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Abstract
By viewing political and social corruption through the lens of the control theory of
complex systems, this paper will provide some insight into the effects of corruption
and outside control on incentives which direct the formation and evolution of social
networks, and the intrinsic hierarchies which they encode. This paper proposes and
tests the hypothesis that changes in the rate of competition among nodes to raise their
control capacity, incentivized by the anticipation of payment through political
corruption opportunities, can be identified by changes in an indicator of the
controllability of the network at points where the network undergoes a structural
change. A theoretical model of control input preference is formulated which leads to a
testable hypothesis about the direction of correlation between controllability of a
network and the presence of corruption. Results support the hypothesis that as
corruption increases, the network becomes more difficult to control as all members
alter their linking strategies to ensure that they get a piece of the action. We describe
this novel effect as “hierarchical congestion”, to reflect the emergent phenomenon in
which individuals making effort to move themselves to the top of the controllability
hierarchy increase the number of driver nodes required to fully control the network.

Keywords: Corruption, Social networks, Controllability, Driver nodes, Control capacity,
Cosponsorship networks, Political networks

Introduction
In areas where the presence of corruption among public figures is high, it may be the
case that new entrants into the political discussion network are willing to accept a cer-
tain degree of financial compensation in exchange for the control input required to move
them around the opinion space. If such nodes in the network have the option to choose
their connections, they are incentivized by the perception of corruption to choose their
position in the network carefully; so that they are maximizing their probability of being
selected to drive the network to a new state by corrupting parties and receive payment in
exchange for their efforts. This type of “quid-pro-quo” controllability of the political net-
work is considered undesirable bymost citizens as a form of corruption, since it allows the
financial concerns of the representatives to take precedent over the needs of constituents.
Political discussion, like most forms of discourse, takes place in a social network

(Huckfeldt and Sprague 1987; Huckfeldt et al. 2014). When one node influences another,
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this influence may be manifested by actions such as bill cosponsorships (Briatte 2016;
Fowler 2006). Only very recently have researchers begun to examine the potential benefits
of modelling the formation of these legislative networks as endogenous processes rather
than as exogenously determined structures (Battaglini et al. 2019).
Our model argues that outside parties wishing to control the states of individuals in

the network can request a node to shift the state of their opinion or platform on some
topic in exchange for monetary payment, and that this opinion shift has spillovers into
the opinions of other nodes through a social learning process. Further, we hypothesize
that anticipation of this payment leads to rent seeking by the manipulation of individu-
als’ position in the network to make them more important to control. If this is the case,
the controllability of these networks could then, under certain conditions1, be used as
an instrumental proxy for corruption. This is important since the effects of corruption
can be notoriously difficult to measure (Olken and Pande 2012). This feature, of course,
means that “corruption” must be carefully defined in order to prevent its confusion with
the term “controllability,” to which we argue it is closely related. For the purposes of this
analysis, corruption will be defined as the acceptance of control input signals in exchange
for monetary payment. When a request is sent to a node to change their position on a
certain topic, it is coupled with some financial reward which is increasing in the distance
between their current state and the desired state.

Key terms

Complex networks are ubiquitous and crucial to the description of human dynamics and
complex adaptive systems. As such, many tools have been proposed to analyze their struc-
ture. In this case, the network of interest is a social network in which nodes represent
human beings and links between them describe the direction and flow of opinions and
influence. In this way, the social network describes a linear dynamical system in which the
state (opinion) of each node (person) evolves with the other individuals in the network to
which they are linked. A key feature of linear dynamical systems, including networks, is
that they can be controlled to an arbitrary state from a limited number of nodes (Liu et al.
2011; Jia and Barabási 2013).
What this means is that if an interested party were able to “shift” the opinions of enough

individuals, they could control or drive the consensus opinion to any possible state that
they were to desire. When a group of individuals collectively has enough influence to
drive the network to any arbitrary state, they are known as driver nodes and the group
is known as a driver set. If it is possible to control the states of all nodes in some driver
set, then the network system is said to be controllable. If a driver set is of the minimum
possible size, so that there does not exist a smaller set of nodes from which the network
is controllable, then it is known as aminimum driver set. The size of the minimum driver
set, denoted ND, is easy to compute using the eigenvalues of the adjacency matrix, an
n×n real-valuedmatrix which describes connections between nodes. There may bemany
driver sets, however, which contain this number of nodes. Control capacity is a concept
used to describe how critical an individual node is to any driver set. That is, if minimum
driver sets are chosen uniformly at random, a node’s control capacity gives the probability
that the randomly selected driver set contains this node (Jia and Barabási 2013).

