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;LJEL‘;%SLTK ?goggggjk]y:‘j:g;n Discovering the node roles in a network helps to solve diverse social problems. Role
Full list of author information is discovery attempts to predict the node roles from a network structure, and this
available at the end of the article method has been extensively studied in various fields. Role discovery using transfer

learning has many advantages, but methods using this approach face two kinds of
problems: domain-shift problems and model selection. To address these problems, we
propose a general framework that includes network representation learning, domain
adversarial learning for suppressing domain-shift problems, and model selection
without using target labels. As a result of computational experiments, we show on
publicly available datasets that the proposed model outperforms conventional
methods, the proposed model selection method performs well without using target
labels, and the proposed method can be used in real-world datasets. Furthermore, we
found that our framework suppressed domain-shift problems, worked well even with
differences between networks, and could handle imbalanced classes.

Keywords: Role discovery, Transfer learning, Domain adversarial learning, Model
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Introduction
Each individual node in a network can have different functions, which are called “roles"
(e.g. central nodes, peripheral nodes, clique members). Node roles can be discovered from
the structure of their networks, such as the locations of nodes within the entire network,
or from the structure of neighboring nodes. Role discovery attempts to take a graph and
pick out sets of structurally similar nodes (Rossi and Ahmed 2015). Role discovery has
become an active field within network research, and it is expected to be useful for solv-
ing diverse social problems. For instance, in a social network, identifying and focusing
on star-centers for advertisement could increase profit. Furthermore, observing chrono-
logical structural changes in individual nodes can lead to the identification of abnormal
nodes (Rossi et al. 2013).

Among several conventional methods, unsupervised learning has become mainstream
(Rossi and Ahmed 2015). Studies using this approach have predicted node roles by gener-
ating the features of nodes, clustering them, and assigning a role to each cluster. Although
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unsupervised learning can be effective in mining unknown information with relatively
low complexity, confirming the results and comparing methods are difficult tasks due to
the absence of any supervisor.

It would be advantageous to use supervised learning to overcome the difficulties of
unsupervised learning and improve performance as well. However, when there are not
sufficient labels on a given network, annotating appropriate roles to some nodes requires
deep domain knowledge, which causes a high cost.

Transfer learning, where a predictor learned on a source network is applied to a tar-
get network, can reduce labeling difficulty because it allows the source network to be
used repeatedly and applied to various networks once such a source network has been
created. Furthermore, data and pretrained models from different domains help to cre-
ate source networks easily, which facilitates transfer learning. Therefore, we focused on
transfer learning and proposed a high-performance method for role discovery.

A few studies (Ribeiro et al. 2017; Henderson et al. 2012) have investigated transfer
learning for role discovery, but their methods are likely to encounter domain-shift (Pan
et al. 2010) problems, where feature representations (i.e. domains) are slightly differ-
ent between the source and target domains. In such cases, when a model trained on a
source domain is applied to a target domain, the model experiences a significant drop
in performance. Our approach addresses domain-shift problems by applying a domain
adaptation technique, which attempts to transfer knowledge from the source domain to
the target domain undergoing a domain-shift. In particular, we use domain adversarial
learning, which makes the two node representations both similar and discriminative for
role discovery.

Another difficulty in transfer learning is model selection. Unlike supervised learning
settings, we have source and target data, neither of which can be considered inde-
pendent and identically distributed (IID). For this reason, model selection tailored for
transfer learning is necessary. Conventional studies (Zhong et al. 2010; Sugiyama et
al. 2007) have used the label or its ratio on the target data, which is not available in
unsupervised learning, requiring enormous efforts in making annotations or inferences.
Therefore, we propose a new model selection method without using labels on the target
network.

In this paper, we attempt to more accurately infer the node roles on a target network
using a source network. We propose a general framework for role discovery that includes
node representation learning, domain adaptation, and model selection. Node represen-
tation learning is used for generating node representations, where structurally similar
nodes have representations that are as similar as possible regardless of which network
nodes belong to. Then, we tailor domain adversarial learning (Ganin et al. 2016) for role
discovery to make node representations more domain-invariant and discriminative. Fur-
thermore, we introduce a validation network and propose a new model selection method
without using target labels.

