesses its own identification number, but only a global entity will be
SiS-id’s client. 215,056 unique supplier companies are also found in the dataset, along with
262,157 unique bank accounts to which a payment was transferred. The fact that more
bank accounts than supplier companies exist indicates that some suppliers use more than
one bank account to be paid.
This dataset represents all the transactions performed by all of SiS-id clients for two

years. However, there is no available information about the legitimacy of these data, and
thus no knowledge of which transactions are fraudulent and which are legitimate.
Due to the economic sensitivity of the data for the companies (as discussed in

“SiS-id fraud detection platform” section, no sample can be made publicly available at the
moment. However, a request for data samples can be submitted directly to SiS-id through
their website2, or by contacting Laurent Sarrat, co-author of this paper.

Audit dataset

A second set of transactions is available thanks to SiS-id. It consists of the list of trans-
actions that were analyzed using the expert system in the past 2 years (July 2017 - July
2019). The dataset, called the “Audit” dataset, is composed of 218,325 suspicious transac-
tions submitted by 317 unique client companies. The transactions underwent the fraud
detection process devised by SiS-id, and were labeled with a legitimacy label : “high” indi-
cate that the transaction have a high chance of being legitimate, “medium” meaning that
the rule engine lacks the necessary information to assert if the transaction is legitimate or
not, and “low” means that the transaction’s legitimacy is low, which can be the case if the
transaction is either invalid or fraudulent.
This dataset possesses the following properties:

1 It contains real life queries for transaction validation made by companies.
2 Each of the transaction of this dataset contains a target variable corresponding to

the classification done by the rule engine.
3 The transactions were cross-validated by the clients for consistency.

2https://www.sis-id.com/#contact

https://www.sis-id.com/#contact
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The legitimacy label found in the dataset might tempt us to use this dataset to perform
supervised learning. However, this approach has a major drawback: by using data analysis
on a dataset that is the result of the rule-engine system (described in the next section),
we will only manage to “rediscover” the rules. However, this dataset might be used as a
validation set for other fraud detection systems, in order to compare their performance
with SiS-id’s expert system and investigate the potential convergence of their results.

SiS-id expert system

The fraud detection system SiS-id currently runs on its platform3 is an expert fraud detec-
tion system, where a potentially fraudulent transaction is examined in order to assert
its legitimacy, using knowledge available on the platform. This kind of systems inherits
directly from the tradition of fraud detection teams Kim and Sohn (2012), and aims to for-
malize their knowledge in order to efficiently process a large number of transactions. The
fraud detection system designed by SiS-id consists of two separate steps: a feature engi-
neering step where the features from the tested transaction are used to gather additional
information, and then the gathered data is matched against a set of expert-defined rules
in order to assert the transaction’s legitimacy. For confidentiality reasons, it is not possi-
ble to discuss the inner workings of the system in detail. However, it has been designed
by a team of SIF detection experts and thus provides a valid approximation of the expert
knowledge.

GraphSIF overview
GraphSIF is a SIF detection system based on anomaly detection that uses the relationships
created between the companies interacting in a B2B environment in order to determine
the legitimacy of a transaction, given the company that issued the payment.
This system is composed of four phases:

1 A pre-processing phase, where historical transactions are sorted by the companies
that issued them, and grouped in time windows in order to describe a
time-evolving sequence composed of several fixed-length windows of transactions,
describing the behavior of a specific client. This phase is described in
“Transactions pre-processing” section.

2 A feature engineering phase where each of the windows of transactions is
transformed into a graph. This graph sums up the interactions that occurs between
the client and its suppliers during the specified windows.
“Graph-based feature engineering” section describes this phase.

3 An anomaly detection phase where a specific transaction (the “suspicious”
transaction) is added to the most recent graph, creating a “test graph”. This graph’s
similarity with the ones occurring in the historical sequence is computed.
“Anomaly detection” section provides more details about this phase.

4 A label attribution phase where the similarity of the test graph given a set of
different sizes of the windows of transactions are aggregated. A legitimacy label
derived from the aggregation score is computed. Details about this phase are found
in “Label attribution” section.

3https://my.sis-id.com

https://my.sis-id.com
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Fig. 1 GraphSIF overview

Figure 1 shows an overview of the process. A transaction t involving the client C, the
supplier S and the account A at a date d is given as input to GraphSIF. For a set of window
sizes ws1,ws2, ...,wsk , the following process is repeated:
First, the identifier of C is used to gather all transactions involving C (Hist(C)) from

the History dataset (that contains the list of all the transactions occurring between all
the companies of the B2B ecosystem). Then, this list of transactions is ordered by date of
occurrence and split in N fixed-size windows of size wsi where i ∈ 1, ..., k. The sequence
of transactions (dubbed “behavior sequence”) is then sent to the next phase. An the same
time, the oldest transaction of the most recent window of the sequence (wN ) is removed
and t is added as its most recent transaction, creating the “test window” wt . This step
allows us to isolate the transaction relevant to the specific client and suppliers potentially
victims of the supplier impersonation fraud.
In the next step, the transactions found in each window w1, ...,wN and wt are used to

create a graph that represents the relationships between C and all of its suppliers. Each
window is complemented by a set of transactions from the History dataset Hist(Swi),
where Swi is the set of supplier involved with C during wi found in the History Dataset.
Similarly, Hist(Swt) is used to create the test graph corresponding to wt . The graphs are
then transformed into a histogram that uses relationships between the accounts paid by
C and used by its supplier as characterizing features of the graphs. Each of the graphs
is converted into its corresponding histogram Hi, thus creating the sequence H1, ...,HN
and Ht the histogram corresponding to the test graph. This step allows us to transform
a sequence of transaction into a feature vector representing the relationship between a
client and its suppliers, taking into account the historical behavior of the client.
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These histograms are then used to assert the similarity of Ht with the histograms of
the behavior sequence H1, ...,HN . First, the histograms are clustered using the clustering
algorithm K-Means Jain (2010), and then are used to train a Self-Organizing Map (SOM)
(Brockett et al. (2006)). The k centroids C1, ...,CK are also located on the SOM. Then, Ht
is assigned a cluster using the previously trained K-Means algorithm, and its similarity
with the other members of the cluster is computed using the z-score metric. This anomaly
detection step allows the system to distinguish usual relationship and unusual ones, that
are more likely to be fraud attempts.
Once all the z-scores corresponding to the set of window sizes ws1, ...,wsk is computed,

a threshold function is applied and a weighted mean is used to aggregate the results into
a label indicating the legitimacy of the transaction. This step is needed to consider the
different granularity of each windows, and to produce a label that synthesizes all the
knowledge provided by the previous analysis.
In the remainder of the paper, we first describe the different algorithms used at each

phase of the system, and discuss the underlying motives behind their design. We then
provide an experimental evaluation of the system using the labeled transactions found in
the Audit dataset that contains the results of the expert system designed by SiS-id.