1Specifically, in order to be used as an instrumental variable for corruption, the dependent variable of the regression
must be uncorrelated with controllability (except through corruption).
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Relevant literature

There has been some prior work which has examined the network structure of corrup-
tion (Cartier-Bresson 1997; Warburton 2013; Ribeiro et al. 2018), and the controllability
of these networks as it relates to changing attitudes toward illegal activity (da Cunha
and Gonçalves 2018). These papers have primarily focused on the network between cor-
rupt actors, and have been remarkably successful in the prediction of future scandals
(Ribeiro et al. 2018). A comprehensive overview of other network and complexity sci-
ence approaches used for social good and the betterment of society – through means
including the reduction of crime and slowing the spread of disease – can be found in
Helbing et al. (2015).
In related work by Podobnik et al. (2015), an environment is studied in which two net-

works with different goals compete to control each other. They find that such control is
not possible without a reduction in the resilience of the attacking network. This finding
could help to motivate our later assumption that the corrupting party will choose to con-
trol a minimum driver set in the legislative network, since controlling excess nodes could
come at a steep cost in terms of the resilience of their own social structure which could
easily exceed the benefits gained through reduced energy costs2. The tradeoff between
control energy cost and the number of controlled nodes is characterized by Li et al. (2015).
Bac (1996) presents a game theoretic model of corruption within an organizational

monitoring hierarchy, and finds the surplus from corruption to the corrupting agent to be
higher when implemented at the top of the hierarchy. These results were generalized to
policy recommendations by Rosenblatt (2012), who attribute organizational corruption
to social dominance hierarchies between groups. Notably, these efforts are focused on
organizational hierarchies and the effects of exogenously imposed managerial structures,
rather than on social networks and endogenous connections between individuals of simi-
lar social standing. A recent paper by Luna-Pla andNicolás-Carlock (2020) uses a network
of shell corporations and their personnel to examine empirical evidence from a corrup-
tion scandal in Mexico. They use this data to find structural indicators and characteristics
of management and ownership structure which might signal corruption within compa-
nies, and conclude that the layer of these networks which provides the most information
about underlying corruption is at the shareholder level.
In a departure from existing work on the network science of corruption, the analysis of

this paper is focused instead on the effect of corruption as exerting influence within the
entire social network between politicians, and thus should provide new insights toward
both the study of political corruption and that of social network formation in general. This
type of analysis has been loosely proposed by Granovetter (2007), which calls for further
theoretical analysis of the phenomenon of corruption and its effects within a larger social
structure. Indeed, (Granovetter 2007) emphasizes the idea that “the ability to effectively
corrupt the administration of some substantial activity requires corruption entrepreneurs
to be masters of social network manipulation” and discusses the “reluctance of lower-
level employees [in the bureaucratic hierarchy] to follow clearly illegal orders” from their
superiors in this hierarchical network.

2Alternatively, this assumption could be motivated by the results of Ryvkin and Serra (2019) who discuss the various
costs associated with finding and implementing extortionary corruption, such as search costs. Provided that the fixed
costs of acquiring another controlled corrupt agent are sufficiently high relative to the control energy savings they would
provide, a minimum driver set is the optimal choice.
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This reluctance is modeled as the removal of incoming influence, which generates our
primary theoretical and empirical result. Most notably, the hierarchical congestion result
of this paper should be robust enough to be applied to all kinds of social networks in
which nodes determine incoming links and there are potentially time-varying monetary
incentives to accept control input.
The probability that a node is selected as part of a randomly selected minimum driver

set, the smallest set of individuals through which the network is controllable, is known
as its control capacity (Jia and Barabási 2013). It is shown by Jia and Barabási (2013) that
the control capacity of a node in a directed network is closely related to the structural in-
degree of that node. In political networks discussion takes place largely in open forums
so nodes do not choose who to influence, rather they choose who influences them and
to what degree. Essentially, we state that for nodes who expect to receive monetary value
from control input, the opportunity cost of forming additional incoming information
flows is inflated by a loss of expected revenue from control input. This is consistent with
the observation that driver nodes tend not to be high-degree hubs, which is documented
by Liu et al. (2011).
In addition to the decrease in tendency for information-providing incoming links, pref-