A computational experiment on a barbell graph and a toy network shows that our
proposed method outperforms the conventional methods and that domain-invariant rep-
resentations leads to high accuracy. In addition, we discovered through an experiment on
the toy network and on Zachary’s Karate Club (Zachary 1977) that our proposed model
selection using a validation network has comparable performance to a model tuned on the
target network. Finally, we further explored whether the proposed method could achieve
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high accuracy in comparing real-world air-traffic networks, and we show an empirical
way of selecting the appropriate validation network in a practical role discovery problem.

This paper extends a previous study (Kikuta et al. 2019) by proposing a general frame-
work, presenting a new model selection method, and conducting experiments on different
datasets.

Related work

Role discovery

Role discovery attempts to divide nodes into sets of structurally similar nodes (Rossi and
Ahmed 2015). Methods for doing this can be categorized into unsupervised learning and

transfer learning.

Unsupervised learning

The first approach to unsupervised learning uses graph-based methods, which discover
roles directly from graph representations (e.g. adjacency matrices). Blockmodel (White et
al. 1976) creates a compact representation called a role-interaction graph and then groups
nodes according to their structural similarities. Stochastic Blockmodel (Nowicki and Sni-
jders 2001) uses a less strict definition of a role, which makes applying it to real-world
datasets easier. Burt (1976) computed a similarity matrix among nodes by calculating
the correlations between the rows of the adjacency matrix and then clustering the nodes
based on the similarity matrix. Brandes and Lerner (Brandes and Lerner 2010) computed
the eigenvectors of the adjacency matrix for discovering specific structural patterns (star-
centers, bridges, etc.). Although graph-based methods use a strict notion of a role and
lead to easier interpretation of the results, they tend to require a lot of computation, which
makes applying them to today’s large-scale networks difficult.

Another approach to unsupervised learning uses feature-based methods. Methods
using this approach involve the steps of embedding nodes into low-dimensional space,
clustering them, and assigning a role to each cluster. RolX (Henderson et al. 2012) extracts
the structural features, applies non-negative matrix factorization to a feature matrix,
and then assigns roles. struc2vec (Ribeiro et al. 2017) computes the structural distance
between nodes heuristically, grasps the context by a random walk, and brings structurally
similar nodes closer using Skip-gram (Mikolov et al. 2013). DRNE (Tu et al. 2018) uses a
recursive strategy to obtain node representations based on regular equivalence (Rossi and
Ahmed 2015).

Feature-based methods are flexible enough to determine complex roles on large-scale
networks and are widely used these days, but choosing the most effective features to use
is difficult.

Transfer learning

Transfer learning is widely used in various fields, such as link prediction (Cao et al. 2010)
and image classification (Duan et al. 2012). Transfer learning is also used to improve the
accuracy of role discovery (Rossi and Ahmed 2015). However, few studies have used trans-
fer learning in role discovery. RolX is used for transfer learning by extracting features from
both networks, training the classifier on the source network, and applying it to the target
network. However, ReFeX (Henderson et al. 2011), used for extracting features in RolX,
is not guaranteed to perform well for transfer learning, especially when the difference in
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size between the two networks is large. struc2vec can also be used in transfer learning in
the same way because it attempts to map structurally similar nodes closer to each other,
even if they belong to different networks. In struc2vec, the distance fi (i, v) between two
nodes u and v can be computed as follows:

S, v) = fi—1 (W, v) + g(s(Rie (1)), s(Rie(v))),
k =0, Rk ()], Rk (v)| > 0, (1)

where k represents the number of hops from one node to another node and Ry («) rep-
resents the degree lists of k-hop nodes from node u. s(.) represents the sorting function,
and g computes the distance between two lists. However, if there is a big difference in
size between graph G; and graph Gy, the degree distributions of their results naturally
become quite different. Thus, the term g(s(Rg(u)), s(Ri(v))), where u € Gy and v € Gy,
becomes smaller despite their structural similarities. Hence, f (1, v) becomes smaller and
the node representations of u and v become more distant even if # and v play the same
roles. In other words, two domains, generated by struc2vec, create each subspace (i.e.
domain-shift). To address this problem, we use domain adaptation.

Domain adaptation

The objective of domain adaptation is to transfer knowledge from one field (source data)
to another (target data), where both feature representations are slightly different (i.e. a
domain-shift problem Pan et al. (2010)). Many studies (Mirza and Osindero 2014; Long
et al. 2015; Xie et al. 2018) have examined domain adaptation, and domain-invariant
feature learning with adversarial learning analogous to generative adversarial networks
(Goodfellow et al. 2014) has performed well (Ganin et al. 2016; Hoffman et al. 2017;
Bousmalis et al. 2017).