Transactions pre-processing
This section details the first phase of the system, where the transactions from the His-
tory dataset are pre-processed in order to create local behavior profiles. The goal of this
pre-processing is to partition the transactions emitted by a client C in order to detect
repeatability in its payments.

Company local profile

In this phase of the fraud detection system, all the transactions involving the client C
involved in the tested transaction t =[C,A, S, d] are gathered from the History dataset.
The History dataset contains all the NH transactions made by all clients in the studied
B2B environment. By isolating only the transactions issued by C, we create a local profile
of C. As shown by Bolton et al. (2001), the use of local profile allows to detect anomalous
behavior that would have been deemed legitimate when using a global profile. This local
profile is dubbed Hist(C).

Behavior sequence

As companies evolve and thus interact differently with suppliers or clients, the transac-
tions they issue or receive change as time passes. In order to quantify this evolution, we
first order all the transactions in Hist(C) temporally. This gives us an overview of C’s
interaction with its supplier through time. Then, in order to characterize this behavior, we
partition Hist(C) into sets of transactions of size ws, that we call “windows”. Using fixed-
length windows in order to describe the behavior of a system is a well-known technique,
and has been successfully used in fraud detection systems such as Qian and Xin (2007)
and Mongiovì et al. (2013).

Window creation

In order to create the windows, two kinds of partitioning are possible: by transaction date
(from July 1st to August 1st for example), or by transaction rank (10th transaction to 5th
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Fig. 2 Behavior sequence creation The behavior sequence is created by partitioning the list of transactions
issued bt C in the History dataset into sequential windows of size ws

transaction, 5th transaction to 1st transaction...). A major issue with partitioning by date
is that there is no guarantee that the transactions will be homogeneously divided into
the different windows. In the most extreme case, all transactions might occur in a single
window, and all the other windows are rendered useless for the system. Thus, creating
windows by transaction order allows us to ensure that an equal number of transactions
will be found in each windows. Figure 2 shows an overview of the windows creation
process.
The number of windows N created from Hist(C) is inversely proportional with the size

ws of the windows: N = NH
ws . In the case when NH is not a multiple of ws, the NH%ws

oldest transactions in Hist(C) are discarded, where % is the modulo operation. Indeed,
the oldest transactions are the least likely to inform us of a fraud in the present.
The size ws of the windows has a major impact on the system. A small window size

creates more data points for the system to analyze, at the cost of a decreased variability in
the possible payment behavior, and thus a less detailed view of C’s behavior. Inversely, a
larger window allows for more detailed view of the system, but less input will be provided
to the system. Additionally, adding more transactions might add too much noise to the
window and thus obfuscate meaningful patterns. Therefore, a careful trade-off has to be
found for ws. We propose a way to solve this issue in “Label attribution” section.

Test window

In order to assert the legitimacy of a singular transaction, we use the previously parti-
tioned sequence as a basis. The key hypothesis is that a legitimate transaction will not
significantly disturb the payment behavior of C, while a fraudulent transaction will be dif-
ferent from the previously recorded behavior. The transaction to be tested is added to the
most recent windows of the sequence, whose oldest transaction has been removed, thus
simulating the occurrence of the new transaction as the next step in the sequence. Indeed,
if only a single transaction was tested against the partitioned sequence, an anomaly would
always be found due to the discrepancy in the number of transactions.
In the next section we detail how the relational data found in partitioned sequence

(called “behavior sequence”) and the test window is extracted and used to assert the
legitimacy of the tested transaction.

Graph-based feature engineering
In this phase, each of the windows created in the pre-processing phase is transformed
into a graph. This graph, called “transaction graph”, allows the representation of the rela-
tionships between companies as a mathematical structure. The graph is composed of
companies and accounts represented as vertices (also called “nodes”), while the flow of
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money between companies creates the edges of the graph. However, in order to use the
graphs derived from the behavior sequence as a basis for the anomaly detection system,
they need to be converted into a structured data form (commonly referred to as “feature
vector”) in order to be used. This type of transformation is known as “graph embedding”
(Goyal and Ferrara (2018)). We propose a tailored graph embedding approach in order
to express a transaction graph as a feature vector called “graph histogram”. This approach
exploits several properties of the transaction graph in order to construct the embedding.
The graph histograms corresponding to the behavior sequence are then used to train our
anomaly detection system, while the graph histogram corresponding to the test windows
is investigated.
The role of graph theory in GraphSIF is to transform the four attributes found in the

History dataset into a set of graph-theoretic features allowing to perform fraud detec-
tion by taking into account the underlying relationships between companies and bank
accounts found in the dataset. In the original form of the History dataset, the data points
cannot be used directly to construct meaningful models, as their feature are categorical
variables. The use of graph theory allows GraphSIF to express the links between each
client and their suppliers through the bank account that they share, and to transform the
list of categorical variables into a set of embedded graphs. Without this step the model
could not be computed and thus fraud detection could only be performed on the reduced
subset of original features from the History dataset.

Transaction graph creation

In this subsection, we describe the process of creating a transaction graph from a set T of
transactions (as a reminder, a transaction t has the following structure: t = [Ct ,At , St , dt]
where Ct is the client issuing the transaction, At is the account receiving money from Ct ,
St is the supplier receiving the transaction, and dt the date when the transaction takes
place). A graph G =< V ,E > is composed of two sets: a set of vertices V that represents
the entity of the targeted system, and a set E of edges that represents the relationship of
the entities, and e ∈ E =< n1, n2 > with n1, n2 ∈ V2.
Algorithm 1 shows the process that creates a transaction graphGC,T from a set of trans-

action T . An example of output of Algorithm 1 is given in Fig. 3. The algorithm takes as
input a client C and parses T in order to map all of the accounts and suppliers involved
in a transaction with C as vertices. For each transaction, two edges are created: one that
links C and the account involved in the transaction, and one that links the account with
the supplier receiving payment for the transaction. If a vertex representing an account or
a supplier is already in the vertices set, it is not duplicated. Similarly, since edges already
in the edge set are not duplicated, an occurrence metric is updated in both cases in order
to prevent the loss of information.
If the algorithm stops at this point, only the payment information related to C is used.