erence for control input also affects who a node will wish to connect with. If a node’s
neighbor is a hub, for example, with many outgoing connections, then there is a high like-
lihood that there will be a structurally controllable “matching path” (Liu et al. 2011) which
runs through the hub, but a low probability that this path includes any of the individ-
ual neighbors of the hub, since only one of the hub’s outgoing links may be included in a
maximum bipartite matching. Likewise, the corrupt node has incentive to avoid becom-
ing part of a cycle, since cycles in a graph can be easily controlled through other nodes as
part of a “cactus” style matching path (Liu et al. 2011).
Perturbations in linking and formation can have large scale effects on the controlla-

bility of the network (Wang et al. 2012). Specifically, if nodes are strategically reducing
their in-degree, preferentially attaching to hubs, and avoiding cycles and triadic closure,
these concerns can cause the network to be more difficult to control as measured by
the fraction of nodes required to control the entire system. This number is denoted
nD and is also defined as the relative size of the minimum driver set or the fraction
of unmatched nodes in a maximum bipartite matching (Liu et al. 2011). This measure
of the “pinning controllability” of a network was analyzed by Liu et al. (2012) and has
far-reaching applications which range from the analysis of systemic risk in economic
trade and lending networks (Delpini et al. 2013) to the identification of biomarkers
for the diagnosis of neurodegenerative diseases such as Parkinson’s and Alzheimer’s
(Tahmassebi et al. 2019).

Data andmethods

We will use network data from twenty European parliaments, collected by Briatte (2016),
along with the World Bank’s World Governance Indicators of corruption and gover-
nance effectiveness (Kaufmann et al. 2011), to construct a panel which we will analyze
using fixed effects regression to provide evidence of this theory while controlling for any
country-level variables, such as legislative frequency and societal or ethnic factors, which
may affect the baseline levels of controllability in these networks. Figure 1 highlights fixed
differences, such as network size, which differentiate between the legislatures of different
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Fig. 1 Differences in Legislative Structure Between Countries. A side-by-side comparison of the legislative
networks in (a) Austria and (b) Sweden, both from the same year (2002). This figure highlights the baseline
structural differences between the networks which necessitate controlling for fixed effects at the country level

networks but can be controlled for using fixed-effects regression techniques (Woolridge
2002).
The network data provided by Briatte (2016) consist of temporal observations of co-

sponsorship networks in twenty European parliaments. These networks are broken up
into multi-year time periods based on when there are structural changes in the network,
such as elections. First we will observe the effect that temporal changes in the perception
of corruption have on the controllability of the legislative networks. Then, we will explore
the use of controllability as an instrument for corruption in regressions on governance
effectiveness. Additionally, we will use simulations to show the mechanisms by which
nodes in a simple structural model of network formation can use simple heuristics to alter
their control capacity, and thus the controllability of the entire network system.

Theoretical model
A common model used to describe social learning and influence in networks is called
the DeGroot model (Golub and Jackson 2010; Huckfeldt et al. 2014; DeGroot 1974). This
model simply states that a node’s opinions over a certain topic will evolve as a weighted
average of their neighbors’ opinions, so that the dynamics of the opinion vector x take the
form:

ẋ = Ax (1)

Where ẋ refers to the time derivative of the opinion vector x, and A is an n × n weighted
adjacency matrix with Aij > 0 if node j influences node i, and Aij = 0 otherwise. A key
feature of this type of system is that it is controllable. When under control of an outside
party, the dynamics of the system become:

ẋ = Ax + Bu (2)

Here, the n × m matrix B represents a control schematic with m external controllers, so
that Bij = 1 if node i receives control input from controller j, and Bij = 0 otherwise.
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Once the schematic is known, a vector u of control inputs is sent to the nodes. Now
the key distinction between controllability and corruption is made. In a corrupt network,
nodes receive some monetary transfer in exchange for altering their stated position or
opinion on some certain topic and influencing their neighbors in the network. Their value
of control input is given by a function Ji of the expected control input received by node
i and the “corruptibility” parameter ηi. Alternatively, this can be seen as the price that
this node will charge in order to allow for control input signals to alter their state. Thus,
to a node in the network, corruptibility ηi and control capacity Bi = ∑m

k=1 E[Bik] are
complements. Let Ji represent the value of control input to node i. Then Ji is given by:

Ji = ηi

m∑

k=1
Bikf (uk) (3)

Where f (uk) : R −→ R
+ is some increasing function. Nodes do not know, or have uni-

form priors over the value of uk , since they are not aware, ahead of time, to which state
the outside party will desire to control them. In other words, to maximize their incoming
utility from corruption, nodes can only alter their position in the network to change the
probability Bi that they are selected as a driver node; their incentive to do so varies with
their corruptibility ηi.
Finally, it is assumed that corrupting parties who wish to control the network will select

a minimum driver set so thatm = ND, and that the prior expectations of the agents over
which minimum driver set will be selected by an external corrupting party are uniform.
This means that the set of corrupt actors which are chosen to control the network will be
of the minimum size possible. It also guarantees that the probability Bi = ∑ND

k=1 E[Bik]
that a node is selected as a driver node is equivalent to the control capacity (Jia and
Barabási 2013) of that node.
Since exactly one of the Bik will take the value 1 if the node is selected as a driver

(with probability Bi) and they will all take the value 0 otherwise, it follows that the sum
of nodes’ control capacities is always equal to ND, the size of the minimum driver set.
Thus as nodes make changes in linking patterns to raise their own control capacity it will
increase ND, all else constant. Therefore this assumption on preferences – specifically
that nodes can only alter their utility from control input through the probability that they
are selected as a driver – guarantees that a rise in the perception of corruption in a com-
munity should be coupled with a decline in controllability of the social networks that are
formed within it. This is due to the phenomenon shown by Jia and Barabási (2013) that
control capacity depends only on a nodes in-degree and is independent of its out-degree,
and the subsequent reasoning that by removal of incoming influence, an individual can
increase their control capacity without affecting their neighbors, effectively raising the
size of the minimum driver set.
A sufficient, but not necessary, condition which leads to this to this result is for the

control input values to be drawn from a random distribution, such as uniform. The only
truly necessary condition, however, is that the magnitudes of realized control input values
are conditionally independent of a nodes’ incoming linkage patterns, so that individuals
can only change their expected utility from incoming input by changing their control
capacity.
To summarize then, control capacity helps to uncover the hierarchy which is buried in

the complexity of all network topologies. It states that, if you wish to control a network,
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these are the nodes which youmust control. Naturally, if there is an increase in one node’s
control capacity, ceteris parabis, then it must be the case the cardinality of the minimum
node set required to control the network has increased, thus making the network sys-
tem as a whole more difficult to control. It follows that when multiple nodes compete to
increase their control capacity, controllability of the network will become more difficult.
This novel effect is what this paper terms “hierarchical congestion”.
The assumption that corrupting parties choose from a uniform distribution over min-

imum driver sets (or, equivalently, that nodes have uniform prior expectations over the
set of minimum driver sets as to which will be chosen) means that for each of the m
controllers indexed by k, the probability of being selected for a controller is equal to
the control capacity of the node, or, mathematically, that ∀k, l ∈[ 1,m]⊂ Z, E[Bik]=
E[Bil]= 1

mBi where Bi represents the control capacity of node i.
Thus the above assumptions are sufficient to guarantee that increases in the frequency

of corruption should be coupled with increases in the relative size of ND, making con-
trollability of the network more difficult. This means that as the network becomes more
corrupt (nodes expect a higher demand for control of the network and thus expect a
larger payment in exchange for control), the network actually becomes harder to control
(as measured by the size of the minimum driver set) due to rent-seeking at the individual
level. This is the key result which will be tested in this paper.
The size of the minimum driver set required for exact controllability of the network can

be found using the following method derived in Yuan et al. (2013). First, in order for the
network to be fully controllable under the control scheme B, it must be the case that

rank(cIn − A,B) = n (4)

For any constant c. This condition, called the Popov–Belevitch–Hautus (PBH) rank con-
dition, is equivalent to the classic Kalman condition which states that the controllability
matrix C =[B,AB,A2B, . . . ,An−1B] must be of full rank. Intuitively, these conditions are
true when it is possible for a signal, input to the nodes in B, to reach every node in the
network. Using the PBH formulation (4), the minimum number of nodes which must be
controlled in order to fully control the network can be found by looking at the maximum
geometric multiplicity μ(λi) of the eigenvalue λi of the adjacency matrix A.