Domain adversarial learning, proposed by Ganin et al. (2016) for computer vision tasks,
attempts to not only solve a classification task in a source domain but also to make both
domains similar. Specifically, a discriminator is trained to predict which domain a sample
comes from, and a label-predictor attempts to minimize the task loss as well as fool the
discriminator by making the two domains similar. Both models are updated alternately
as each model tries to increase the loss of the other model. Feature representations after
convergence are expected to be domain-invariant and discriminative for the task.

FRAGE (Gong et al. 2018) applies domain adversarial learning to the field of natural
language processing. In natural language processing, word representations derived from
Skip-gram (Mikolov et al. 2013) can be divided by their frequency of appearance in a cor-
pus (Mu et al. 2017). Words can be classified into two types (i.e. common words and rare
words), and FRAGE attempts to transform both word representations so that they are
similar to each other as well as to solve a task (e.g. machine translation). After conver-
gence, word representations are expected to be frequency-agnostic and discriminative for
the task.

To the best of our knowledge, conventional studies in role discovery have never used
domain adversarial learning. We tailor domain adversarial learning for role discovery to

improve performance.
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Model selection

In supervised learning, we assume the data to be IID. However, in transfer learning, the
data consist of the source data with labels and the target data without labels, which makes
it impossible to select models in the same manner as in supervised settings (e.g. hold-out
and k-fold cross validation Kohavi et al. (1995)).

Choosing a model using a few target labels has been used by both Long et al. (2016);
Russo et al. (2018), and this allows the model to be unbiased and of similar variance to
the target domain. However, using the target label is not preferable because, in unsuper-
vised settings, the real-world datasets do not include labels. IWCV (Sugiyama et al. 2007)
searches for better hyperparameters given the ratios of the target labels. It has been theo-
retically guaranteed that the model is unbiased, but if the density ratio is not available, its
estimation requires much computation. TrCV (Zhong et al. 2010) requires target labels in
the approximation of the conditional distribution, which causes the same problem as the
model selected with the target labels.

We propose a model selection method with a labeled validation network, which allows
us to select models without the labeled target data.

Proposed framework

In this section, we introduce our framework for transferring node roles from a source net-
work to a target network. Our framework consists of three components: pretrained node
representations, domain adversarial learning, and model selection. Pretrained node rep-
resentations, where structurally similar nodes have closer distances, are needed to make
discriminative representations in each domain, which facilitates transfer learning. How-
ever, node representations might create individual subspaces depending on the network,
so we use domain adversarial learning to make the two node representations similar.
Furthermore, since node representation learning and domain adversarial learning have
various hyperparameters that need to be tuned, we present a model selection method
without using target labels. Our proposed framework is so general that one component
can be replaced with another. For example, a different network representation learn-
ing method from ours could be used. Furthermore, the proposed model can deal with
imbalanced class problems by operating the source network as shown in the experiment.

Notation

Let V denote all nodes in graphs. We define 6% € R4*!VI as node representations, where
d is the number of dimensions of node representations and |V is the number of V. Let
Vs denote all nodes in a source network and Vr all nodes in a target network. 6% can be
divided into 95 and 0?, indicating node representations of source nodes (i.e. the source
domain) and target nodes (i.e. the target domain), respectively. 7 denotes the node rep-
resentation of node v. We define f;p as the discriminator with parameter #° and fjz as
the role-model with parameter 6%. Both models are composed of feed-forward neural
networks.

Pretrained node representation
First, the source domain and the target domain must be initialized in a way that two
nodes having similar structures also have similar representations in each domain, and two

structurally similar nodes have representations that are as close as possible in the other
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domains. In order to meet the above criteria, we use struc2vec (Ribeiro et al. 2017) for
node representation learning because of its state-of-the-art performance, and as men-
tioned in “Related work” section, it can also be used for transfer learning. The details can
be found in the original paper (Ribeiro et al. 2017).