This means that if an account is used to pay a supplier S by a client different than C, it will
not appear on the graph. In order to add the information provided by other clients, the
accounts they use to pay S are appended to the graph, along with edges that link them to
S. This addition allows us to make use of the collaborative knowledge of the other clients.
If the amount of payment was available, a possible use for the feature would be to assign

weight to thedifferentedges insteadofusing a simple binary weight.While having no impact
on the graph structure, this might indicate the accounts privileged by a client company.
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Algorithm 1: Transaction Graph Creation
Data:

• C: identifier of Client company
• T : Set of transactions

Result:

• V : Set of vertices of GC,T
• E: Set of edges of GC,T

1 Vc = C, Vs =[ ], Va =[ ], E =[ ];
2 foreach t = [Ct ,At , St , dt] in T do
3 if Ct = C then
4 Va.insert(At)

5 ; Vs.insert(St);
6 E.insert((C,At));
7 E.insert((At , St));
8 T .remove(t);
9 foreach r = [Cr ,Ar , Sr , dr] in T do

10 if Sr in Vs then
11 Va.insert(Ar);
12 E.insert((Ar , Sr));
13 N = Vc ∪ Vs ∪ Va

Fig. 3 Transaction Graph T1. The transaction graph is created by assigning vertices to every account and
supplier companie found in the set of transactions. Edges are created when an account and a supplier
company are found in the same transaction
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Properties of a transaction graph

A transaction graphGC,T shows interesting properties. It is a directed graph, as the edges
represent the movement of funds from a client to a supplier through an account. A trans-
action graph is also a bipartite graph. A bipartite graph is defined in Baesens et al. (2015)
as a graph whose vertices can be divided into two disjoint and independent sets u and
v and such that every edge connects a vertex in u to one in v. The transaction graph
satisfies this property as the created edges are only from company to account and from
account to company (no account-to-account or company-to-company edges exist in the
graph). Table 2 shows the representation of the transaction graph T1 (shown in Fig. 3)
as a connectivity matrix: each of the row corresponds to a company vertex, while a col-
umn represents an account vertex. The value in the row indicate the number of times a
transaction has been issued involving the specified company and account.
From the connectivity matrix, it is apparent that the sole vertex representing the client

company (C1 in the example) plays a central role in the transaction graph. Centrality is an
important metric in graph as it informs how a vertex can influence its neighbors. More
specifically, the graph theoretic center is defined in Baesens et al. (2015) as the vertex with
the smallest maximum distance to all other vertices in the network. This vertex is always
the company vertex C in the case of a transaction graph GC,T . We use this property to
create payment patterns in order to characterize transaction graphs.

Payment patterns

In this subsection, we describe how we use the specific properties of a transaction graph
in order to create a set of features capturing the transaction relationship between a client
and the accounts used to pay its suppliers. Our approach is akin to the one developed by
Akoglu et al. (2010) where a similar featuring process is used to characterize ego-network
of specific nodes in the graph. In order to create the features, we first remove the client
company’s vertex from the graph (C1 in Fig. 3), thus creating a set of D of disconnected
sub-graphs composed of account vertices linked to supplier vertices. Among theseD sub-
graphs (that we dubbed “payment patterns”), if we only take into account the type of
the node (“Supplier” or “Account”) and not its label (“S1” or “A4”), then it might occur
that some of these sub-graphs are isomorphic, meaning that they share the exact same
structure Baesens et al. (2015). It is the case for example in Fig. 4 where the sub-graph
composed by (S2,A2) and (S6,A5) are isomorphic.

Table 2 Connectivity Matrix of Transaction Graph T1. Each column represents an account vertex.
Each row represents a company vertex. Numbers are the number of time a transaction created an
edge between the two vertices

A1 A2 A3 A4 A5 A6 A7

C1 1 1 1 1 1 1 0

S1 1 0 0 0 0 1 1

S2 0 1 0 0 0 0 0

S3 0 0 1 0 0 0 0

S4 0 0 1 1 0 0 0

S5 0 0 0 1 0 0 0

S6 0 0 0 0 1 0 0
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Fig. 4 Subgraphs (ṕatterns’) characterizing the transaction graph. Patterns are the connected subgraphs
found when removing the node C from the graph. They represent suppliers and accounts found together in
the set of transactions

This set of features can also be translated in the connectivity matrix shown in Table 2.
Removing the central node means ignoring the first row of the matrix. A connected sub-
graph can be connected in two ways: when a supplier is connected to a specific number of
accounts (which is the case for S1), or when an account is connected to a specific number
of account (such as A3). The case of Pattern C is a special one where the pattern satisfies
both of these conditions.
Functionally speaking, these connected sub-graphs indicate how the client interacts

with its suppliers, and thus shows a “map” of the client’s activity in the set ofT transactions
used to create the transaction graph.
In Fig. 5, we calculate the possible number of unique payment patterns that can be cre-

ated for a specific number of transactions based on Algorithm 1. This number seems to
grow at an exponential speed, meaning that for x transactions used to build the transac-
tion graph, xx possible unique payment patterns can be found. This number corresponds
to the number of features of an histogram. This fast growth in the number of features
indicates that our data point might be placed in a very sparse high-dimensional space.
Thus our system might fall prey to the curse of dimensionality Trunk (1979).
If the amount of the transactions were available, it could be used as a way to discriminate

identical patterns of transactions by computing the cumulative amount found in a pattern
and adding it as a feature for the anomaly detection model.

Feature set creation

In order to create an overview of a client’s behavior through time, we first use the trans-
actions found in each N windows created in the feature engineering process to create the
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Fig. 5 Number of possible payment patterns when using up to 10 transactions. The possible patterns are
computed from the maximum number of possible connections between the vertices of a given set of
transactions

N corresponding graphs centered on the client C. A “test graph” is also created for the
test window.We then transform the graph into a histogram with the technique previously
described, thus creating N histograms where the features are the unique connected sub-
graphs (i.e unique payment patterns) and the values are the number of occurrences of the
pattern in the graph. Table 3 shows an example of such a process with T1 representing the
graph shown in Fig. 3 and T2 and T3 representing other graphs. Similarly, the histogram
corresponding to the test graph is also created using the same process. These histograms
are then used as the basic features of our anomaly detection system.
Figure 6 shows an overview of the feature engineering process, proposed as a reminder.