ND = max
i

μ(λi) (5)

This is proven by Yuan et al. (2013), and is evident by the observation that the first
term in (4), cIn − A, is the matrix whose determinant forms the characteristic polyno-
mial of the adjacency matrix A. Thus its minimum rank will occur at the point where
c = argmaxi μ(λi).
We normalize the measure ND by dividing it by the size of the network, in order to

achieve a regressor which is independent of the size of the network. The result is the
normalized controllability indicator nD = ND

n . Another issue arises with using this metric
to compare political networks, and this is the existence of multicameral legislatures in
certain countries. Since political networks within a country should be expected to have
similarly controllable features, the adjusted controllability measure is proposed as:

n̄D =
∑

c Nc
D∑

c nc
(6)
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This is simply the weighted average of controllability across different chambers c of the
legislature, each of size nc. In other words, this adjusted controllability indicator shows
what proportion of individuals in these networks must be controlled in order to have full
control over the entire legislature.

Formation

The goal of this paper is to show that concerns of individual nodes for their control capac-
ity can have an emergent effect on the structure and controllability of the entire network.
In this section, we examine the nodes’ ability to alter controllability using the simple
heuristics of lowering their in-degree and avoiding triadic closure. The benefit of the ana-
lytical strategy proposed in this paper is that it allows for nodes to be decoupled from
their individual linking and formation strategies and focuses instead on emergent indica-
tors. It is important, however, to show that it is possible, at some level, for the individual
preferences of nodes to have aggregate effects on the controllability of a network.
In order to accomplish this, we will introduce a simple model of social network for-

mation games which can be microfounded and tied to node-level preferences using
the method of Mele (2017), and see how it allows for nodes to heuristically manipu-
late their connectivity in order to increase their control capacity. In this model, nodes
have utility:

Ui(A; θ) =
n∑

j=1
Aijl(θl) +

n∑

i=1
AijAjir(θr)

+
n∑

j=1
Aij

n∑

k=1
k �=i,j

Ajkv(θv) +
n∑

j=1
Aij

n∑

k=1
k �=i,j

Akiw(θw) (7)

Where l, r, v, and w are bounded and real valued functions of their parameters. These
functions represent direct linking benefits, reciprocity, indirect link benefits and popular-
ity effects, respectively. Note that we have simplified the original model by assuming that
nodes are homogenous in attributes, a decision which is motivated by both a desire for
simplicity in the simulated environment as well as by the observation of Pósfai et al. (2013)
that community structure has little to no effect on the controllability of the network.
Under the assumptions laid out in Mele (2017)3 the game is a potential game (Monderer
and Shapley 1996) and there exists a potential function:

Q(A; θ) =
n∑

i=1

n∑

j=1
Aijlij (θl) +

n∑

i=1

n∑

j>i
AijAjirij (θr) +

n∑

i=1

n∑

j=1

n∑

k=1
j �=i

AijAjkvik (θv) (8)

With the property that a unilateral deviation in strategy has the same effect on an indi-
vidual node’s utility as it does on this potential function. To briefly summarize, the
assumptions required for this to be true involve the symmetry of m across players and
that of v with w. Most of the strength of this assumption is eliminated by our assump-
tion of homogeneity in nodal attributes. Due to the existence of this potential function,
and under the further assumptions of a randommeeting process that is uncorrelated with
link existence, and the bounded rationality of agents modeled as an idiosyncratic shock

3Notably, these assumptions include a random meeting process and the symmetry of r across players, as well as of w
with v. The latter assumption is used to equate the aggregation of indirect link and popularity benefits with a triadic
closure statistic.
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to preferences following a Gumbel distribution, the formation game evolves as a Markov
chain and has the property that it will converge to a unique stationary distribution

π(A; θ) = exp[Q(A; θ)]
∑

α∈A exp[Q(α; θ)]
(9)

If the potential function Q is linear in parameters, (and nodes are homogenous in
attributes), this distribution can be written as

π(A; θ) = exp[ θ ′t(A))]
∑

α∈A exp[ θ ′t(α)]
(10)