Domain adversarial learning

We assume that both domains generated by struc2vec are similar, but the two are
slightly different across domains, which lowers the performance of transfer learning. To
address this problem, we use domain adversarial learning. The overview of the method
is shown in Fig. 1. Our proposed domain adversarial learning has two neural networks: a
discriminator and a role model. We explain each model in the following sections.

Training the discriminator

The objective of the discriminator is to learn to tell whether a node comes from a source
network or a target network. The discriminator inputs are node representations, and the
outputs are confidence scores between 0 and 1; the score approaches 1 if the discrimina-
tor predicts that the input representations are derived from the target network, and 0 if
derived from the source network. Then let Lp (V; 9P, 95) denote the discriminator loss

using negative log likelihood:

1 1
Lp (Vi6,65) = —— > logfyw (0F) + == D log(1 - fim (6F))- (2)
Vsl & Vil
S veVr
6LD
JdLp 00D
00F
i i Loss Lp
node representations
d
D domain label d
Source nodes |:> |Vs|
discriminator fgo ( s 05, GD)
Target nodes I:> |VT|
role label r
OLg role-model fyr (. ; 65, 6F)
00F
Loss Ly

0Ly

06R
Fig. 1 Proposed domain adversarial learning. This includes a discriminator (blue) and a role model (orange).
Thick arrows indicate forward propagation and narrow arrows indicate backward propagation
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When 6% and 6% are fixed, the discriminator will learn by solving the optimization
equation below:

max —2Lp (v; 6P, 95) , 3)

where A is a hyperparameter to balance the loss.

Training the role model

The goals of the role model are to predict the role labels of nodes and to fool the discrim-
inator. These goals are thought to be attainable by making both representations similar,
which allows the role model trained on the source domain to be applicable to the target
domain. The inputs of the role model are node representations, and the outputs are the
probabilities of the corresponding role labels. Given that role discovery can be considered
a classification task, let Lg (S; QR,GE) denote the role-model loss below when using the
cross entropy loss J(.,.):

1
Lr(s:0%,65) = = 3 T (foe (65) 7). @
IS]
,r)es

where S is a source dataset including node v and the corresponding role label . When
6P is fixed, the role model will be trained to solve the classification task and to fool the
discriminator as well.

min Lg (S; ok, 95) —ALp (v; 6P, 9’5) . )

R ,GE
Note that this procedure updates not only 6% but also 6% to transform node representa-
tions to be more domain-invariant and discriminative.

Objective function
Based on the adversarial learning framework (Goodfellow et al. 2014), we train the role
model and the discriminator by following the min-max strategy:
min max Ly (s; or, 95) —ALp (v; 6P, 95) . ®)

6P, 6F, and AR should be optimized by an iterative method. Algorithm 1 shows how to
train the model and obtain the node representations using domain adversarial learning.
We use a gradient descent algorithm for the sake of simplicity.

In the testing phase, 9% is input to the role model, and the corresponding role labels are
predicted.

Model selection

Pretrained node representation learning and domain adversarial learning have many
parameters that need to be tuned. In order to select a better model, we prepared a
labeled validation network, which is structurally similar to the source and target networks.
An overview of the method is shown in Fig. 2. First, node representations are gener-
ated among three networks together, and we obtain the source domain S, the validation
domain V, and the target domain T. Next, we treat both 7 and V" as a new target domain
T’ (= TUV); applying domain adversarial learning between S and T’ makes both domains
domain-invariant, which results in similarity among S, V and T. We select the model
in which performance is maximized in the validation network because it is expected to
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Algorithm 1 Domain Adversarial Learning for Role Discovery

Require:
1: Dataset S = {(v;, r,')}izsl‘, T = {(Vi}l-gl, All nodes V, Hidden layer size: H
2 0F <« struc2vec().
3. OR, 0P «— random_init(H).

4: repeat

5: # Update 6 by gradient ascent according to Eq. (3)

6  Lp(V;6P,0F) = ﬁ > evs log fop (OF) + ﬁ > ey, log(l — fyp (0F)).
7 0P < 6P — upr B

8:

9: #Update 6%, 6F by gradient descent according to Eq. (5) with S.

10 Lr(S;6%,65) = =50 3, s for (O5), 1),

11: OR — R — MR%.
. E E_ AL _ 5 dLp
12: 0" <0 “R(agE )‘395)'

13: until Converge
Ensure: 6%, 0%, 6P

have high performance in the target domain as long as the three networks are structurally
similar.