First, the transactions’ windows created in the pre-processing phase are converted into
a transaction graph representing the relationships between a client and the accounts it
uses to pay its supplier. Then the transaction graphs are in turn transformed into a set of
feature vectors composed of the number of sub-graphs found in the transaction graphs.

Anomaly detection
In this section, we describe the anomaly detection system we use in GraphSIF in order to
assert if the test graph created by the tested transaction and the most recent transactions
of C is similar to the graphs found in C’s behavior sequence created from C’s historical
transactions.
The anomaly detection system relies on two main building blocks: a parametric cluster-

ing algorithm (K-means Jain (2010)) that create clusters of transaction graphs represented
as histograms according to their similarity, and a single-layer neural network called a
Self-Organizing Map Bullinaria (2004) that projects multi-dimensional features such as
the histograms into a two-dimensional space, in order to facilitate the computation of

Table 3 Examples of featurized sets of transactions

Transaction set ID Pattern A Pattern B Pattern C Pattern D

T1 2 1 1 0

T2 3 3 0 1

T3 1 0 0 0
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Fig. 6 Graph histogram sequence creation. First, each of the windows of the transaction sequence is
transformed into a graph composed of companies and accounts. Then the graphs are transformed into
histograms using their connected subgraphs

distance between feature vectors and to alleviate the curse of dimensionality (Trunk
1979) that states that the more dimensions, the more difficult it becomes to compute a
meaningful distance between two feature vectors.

Overview

Figure 7 shows an overview of the anomaly detection process. First, the N histograms
created at the end of the feature engineering phase are regrouped into clusters thanks to
the K-means algorithm. Each of the histograms are associated with their clusters, and the
centroid of each cluster Ci with i ∈ K is also computed. K is the number of clusters set as
the parameter for the K-means algorithm.
Then, the histograms are used to train a Self-Organizing Map (SOM). In order to do

so, each of the histogram is fed to the SOM, where a unique neuron (also called “node”)
is activated. The weights of this node and the eight neighboring ones are then updated
in order to match the values of the histogram. The operation is repeated for each of the
histograms until every one of them is associated with a node. Several histograms can be
associated with the same node. Finally, once the SOM is trained, the centroïd of each
cluster is fed to the SOM and the node activated by it is retrieved. This creates the “SOM
model” that is composed of the nodes trained with the histograms along with the nodes
corresponding to the centroids.

Fig. 7 Overview of the anomaly detection process. First the histograms from the training dataset are clustered
using k-means, and fed to a Self-Organizing Map. The histogram corresponding to the tested transaction is
compared with the model, and its similarity with the other histograms from its cluster is computed
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Once the SOMmodel created, when an histogram corresponding to a test graph needs
to be evaluated, it first goes through the clustering phase undergone by the other his-
tograms in order to be assigned a cluster c. Then, it is fed to the SOM in order to find the
node activated by it. The distance between this node nt and the node activated by the cen-
troid of the cluster c (nc) in the SOM (Dt) is retrieved, along with all the distance between
the nodes activated by the members of c and nc. All of these distances are then used to
compute the z-score Abdi (2007) of Dt . The z-score is a statistical measure that tells us
how many variation away a data point is from the mean. The higher the z-score, the less
similar an histogram is from the others.
In the remainder of this section we detail the different algorithms used to obtain the

z-score from our input data.

Training

In this subsection, we detail the training of the two models (the K-Means algorithm and
Self-Organizing Map)) used in the anomaly detection system. Training the models means
that we use the historical histograms created at the end of the graph-based feature engi-
neering phase to fit the models so that they accurately represent the past behavior of the
considered client. The training phase is divided in three parts: the histogram clustering
where the histograms are assigned a cluster, the SOM training where the weights of the
nodes of the SOM are adjusted to match the value of the histograms, and finally the his-
tograms projection where the SOM nodes corresponding to the histograms and centroids
are determined in order to be used in the testing phase.

Histograms clustering

Clustering the histograms is the first step of the training process. It consists of using the
K-Means Jain (2010) algorithm on the set of historical transactions in order to assign them
a cluster based on their similarity according to a selected distance metric. K-Means is a
well-known clustering algorithm that assigns clusters to feature vectors according to their
proximity to a centroid that is the mean of the member of the clusters when the algorithm
reaches convergence. This proximity is computed according to a distance metric such as
the Manhattan distance or the Euclidian distance. We use the Euclidian distance in our
current implementation.
Algorithm 2 shows an overview of the algorithm.
When using K-means, it is very important to carefully choose the number of clusters K

so that it represents accurately the underlying distribution of the data. Due to time con-
straints a thorough analysis of the optimal number of parameters could not be performed.
However, a preliminary experimental study conducted on a selected test company showed
that K = 3 seems to yield the best results in terms of stability of the cluster.
The motivation behind the use of a clustering algorithm as a first step in our training

process is to partition the local profile of a user in order to detect re-occurring transac-
tions graphs. As a graph represents the interaction of a client with its supplier, it is logical
to think that more than one type of transaction graph might occur in the lifetime of the
client company. For example, assuming that the transactions occur homogeneously every
month, two suppliers might be paid every sixthmonth using a specific account each, while
three other suppliers might use only one account to be paid every two months. These two
examples will create different transaction graphs throughout the behavior sequence, all
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Algorithm 2: Histograms clustering using K-Means
Data:

• cH = (h1, ..., hN ): Set of histograms (observations)
• C(1) =

(
C(1)
1 , ...,C(1)

k

)
: Set of centroïds at time 1

Result:

• S(t)
i : histograms for each clusters.

• C(t) =
(
C(t)
1 , ...,C(t)

k

)
: Set of centrods at time t

1 Init
(
C(1));

2 while Not convergence do

3 S(t)
i =

{
hp :

∥∥∥hp − C(t)
i

∥∥2 ≤∥∥ hp − C(t)
j

∥∥∥
2 ∀j, 1 ≤ j ≤ k

}
;

// assign the histograms to the closest centrod.