This distribution belongs to an exponential family of random graph distributions
(ERGM) (Desmarais and Cranmer 2012) and can be estimated or simulated using the
ERGM package in R (Hunter et al. 2008; R Core Team 2019). Note that under linearity
in parameters, the three terms in the potential function give link frequency, number of
mutual links, and triadic closure, respectively. The parameters associated with these net-
work features in the ERGM regression are θl, θr , and θv. Issues with asymptotics of the
model for large network estimation and methods for Markov-Chain Monte-Carlo simu-
lation of the intractable normalizing constant in this model are covered in Mele (2017).
For each simulated network, structural controllability is computed using the method of
Liu et al. (2011). This method is used, as opposed to the exact controllability of (Yuan
et al. 2013), because the networks drawn using this simple version of the ERGM are
unweighted, which could make them harder to control than real-valued weighted net-
works. In the networks which will be analyzed in the next section, entries are real-valued,
so their exact controllability should be equal to the structural controllability. Indeed, it is
shown by Liu et al. (2011) that the space of networks for which structural controllabil-
ity is not equal to exact controllability is of measure zero and occurs in networks which
are not sufficiently asymmetric or non-normal4. Structural controllability is calculated by
computing a maximal bipartite matching of the network and counting the cardinality of
the set of unmatched nodes. For the purposes of the simulation this is done using Octave
(Eaton et al. 2017).

Simulations
Up to this point, we have considered individuals manipulating their incoming linking pat-
tern to become more crucial to control as somewhat of a “black box”. That is, we have
simply assumed that individuals can somehow take action to raise their control capacity,
and that this subsequently raises the size of the minimum driver set, without providing a
specific method by which this is accomplished. In this section, we will use simulations to
show how heuristics which place differential biases on certain linking patterns could be
a potential mechanism by which the actions of individuals to raise their control capacity
could be taken and which would thus affect the controllability of the resulting networks.
Simulations are focused on edgewise attributes which should affect controllability of the

network as a whole. Similar simulations, and a discussion of how in- and out-degree affect
a node’s individual control capacity are performed in Jia and Barabási (2013), and the
effects of individual properties of the network on its aggregate controllability have been
simulated by Pósfai et al. (2013). We use the results of these prior simulations to inform

4The importance of non-normality to controllability of networks is further analyzed by Lindmark and Altafini (2018).
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Fig. 2 Controllability of Random Networks. These visualizations highlight how small changes in ERGM
coefficients can have large effects on the controllability of a network, driven primarily by changes in link
frequency. In each network (a) and (b), a randomly selected minimum driver set is highlighted in red

our simulation strategy by selecting the parameters which should likely affect these net-
work properties and thus likely affect its controllability. These simulations differ from
prior ones, however, in that they tie the network properties to node-level preferences in a
social network formation model, and with multiple degrees of freedom.
First, network parameters are drawn randomly from a given interval. Then, a network

of size n = 100 is drawn from the distribution with these parameters, and its structural
controllability is computed. In order to simplify the model further for simulation pur-
poses, the coefficient of mutual links is fixed at θr = 05, since the coefficients of greatest
interest to this paper are those on individual links and loops (as heuristically measured by
transitive triadic closure).
As an initial sanity check, a sample of one thousand networks with n = 50 were drawn

from ERGM distributions in both “high controllability” and “low controllability” condi-
tions. In the high controllability condition the parameters were fixed at θl = −3 and
θv = −0.3, while in the low controllability condition they were lowered to θl = −6 and
θv = −0.6. Controllability of each of these networks was computed, and a non-parametric
two-tailed Mann-Whitney U test rejected the null hypothesis that the median control-
lability of the two samples of networks were identical with p-value less than 0.00001,
indicating a high level of confidence that the networks in the high-controllability condi-
tion do, in fact, generate networks which are more controllable. This is not surprising,
given the well-documented significance of edge frequency on controllability of a network
(Pósfai et al. 2013; Jia et al. 2013; Jia and Barabási 2013). Figure 2 presents a network drawn
from each of these conditions, and further highlights the importance of edge frequency.
These results encouraged a full simulation. For the simulation, parameters for the

linking and triadic closure coefficients are sampled uniformly from the real intervals
θl ∈[−100, 0] (consistent with a positive linking cost), and θv ∈[ 0, 100] (indicating that