Note that the key to having better model selection using our proposed method is to
obtain a validation network that is structurally similar to the source and target networks.
We empirically show how to select the validation network in the “Experiment” section.

Experiment

In this section, we report on four experiments we conducted to validate our framework.
First, we used a barbell graph, which had many structurally identical nodes, to verify
that domain-adversarial learning improved accuracy. Next, in a toy network, we evalu-
ated our proposed model selection approach and showed how imbalanced datasets can
be handled. Then, we applied our framework to a benchmark dataset, Zachary’s Karate

struc2vec
—

Target
Network

LT

& Adversarial Learning

Validation | _smezwec i E ) ~ T’
Network L
S~ VxT

~ ~
~ ~

Source struc2vec
B ————

Network

Fig. 2 Model selection using validation network
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Club (Zachary 1977), to show that our framework gave us a reasonable interpretation.
Finally, we used an air-traffic network to show how we selected the validation network
and applied our method to a practical setting.

Baseline model
We used struc2vec (Ribeiro et al. 2017) and RolX (Henderson et al. 2012), which learn
node representations based on structural similarity, as baseline models. In struc2vec, we
generated node representations in both networks at the same time and passed them into a
three-layered neural network. We set the window size to 5, the walk length to 80, the num-
ber of walks per node to 20, and the number of dimensions to 64. In RolX, we extracted
feature representations in both networks together, assigned optimal roles for RolX in
an unsupervised way, and then put them into a three-layered neural network. We used
ReFeX for extracting node features and Minimum Description Length (Rissanen 1978)
for determining the optimal number of roles.

Note that the classifier was trained based on node representations and the correspond-
ing labels on the source data, and that we evaluated the predicted target labels for fair
comparison in both baseline methods.

Parameter settings

We used struc2vec for the initialization of node representations in the same setting as
above. Both the discriminator and the role model were three-layered neural networks.
The number of hidden nodes in both models was (x — x/2 — x/4 — y), where x
represents the number of input dimensions and y represents the number of roles. On the
second and third layers, both models used Dropout (Srivastava et al. 2014) to prevent
overfitting.

Hyperparameters were tuned using the grid-search strategy, where the epoch number
was [500, 1000, 5000], the dropout rate was [0.25, 0.5], each learning rate of the role model
and the discriminator was [0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001], and A was [0.01,
0.1, 1, 10, 100]. Note that Ganin et al. (2016) attempted to remove noise by changing A
gradually from 0 to 1 during the training phase, but since A can be considered one of the
parameters, we tuned it using the grid-search strategy. We used Adam (Kingma and Ba
2014) as an iterative optimization method.

Barbell graph

Dataset

The barbell graph B(, k) is composed of two complete graphs K; and Ky with / nodes in
each and one path graph P with a length of k that links both complete graphs. {p1, p2, ...p}
denotes nodes of P, and p; is connected to p(1+1)(i = 1,2,..,k — 1). p1 connects by from
K1, and p; connects by from K3. Nodes {K7/{b1}} U{K2/{b2}}, (b1,b2) and (p;, pk—i) (i =
1,2, ...,k — 1) are all structurally identical.

In our experiment, we used B?(5,5) as the target network and B(mn) (n =
5,10, 20, 30, ..., 100) as the source network. We assumed that RolX and struc2vec had
domain-shift problems when the source network size was bigger, so we showed how the
proposed method deals with domain-shift problems. As shown in Fig. 3a, we roughly
divided nodes into two types: nodes in the complete graph playing role r; and nodes in
the path playing role ry. Since the barbell graph has two complete graphs, the ratio of
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Fig. 3 Barbell graphs. a B(5, 5)(lower left) and BP(10, 10)(upper right), where color indicates different roles in
the same domain and S and T represent the source and the target networks, respectively. b Transition of the
accuracy when we changed the source network size n. Nodes are mapped by (¢) struc2vec and (d) proposed
method. Visualization was performed by PCA

r1 : ry equals 2 : 1. In this experiment, we selected models by using the target labels for all
models, since the goal of this experiment was to show whether domain adversarial learn-
ing improved performance. We repeated the experiment five times with different random

seeds and made our evaluation using the average accuracy.