4 C(t+1)
i = 1

S(t)
i

∑
hj∈S(t)

i
hj;

// calculate the new position of the centrod as the mean

of the observations in the new cluster.

5 t = t + 1

sharing similar properties. These transaction graphs will be assigned different clusters by
the clustering algorithm, thus identifying two different component of the client’s behav-
ior. Thus, clustering the graphs into different clusters allows us to further decompose this
behavior.
This research could be furthered by studying the different clusters found and deter-

mining if they relate to a real behavior for the client company (such as the acquisition
of materials, taxes payments, and so on). However, in the context of fraud detection, we
solely focus on the fact that the clusters can be used as a point of comparison for new
transactions graphs.
Alternative clustering algorithms such as the k-medoids algorithm Park and Jun (2009)

or x-means algorithm Tsunenori (2000) might be investigated in order to optimize the
clustering process.

Self-Organizingmap training

One of the issue with using the transaction patterns described in the feature engineer-
ing phase as the dimension for our feature vectors is that we do not have direct control
on the dimension of said feature vectors. Furthermore, the number of possible patterns
grows exponentially with the number of transactions that are found in the set used to
create the underlying transaction graph. This fact leads to two major issues: firstly, the
feature vectors representing the algorithm might be projected in a high-dimensional but
sparse feature space, thus resulting in artificially high distance due to the curse of dimen-
sionality. Secondly, it is hard for a human to interpret the notion of proximity in such a
high-dimensional space. In order to alleviate these two issues, we use a Self-Organizing
Map, andmore particularly a Kohonen network. Kohonen and Self-learningmusical gram
(1989); Brockett et al. (2006); Bullinaria (2004). This type of network aims to organize all
of the feature vectors in a two-dimensional plane according to their similarity.
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A SOM is an unsupervised neural network based on competitive learning, in the form
of a neural network where only one neuron (also called node) is activated at any one time.
The specificity of the Kohonen network is that the single computational layer is arranged
in rows and columns, and each node is fully connected to all the source nodes in the input
layer. In order to train the SOM, after an initialization phase, three steps are performed
until convergence: sampling, matching and updating.
In the initialization phase, each of the neurons of the computational layer of the SOM

is assigned random activation weights. The values of the weights need to be reasonably
close so that every neuron has a chance to be activated. The number of activation weights
of a neuron is the same as the dimension of the feature space.
In the sampling phase, a sample x is drawn from the set of feature vectorsX. This sample

is randomly chosen so that the ordering of the set does not have any impact on the training
process.
In the matching phase, the winning neuron I(x) is found by comparing the weight vec-

tors of each neuron and finding the one closest to the values of the input vector. More
specifically, the similarity of the vector to a neuron j’s weights is computed using a dis-
criminant function dj(x) = ∑D

i=1
(
xi − wji

)2. Closely related input vectors might activate
the same winning neuron I(x).
In the updating phase, the winning neuron and its neighbors are updated using the

equation

�wj,i = η(t)Tj,I(x)
(
xi − wji

)
. (1)

In this equation, Tj,I(x) symbolizes the topological neighborhood of the winning neurons,

and is defined as Tj,I(x) = e
−S2jI (x)
2σ2 where σ is the size of the neighborhood of the winning

neuron. η(t) is the learning rate that dictates how the weights of the winning neuron and
its neighbors gets to be updated to a value closest to the input vector. This learning rate is
defined as

η(t) = η0 e
−t
τ (2)

where η0 is the initial learning rate and τ a parameter for the exponential decay function
that decrease the learning rate over time.
The sampling phase, matching phase, and updating phase are repeated until the SOM

reaches convergence, meaning that no significant modification in the weights occurs.
In our setting, the set of feature vectors X corresponds to the set of histograms H

created by the feature engineering process.

Histograms projection

Once the SOM is training and convergence is reached, an additional step is performed:
each histogram h found in the set of created histograms H is fed to the SOM, and the
neurons n(h) activated by the histogram is associated to it. Similarly, each centroid c of k
centroids created by the clustering phase are also fed to the SOM and the neurons n(c)
are associated with the centroids.

This phase allows us to project the histograms from their high-dimensional feature
space to the 2-dimensional space of the SOM nodes, in a way that preserves their sim-
ilarity. A valuable effect of this projection is that it enables a human expert to read and
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interpret the created map, and thus allows us to use human knowledge to understand the
transactions patterns uncovered.

Testing

In the testing phase, a transaction is given to the anomaly detection system in order to
assert its similarity withC’s historical transactions. Before being submitted to the anomaly
detection system, the test transaction is integrated to the most recent transactions of C
and turned into a transaction histogram following the steps of the feature engineering
process previously described. The result of this phase is a legitimacy score summing up
how distant the transaction is from the historical ones. This phase is divided in 3 steps:
the test histogram clustering, then the SOM distance retrieval, and finally the similarity
computation.

Test histogram clustering

In this step, the test histogram ht is assigned a cluster based on the centroids found in the
training phase. It is assigned the cluster whose Euclidian distance is the closest, following
the equation

cht = min(ci :
{∥∥ht − Ci

∥∥2 ≤∥∥ ht − Cj
∥∥2 ∀j, 1 ≤ j ≤ k

}
(3)

Fig. 8 Trained SOM Each point represents a SOM node. The color represent clusters. The triangle represents
the node activated by the center of the corresponding cluster. Nodes showing no color have not been
activated during the training phase
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Assigning a cluster to ht allows us to compare it to the historical transactions closest to
it. Furthermore, as the centroids determined by K-means algorithm represent the mean
of all the historical transactions of the cluster, it represents the representative member of
the cluster. Thus, the farthest ht is from the centroid, the less similar to the other member
of the cluster it is. In other words, the further away ht is is from the centroid, then the
closer from the edge of the cluster it is, and thus is dissimilar to the other members of the
cluster. However, as mentioned previously, the curse of dimensionality might hinder the
computation of a meaningful distance in our case. Thus, we use the trained SOM in order
to compute the similarity of ht with the member of its cluster. Figure 8 shows a trained
SOM with the each node colored with its corresponding cluster, along with the nodes
activated by the cluster center. Figure 9 shows an overview of the labeling process.

Self-organizingmap distance retrieval

s In this phase, we feed ht to the previously trained SOM and thus retrieve nht the neuron
activated by ht , and we compute D

(
nht , ncht

)
the Euclidian distance between the neuron

activated by ht and the neuron activated by cht that is the centroïd of the cluster assigned
to ht .
Once this distance is acquired, it might be tempting to use it directly as a way to deter-

mine ht ’s legitimacy score, by for example assigning a threshold distance from which ht
would be considered anomalous. However, assigning a value to the threshold might prove
a challenge as the distance corresponds to a neuron-to-neuron distance and not a vector-
to-vector distance. Thus, it is not clear what the meaning of such a threshold would be.
We propose a solution to this issue in “Label attribution” section.

Similarity computation

In order to provide a more robust way to assert ht ’s similarity, the distances from the other
histogram members of the cluster Cht and its centroid

({
D(n(hi), n(cht )) ∀hi ∈ Sht

} = D
)

are also retrieved. Once retrieved, the z-score ofD(n(ht), n(cht ))with respect toD is com-
puted. The z-score, as described in Abdi (2007), is a statistical metric that corresponds to
how many standard deviation away a data point is from the mean of an ensemble. In our
case, it gives us insight about how far away ht is from the centroid, with respect to all the
other members of the cluster. The higher the z-score is, the more dissimilar ht is from the
other members of the clusters, and thus the more likely it is to be an anomaly.

Label attribution
The previously described training and testing algorithm uses a set of historical histograms
to assert the similarity of a test histogram, through the computation of a z-score. However,
the computation of these histograms is dependent on the size of the window of trans-
action ws that is used in the pre-processing algorithm. Indeed, the window size directly
impacts the graph extracted from the window, and thus the histogram describing the
graph.

Impact of window size

A small window size will create smaller graphs that encompass the short-time behavior
of a client C. Furthermore, a small window size will also provide more behavior his-
tograms to perform the clustering and SOM training, at the expense of a decrease in the
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Fig. 9 Label attribution process. A weighted mean combining the similarity score computed from various
window size is used to compute the final label of the tested transaction

complexity of patterns found in a graph, as less transactions means less possible relation-
ships between account and supplier. Lastly, anomaly detection using graphs created from
small windows are less stable as adding a single transaction can create a huge topological
difference between two graphs.
On the contrary, a large window size will create larger graphs, that sums up a large

number of transaction and thus the long-term behavior of the client. However, as the
number of transactions needed to create the graphs will be higher, less data points will be
created. As a certain amount of data point (depending on the size of the SOM) is needed
for the training algorithm, very high windows size are thus not suitable for the detection
system. However, larger transaction graphs means that more complex patterns might be
formed, which would have been missed if smaller windows were used. Lastly, using a
large window size means that the topological modification following the introduction of
a single transaction might not be enough for the anomaly detection system to pick up an
anomaly.

Optimizing windows size

A straightforward way to determine which windows size is more suitable for anomaly
detection for a specific client C would be to perform an optimization method such as
grid search Bergstra and Bengio (2012) or random search Bergstra and Bengio (2012).
However, these optimization methods rely on the assumption that target labels are
available, which is not the case in our use-case. Thus, an alternate method has to be
found.
Instead of trying to optimize the size of the window, a possible solution would be to

perform the anomaly detection in a range of different windows size, and aggregate the
results in a way similar to bagging Dietterich (2000). This way, the anomaly detection
system would be able to draw its conclusion from both small size transaction graphs and
high size transactions graph when assigning the legitimacy score of a transaction.
As a way to perform this aggregation, the following algorithm is proposed. For every size

ws inW of length l(W ), the pre-processing phase, feature engineering phase and anomaly
detection phase of the anomaly detection system are performed, effectively creating l(W )

anomaly detection systems, and a z-score is computed for a transaction t from each of
them. Then, the following process is applied:

1 The z-scores undergo a discretization process when the score is turned into one of
the three legitimacy labels (“high”,“medium”,“low”). In order to do so, two risk
thresholds (0 < r1 < r2 < 1) are used as parameters for the threshold function.
These risk thresholds represent the fraction of the maximal z-score corresponding
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to each of the legitimacy labels. As a rule of thumb, a z-score of 3 indicates that a
value is an outlier with respect to a give data set. Thus, a risk score r1 = 0.2
indicates that if the z-score of a given value is smaller than 0.2 ∗ 3 = 0.6 then it is
considered legitimate by the anomaly detection system.
The risk thresholds are defined by the investigation team, as it relies on the costs
implied by a false positive (legitimate transaction mislabeled as fraud) or a false
negative (fraud mislabeled as legitimate transaction). These costs depend on
factors that reside outside of the scope of the anomaly detection system, and thus
need to be asserted by a team of experts.

2 Each of the label is assigned a weight (wh,wm,wl) that represent a bonus in the
overall legitimacy score. These weights can be parameterized by the investigator in
order to control the sensitivity of the system. Usually, wh > wm > 0 > wl so that
"high" legitimacy labels pull the score up and “low” legitimacy label decrease the
overall legitimacy score.

3 The sum of the l(W ) weights is computed and normalized so that an overall
legitimacy score 0 < LW < 1 is calculated.

LW can also be discretized using a threshold function if the need to provide labels is
found. This threshold function can use as input a list of threshold risks δ1, δ2, ..., δn cor-
responding to the operational needs of the fraud detection team. Alternatively, a voting
systemmight be used in order to aggregate the value of each of the anomaly detection sys-
tems. This label attribution phase thus alleviates the need to search for an optimal value of
ws and allows the anomaly detection to be performed on both short-term and long-term
transaction behavior of the investigated client C.
If the amount of transactions were available, it could be used to create a cost function

that would impact the thresholding parameters so that more attention would be given to
high-value transactions.

Experimental results
In this section, we discuss the experimental setting used to assert the performance of
GraphSIF, and show the experimental results obtained by running GraphSIF on a set of
transactions previously labeled by SiS-id expert system.While these labels provide a base-
line for GraphSIF, the labels of the expert system does not represent the ground truth
about fraud, as the “medium” legitimacy label represents a lack of knowledge from the
expert system, while the “low” legitimacy label can be issued in both case of fraud or
invalid transaction. Thus, our first goal in this experiment is to assert the consistency
of GraphSIF with human knowledge, as the ground truth concerning fraud detection is
unknown. The second goal of this evaluation is to compute the operational efficiency of
GraphSIF.
This experimental evaluation is divided in four parts: first, the experimental settings

are described. Then, a single client is analyzed in order to detail the consistency between
GraphSIF and SiS-id expert system in a case study. Then the global performances of
GraphSIF are discussed. Finally a discussion about the results is provided.