Results

Figure 3b shows the transition curve of the accuracy when we gradually changed the
source network size n. struc2vec classifies correctly in the case of # = 5, which indi-
cates that struc2vec can be used when the target and the source network are the same
size. However, it results in low accuracy as the network size gets larger. Even in the case
of n = 100, the accuracy is close to 0.667, which is the same accuracy as random pre-
diction. RolX worked well until the size of the source network was two times bigger
than that of the target network (n = 10). However, the performance when using RolX
decreased when the difference in sizes increased (except for # = 60). Therefore, both
conventional methods failed in predicting role labels correctly if the sizes were quite
different.

Page 10 of 19
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By contrast, our proposed method continued to predict the roles with high accuracy.
This indicates that our proposed method is robust to differences in network size and may

discover roles more accurately in many situations.

Visualization

Next, we visualized node representations learned by our proposed model and struc2vec
to analyze how the proposed method can achieve high accuracy. Figure 3c shows the
visualization results of node representations generated by struc2vec. In the same domain,
nodes playing roles r; and r, had similar representations, which is ideal for transfer learn-
ing. However, in different domains, nodes playing r1and ry had different representations.
In other words, node representations from different domains were farther apart than
they should be and created each subspace (i.e. a domain-shift problem), which led to
low accuracy. As shown in Eq. (1), struc2vec calculates the distance between two nodes
based on their degrees. The difference in scale between two networks leads to a difference
in degree and the difficulty of judging structurally similar nodes as different across the
domains.

By contrast, as shown in Fig. 3d, the proposed method successfully brought nodes play-
ing the same role closer regardless of the networks these nodes belonged to. Adversarial
learning allowed our proposed method to make the node representations domain-
invariant in practice and more discriminative, which made applying the model trained on
the source network to the target network easier and led to higher accuracy.

Toy network

Dataset

In a toy network, we evaluated our proposed model selection method and showed how
to handle imbalanced datasets. We created the source network by combining four basic
topology networks (mesh, ring, star, and tree) as shown in Fig. 4. All node role labels were
set as “mesh” in the mesh network and as “ring” in the ring network. In the star network,
the central node role label was set as “star center’, while the surrounding nodes were set
as “peripheral” In the tree network, the root node role label was set as “root of tree’, the
leaf nodes as “leaf of tree’, and the internal nodes as “internal of tree”.

We prepared the validation network (Fig. 5) and the target network (Fig. 6) in a way
that made the distribution of the validation network similar to that of the target network.
Roles in the target network and the validation network followed the rules of the source
network, but since the connected nodes changed their roles, we removed them after node
representations were generated.

We used Macro-F1 and Micro-F1 as evaluation metrics due to the imbalance. We

repeated the experiments five times, and we used the average of the results.

Results

The classification results of the toy network are shown in Table 1. Among the methods
that were target tuned, our proposed method had the best Micro-F1, while struc2vec per-
formed slightly better than the proposed method in Macro-F1. In our method, domain
adversarial learning attempted to maximize accuracy with cross-entropy loss, which pri-
oritizes the class in which ratios are higher and prevents the model from predicting the
class in which ratios are lower. We address this issue in the next section.
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Fig. 4 Four network topologies. We used (a) a ring graph with ten nodes inside, (b) a star graph with ten
peripheral nodes, (c) a complete binary tree graph with a height of four, and (d) a complete graph as a mesh
graph. Each node role is colored based on its structural similarity

¢

Fig. 5 Validation network. The star graph is placed at the center, and four network topologies are connected
with the edge of the central star graph
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~X

4

Fig. 6 Target network. Three sets of the four network topologies are randomly connected. Aside from tree
graphs, the sizes of each graph are 5, 10, and 15

Moreover, our model selection method had nearly the same performance as the target
tuned method. Therefore, our proposed method helped to select a better model on this
dataset. In fact, the correlation coefficients in performance between the validation data
and the target data were 0.970 (Macro-F1) and 0.965 (Micro-F1).

Operation of source network
We attempted to improve the Macro-F1 of the proposed method using the following
strategy:

1 Create tens of copies of each network topology and generate node representations
using struc2vec.

2 Abstract 70 node representations in such a way that the number of each role is 10.

3 Treat the abstracted node representations as the source network for domain

adversarial learning.