Experimental settings

In order to produce these results, GraphSIF has been run on a laptop running Ubuntu
18.04.4 with an Intel Core i7-10510U CPU and a 16 GB memory. The data used to train
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the model is the History dataset previously described in “SiS-id fraud detection plat-
form” section, consisting in a set of unlabeled transactions between client companies and
suppliers companies. The data used to test our model is the Audit dataset described in
“SiS-id fraud detection platform” section.
In order to perform our experimentation, each of the client company found in the Audit

dataset is selected. The corresponding subset of transaction from the History dataset is
used to train GraphSIF, and then a sample of at most 1000 transactions from the Audit
dataset is used to assert the consistency of the results with SiS-id’s expert system.
The different parameters used in the experiment are described in Table 4.

Case study

In this section we evaluate the performance of GraphSIF on the subset of transaction
issued by a single client C. In this evaluation, only the transaction issued by C in the Audit
dataset are considered. This subset contains 1000 test transactions to evaluate the per-
formances and 218,325 historical transactions for the History Dataset to train the model.
First, we analyze the consistency of GraphSIF with the expert system, and then we present
the operational efficiency of our system.

Consistency

We first consider how close the results of GraphSIF are with the results of the expert
system.While these results can not be considered ground truth, as the expert system does
not distinguish between fraudulent and invalid transactions, they still provide a baseline
for the analysis of GraphSIF results.

High Legitimacy Label First, we consider the results given by both the expert system
and GraphSIF concerning the high legitimacy labels. Figure 10 shows a Venn diagram
indicating the distribution of the high legitimacy label. The consistency of the two set is
not high, only 19 out of the 167 transactions given a “high” legitimacy label by the expert
systems are given the same label by GraphSIF. However, this inconsistency might be
explained by the fact that the expert system relies on knowledge internal to the platform,
in the form of a registration of secured suppliers, that is not available for the graph-based
model.

Table 4 Parameters used in the experience

Parameter Value

Window size range [2, 5, 8, 11, 14, 17, 20, 23]

K 3

Z-score thresholds [0.2, 0.5]

Std max 3

Label weights [20, 10, 0]

Risk thresholds [0.8, 0.5]

SOM Parameter Value

Map Size 10x10

Lattice rectangular

Normalization var

Initialization PCA

Neighborhood Gaussian

Training batch



Canillas et al. Applied Network Science            (2020) 5:40 Page 24 of 31

Fig. 10 Distribution of “high” legitimacy label. The high legitimacy label corresponds to a trusted transaction

Table 5 shows the confusion matrix indicating the complete distribution of each label.
Most of the high legitimacy labels (128 out of 167) have been labeled as low legitimacy
transactions by GraphSIF. This behavior is consistent with the hypothesis of the expert
system using additional knowledge to perform its classification.

Medium Legitimacy Label Then, we consider the results given by both the expert
system and GraphSIF concerning the medium legitimacy labels. Figure 11 shows the dis-
tribution of the medium legitimacy label. For the expert system, a medium label indicates
a lack of knowledge. Almost a third (313 out of 1000) of the transactions have been
assigned this label by the expert system. On the contrary, a medium label doesn’t indicate
a lack of knowledge for GraphSIF, but rather informs the user that a specific transaction is
slightly unusual. Thus the consistency between the two sets is not really expected. How-
ever, the low number of transactions labeled with the medium label by GraphSIF (50 out
of 1000) seems to indicate a higher assertiveness of the proposed model. Table 5 shows
that most (217 out of 291) of themedium labels given by the expert systemwhere assigned
a low legitimacy label by GraphSIF.

Low Legitimacy Label Finally, we consider the results given by both the expert sys-
tem and GraphSIF concerning the low legitimacy labels. Figure 12 shows the distribution
of the low legitimacy label. There is a high consistency between the expert system and
GraphSIF concerning this set of suspicious transactions, as 501 out of 520 transactions
where given the low legitimacy label by both of the detection systems. The 345 transac-
tion assigned a low legitimacy transaction by GraphSIF and not the expert system come
from the two other sets. Furthermore, the last row of Table 5 shows that only a hand-
ful of transactions labeled as low by the expert system have been given another label by

Table 5 Confusion Matrix - SiS Rule Engine’s and GraphSIF

GraphSIF →
Expert system ↓ High Medium Low

High 19 20 128

Medium 74 22 217

Low 11 8 501
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Fig. 11 Distribution of “medium” legitimacy label. The medium legitimacy label corresponds to a transaction
that is not trusted but doesn’t show fraudulent behavior

GraphSIF. It is possible that the 11 transactions given a low legitimacy label by the rule
engine could use knowledge not available for GraphSIF, such as when a supplier closes an
account.

Operational efficiency

In this section, we consider the operational efficiency of GraphSIF. GraphSIF, as opposed
to the rule engine used by the expert system, requires a pre-processing phrase and a

Fig. 12 Distribution of “low” legitimacy label. The low legitimacy label corresponds to an abnormal
transaction
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Fig. 13 Pre-processing and feature engineering time for each window size. This time corresponds to the
time taken to create the transaction sequence, the graphs and the histograms

training phase to be completed in an off-line fashion. Then a transaction can be assigned
a label.

Pre-processing time Figure 13 shows the time taken by GraphSIF to pre-process the
transaction. The results are separated by window size, as this parameter has a huge impact
on the quantity of windows created, and the amount of transactions in each window.
The pre-processing time seems to vary exponentially between 500 ms and 2500 ms

depending on the window size. A shorter window size leads to higher pre-processing time,
probably due to the fact that more windows are created.
In the case of the expert system, a pre-processing phase is also performed, requiring

calls to internal and external APIs (Application Programming Interface). This pre-
processing phase can take up to 3 seconds, which is significantly larger than GraphSIF
pre-processing time.

Training time Once the pre-processing phase is complete, the training phase can begin.
Figure 14 shows the time taken to perform the training phase. We can see that this time
il also correlated with the window size, and varies from 28 seconds to 25 seconds as the

Fig. 14 Training time for each window size. This time corresponds to the training of the Self-Organizing Map
and the clustering phase
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window size becomes larger. Two reasons might impact the decrease in training time: the
number of windows used to train the SOM is reduced and thus less data is available for
training, or, as the window grow larger, more distinctive patterns emerges and thus the
training is more easily performed.
In the case of the expert system, there is no training phase, however the rule engine has

to be updated in order to adapt to new fraud cases. This process is long and costly, as it
relies heavily on human input. GraphSIF data-driven evolution is thus an improvement.

Test time Figure 15 shows the time taken to perform the classification of each transac-
tion in the test set. While a slight increase is visible for a window size of 2, the test time
is mostly uniform and close to 300 ms. The expert system classification time is closer to
3 seconds, as the pre-processing has to be performed for each tested transaction. Thus
GraphSIF is faster than the expert system.

Global results

In this section we focus on GraphSIF’s behavior with the other clients of the Audit dataset,
in terms of consistency and operational efficiency. The experiment presented in this
section is conducted with every transaction of the Audit dataset. As opposed with the
case study proposed in the previous subsection, this experiment analyses the behavior of
each client company of the dataset in a separate manner, in order to assert the behav-
ior of GraphSIF in various settings, with an emphasis on the number of potential frauds
discovered by GraphSIF.

Global Consistency Figure 16 shows the True Negative Rate (TNR) for each client of
the Audit dataset. We define True Negative Rate as the number of transactions given a
low legitimacy label by both GraphSIF and the expert system, divided by the number of
transactions given a low legitimacy label by the expert system. It shows how consistent
GraphSIF is with the expert system regarding suspicious transactions. The dotted orange
line shows the mean TNR over all the clients (0.53), while the grey dotted line shows the
mean TNR of a random classification machine (0.29). We can see that while there is still
room for improvement, GraphSIF shows promising results in terms of consistency.

Fig. 15 Testing time for each window size. This time corresponds to the time taken to attribute a label to a
tested transaction
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Fig. 16 True Negative Rate for each client in the Audit dataset. The True Negative Rate represents the
number of fraudulent transactions correctly attributed by GraphSIF. The values on the x axis represent a client
company from the Audit dataset. The grey dotted line represents the random baseline, while the blue dotted
line represents the mean TNR over all clients

Furthermore, Fig. 16 allows us to pinpoint a set of client on which GraphSIF is
not accurate (rightmost ones). These clients are a promising starting point for further
improvements.
Figure 17 shows the True Positive Rate (TPR) for each client in the Audit dataset. TPR is

akin to TNR, but instead of counting the number of transactions given the low legitimacy
label, the number of transactions given the high legitimacy number is computed. The TPR
in our setting is fairly low (0.24), even lower than the one produced by randomly guessing
a label for the transactions (0.27). This highlights the fact that GraphSIF tends to assign
a low number of high legitimacy labels overall. Furthermore, the expert system’s usage of
outside information might also explain this discrepancy.

Fig. 17 True Positive Rate for each client in the Audit Dataset. The True Positive Rate represents the number
of fraudulent transactions correctly attributed by GraphSIF. The values on the x axis represent a client
company from the Audit dataset. The grey dotted line represents the random baseline, while the blue dotted
line represents the mean TPR over all clients
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However, in the context of fraud detection, it is more costly to assign a high legitimacy
label to a fraudulent transaction than to assign a low legitimacy label to a legitimate trans-
action. Thus, while improving the TPR is important for the future, this discrepancy does
not have a tremendous impact on GraphSIF usage.

Discussion

While results shows that GraphSIF is able to provide consistent results in terms of con-
sistency with the expert system, the most pressing issue is the lack of ground truths about
actual legitimate and fraudulent transaction. While SiS-id’s expert system provides an
alternative to expert knowledge regarding the labeled transaction, this system is prone to
error, most notably because fraud is dynamic and often changes faster than the rules of
an expert system. Furthermore, comparing GraphSIF graph-based approach and SiS-id
expert system is difficult, as they both rely on different types of knowledge (expert-based
vs data-driven). However, in the absence of a dataset containing trusted labels, comparing
our systems with SiS-id’s expert system is the only way to propose an evaluation of their
performance.
Although GraphSIF has been designed to handle Supplier Information Fraud, it could

be used to detect other kinds of frauds in various domains. A possible application might
be the detection of impersonation frauds over the telephone network, where a shift in
the patterns of calls is observed when a fraudster takes control of the telephone line of a
legitimate user. Similarly, GraphSIF could be used to detect unusual connection patterns
in a computer network, that may be markers of a cyber-attack. Furthermore, the SOM -
K-means model is agnostic to the specific features of the considered application, and thus
can be used in other use-cases.
In this work, GraphSIF only uses the relationship between one client and its suppliers

to perform its fraud detection. However, an interesting research direction would be to
consider a graph modeling the relationships between all the clients and all the suppliers
of the platform. Adapting some graph-based anomaly detection techniques to this graph
might lead to interesting results.

Conclusion
In this paper, we introduce GraphSIF, a novel feature-engineering process that creates
a feature vector based on the relationships between a client company and the accounts
it used to pay its supplier companies, providing a new tool to describe the underlying
transaction mechanism involved in their interaction.
Several recent papers such as Wachs and Kertész (2019); Dubols et al. (2007) and Mon-

giovì et al. (2013) propose a human interpretation of the patterns uncovered by their
approach and how they might suggest illegal behavior. The focus of our work is to empha-
size on the variation of behavior, instead of the behavior itself. However, the relation
between the uncovered patterns and fraud attempts is currently under investigation.
In conclusion, we used the temporal information contained in the transactions of the

History dataset to create a behavior sequence composed of the transactions emitted by a
client aggregated in several bounded time windows. We showed how to use this behavior
sequence to create a datamodel based on Self-Organizingmaps representing the behavior
of a client company through time. We then used this data model to infer the legitimacy
of new transactions using the K-means clustering algorithm, along with an aggregation
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algorithm allowing us to combine the results obtained for different window sizes in a
comprehensive score.
We presented the result of our classification system, first on a single company to inves-

tigate its performance locally, and then for a large set of companies from a large real-life
dataset. We investigated the consistency of GraphSIF’s results with the ones from the SiS-
id expert system, and analyzed its operational efficiency, showing that GraphSIF is a fast
alternative to the expert system.

Abbreviations
SIF: Supplier impersonation fraud; ADS: Anomaly detection system; SOM: Self-organizing map; B2B: Business-to-business;
API: Application programming interface; TPR: True positive rate; TNR: True negative rate
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