Table 1 Classification results on a toy network

Micro-F1 Macro-F1
RolX (Target tuned) 0.757 0.537
struc2vec (Target tuned) 0.865 0.731
Proposed method (Target tuned) 0.894 0.730
Proposed method (Model selection) 0.880 0.699

Target tuned means the model selected on the target labels, which is the upper bound performance each model can achieve,
and model selection means the model selected with the validation network
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This process allowed us to balance the classes on the source network without using the
labels on the target network.

The classification results are shown in Table 2. Compared with the target-tuned mod-
els, our proposed method had the best performance in both metrics. Balancing the class
ratio facilitated domain adversarial learning to improve performance even more. Further-
more, comparing Macro-F1 between Tables 1 and 2, our proposed method had higher
performance. This indicates that the equal class ratio made the classification boundary
unbiased, and the model classified more accurately those classes in which ratios were

lower.

Zachary'’s karate club

Dataset

Zachary’s Karate Club consists of 34 nodes and 78 links, where nodes represent members
and links represent the connections between members outside the club, usually inter-
preted as friendship. The network is an unweighted and undirected network. Nodes 0
(the administrator “John A”) and 33 (the instructor “Mr. Hi”) are two leaders who led to a
split of the club into two groups.

The source and validation networks were the same as those used in the last section,
and we set the target network as Zachary’s Karate Club. We selected the model that had
the best accuracy on the validation network. Note that when the probability of the roles
assigned on nodes was less than 40%, the nodes were considered to have no role in this

experiment.

Results
The results of role discovery are shown in Fig. 7, and the pairs of roles and sets of nodes
are given in Table 3.

First, for nodes assigned star-center, {0, 33} were the leaders of each group, and {1, 2, 3}
and {23, 32} were located close to the leaders and played important roles in connecting
many members. This indicates that the assignment of star-center roles was consistent
with the background.

Next, for nodes assigned peripheral, 11 did not have links aside from the leader, and {14,
15, 17, 18, 20, 22} only connected the star-center nodes. The limitations on connectivity
for the non-leaders indicate that these nodes are peripheral.

As mesh nodes, {7, 8, 13, 19, 27, 28, 30, 31} had many relationships regardless of groups
and thus played many roles in bridging between the two groups. The high mediation these
nodes exhibited showed that they worked as a mesh. By contrast, 9 did not seem to be
correctly predicted because it connected the leader and another member. This mistaken
prediction might be corrected when using networks more similar to the target.

Table 2 Classification results after operation

Micro-F1 Macro-F1
RolX (Target tuned) 0.812 0.721
struc2vec (Target tuned) 0.773 0.703
Proposed method (Target tuned) 0.845 0.791

Proposed method (Model selection) 0.810 0.748
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star center
peripheral
mesh

ring

reject

Fig. 7 Classification Results on Zachary's Karate Club(Zachary 1977)

Nodes assigned as ring nodes played roles of connecting nodes and did not have many
links. Ring nodes simply connect two neighboring nodes, so this result was consistent
with the actual function.

There were some nodes that did not exhibit any role in our proposed method. The two
biggest probabilities of these nodes were almost the same, which implies that these nodes
had two roles. For example, {4, 5, 6, 10} had star-center and inner nodes, which is consis-
tent with the fact that they were close to the leader and formed a hierarchical structure. In
addition, {12, 21} were assigned peripheral and ring roles. This seems reasonable in that
they connected the leader to a node that was close to the leader.

To summarize, the experimental results of Zachary’s Karate Club show that our
proposed method can provide a meaningful interpretation.

Air-traffic network

We applied the proposed method to an air-traffic network to show an example of applying
the proposed method to a real-world data network. Furthermore, we showed that choos-
ing the validation network within the same field can be a good solution to the selection of
the validation network.

Table 3 Classification results on Zachary's Karate Club (Zachary 1977)

Role Sets of nodes

Star center {0,1,2,3,23,32,33}
Peripheral {11,14,15,17,18, 20, 22}
Mesh {7,8,9,13,19,27,28,30,31}
Ring {25, 26}

Reject 4,5,6,10,12,16,21, 24, 29}
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Table 4 Statistics of air-traffic networks

Dataset American (US) European (EV) Brazilian (BR)
Number of nodes 1190 399 131
Number of links 13599 5995 1074
Average degree 2293 30.05 16.40
Clustering coefficient 0.50 0.54 0.64
Average shortest path length 3.07 232 2.19
Dataset

We used the air traffic networks in the United States, Brazil, and the European Union,
which are unweighted, undirected graphs. The nodes represent airports, and the links
indicate that there is a commercial flight between two airports. Each node is labeled from
(0,1,2,3) according to the frequency of airport usage. The airport usage of each network is
determined as follows.

e Airport usage of Brazilian air-traffic network: sum of the departure and arrival flights
from Jan. 2016 to Dec. 2016 collected by The National Civil Aviation Agency'.

e Airport usage of American air-traffic network: number of users from Jan. 2016 to
Oct. 2016 gathered by The Bureau of Transportation Statics?.

e Airport usage of European air-traffic network: number of departure flights from Jan.
2016 to Nov. 2016 estimated by The Statistical Office of the European Union?.

Although the airport usages are calculated using different criteria, the three network
structures are comparable by smoothing the proportion of the nodes’ labels to make
each label in an individual network to account for 25% of the total. The statistics of the
networks are shown in Table 4.

Note that the network size and density are fairly different, which increases the difficulty
of transfer learning.

We assigned these three networks as the source network, the target network, and
the validation network, so there are six combinations in total. We used the source net-
work’s label knowledge to predict the target network’s labels by using the accuracy of the
validation network to select the best-performing model.

Result
The results are shown in Table 5. First, compared with struc2vec (Target Tuned), RolX
(Target Tuned) performed worse in all cases. Especially those cases when the Brazilian
air-traffic network is the source network or the target network, the accuracy results were
close to random. After confirming the result, the predicted labels were all the same, which
proved that the RolX model fails when the distribution of the two networks are different.
Second, the proposed method (Target Tuned) performed better than struc2vec and
RolX in all cases, which showed the advantage of the domain adversarial learning applied
in the proposed method. Furthermore, for one particular target network, the proposed
method had the smallest of the results’ difference between different source networks,
which indicates that the proposed method has the advantage of smaller reliance on the

Lhttp://www.anac.gov.br/
Zhttps://transtats.bts.gov/
3http://ec.europa.eu/
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Table 5 Results of air-traffic networks

Method T BR EU us

S EU us BR us BR EU
RolX (Target tuned) 0.267 0.267 0.256 0.496 0.251 0.459
struc2vec (Target tuned) 0.588 0.710 0.551 0.521 0.582 0.508
Proposed method (Target tuned) 0.634 0.733 0.559 0.546 0.598 0.535
Proposed method (Model selection) 0.588 0.664 0.459 0451 0434 0516
Target-only (Target tuned) 0.741 0.622 0.683

S means the source network, and T means the target network; US, EU, and BR indicate the United States, European Union, and
Brazil. The target-only method, which is the result of the model trained by the target network data, showed the difficulty of these
tasks

source network and better versatility. In particular, for the case of US as the source net-
work and BR as the target network, the result of the proposed method (Target Tuned) is
fairly close to the target-only (Target Tuned)’s result, which indicates the high usefulness
of the proposed method.

Finally, the proposed method(Model Selection) performed fairly close to
struc2vec(Target Tuned), which indicates that even for the cases where the labels of the
target network are not given, the proposed method demonstrates its effectiveness in

practical uses.

Conclusion

In this paper, we proposed a general framework using transfer learning for inferring
node roles more accurately. In this framework, we used node representation learning
to make structurally similar nodes as close as possible in a pretrained manner. To over-
come domain-shift problems, where node representations are slightly different between
domains, we tailored domain adversarial learning for role discovery. Furthermore, we pre-
sented a validation network that led to a simple model selection without using labels on a
target network.

A computational experiment on a barbell graph and a toy network showed that domain
adversarial learning improved the accuracy of role discovery, that our proposed method
outperformed conventional methods, and that domain-invariant representations led to
high performance. In addition, we discovered with the experiment on the toy network
and on Zachary’s Karate Club that a model tuned on our proposed model selection with
a validation network had comparable performance to a model tuned on a target network.
Finally, we further explored whether our proposed method could achieve high accuracy
in a comparison of real-world air-traffic networks. Consequently, we showed an empirical
way of choosing the validation network in a practical role discovery problem.

As future work, we will pursue the possibilities of our framework by using different
components. For example, we may use various node-embedding methods other than
struc2vec. A comparison of our model selection method with conventional methods is
also needed.
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