5A three-dimensional parameter sweep including nonzero values of θr was also performed. These results showed a very
minor and statistically insignificant effect of the reciprocity parameter on network controllability.
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Fig. 3 Simulation Results. In a simple formation model, edge costs are the most important determining
factor of network controllability, and triadic closure appears to matter on the margin. This figure highlights
the stark impact of θl on controllability, driven by the phase transition from dense to sparse networks which
occurs due to rising edge costs

nodes have a positive value of indirect linking spillovers and popularity which lend them-
selves to triadic closure). Since the structural controllability of the network can never be
lower than nsD = 0 (in the case where any individual node can control the entire network),
or higher than nsD = 1 (the case where all nodes must be controlled), we fit a tobit cen-
soring model (Amemiya 1973) to the data with a lower limit of nsD = 0 and upper limit of
nsD = 1, and the following specification:

nsD = γ1 ∗ θl + γ2 ∗ θv + ε (11)

Initial results appeared to show with a high degree of statistical significance that the con-
trollability of the network is increasing in the two parameters of interest (or, alternatively,
the fraction nsD of driver nodes required in order to structurally control the entire system
is decreasing in both link frequency and triadic closure. Results of this simulation can be
seen in Fig. 3.
On observing the graphical results, however, it becomes clear that there may be more

going on than the tobit regression results appeared to indicate. That is, when the triadic
closure coefficient is greater than the negative of the edge cost, the controllability of the
network becomes noisy, but there does not appear to be a significant trend toward more
controllable networks apart from this noise. In order to verify this, a new simulation was
performed, this time with parameters θl ∈[−15, 0] and θv ∈[ 0, 1500]. Further, in effort
to smooth the surface, the parameters were not drawn from a uniform distribution and
instead were drawn from a grid over the parameter space. For each pair of parameters
on the grid, five networks were drawn and their average controllability was computed. In
these simulations, it became clear that the estimated effect of the triadic closure coeffi-
cient dropped off significantly as the parameter was drawn from a larger interval. This
indicates that triadic closure matters on the margin, but is asymptotically insignificant in
the determination of controllability of a network.
A tobit model is used, rather than a nonlinear function, so that coefficient estimates

can be readily interpreted. Table 1 shows the results of the tobit regression for this second
round of simulations. It is clear that the edge coefficient has a strongly significant and
negative association with nD, or, equivalently, positive effects on the controllability of the
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Table 1 Tobit regression analysis of simulated network controllability

(11)

nsD
Edges (θl) -0.120***

(0.000528)

Triads (θv ) -0.00000798*

(0.00000432)

Constant -0.455***

(0.00600)

var(e.n̄D) 0.0643***

(0.000787)

N 22500

Standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01

network. The apparent bimodality of the indicator shows the strong tendency of these
ERGMmodels for degeneracy –meaning that they usually will generate either completely
dense or sparse networks.
The purpose of these simulations was to show how members of a network formation

game can use simple heuristics to alter their control capacity, and that these changes in
control capacity are evidenced by an emergent effect on the controllability of the network
that they form. The simulations appeared to show that this is possible even in a very
simple model of network formation through a heuristic which places upward pressure
on direct link costs. While there is no known closed-form solution to solve for the exact
magnitude of this cost change, the benefit of the analytical approach used in this paper is
that it does not require imposition of any structural utility function or specific heuristic in
order to yield results, provided that nodes have a positive value of control capacity which
increases with their corruptibility, and that they are able to heuristically alter this measure
when required.
Simulations suggest another possible network-level covariate which could be related to

corruption. That is, these simulation results, along with those of Jia and Barabási (2013),
suggest that nodes could use the simple heuristic of lowering their structural in-degree
to raise their control capacity and thus the size of the minimum driver set. Alternatively,
this can be viewed as heuristically inflating the cost of forming incoming links. If this is
the case, and in-degree is the primary instrument that was used by nodes to alter their
control capacity, we may expect to see a strong correlation between the link density of the
network and the corruption indices. The structural density of the network is taken as the
number of nonzero edges it contains:

Rs =
n∑

i=1

n∑

j=1
1{Aij>0} (12)

Where 1{Aij>0} is an indicator which takes the value 1 if there is a link between j and i, and
takes the value 0 otherwise. In order to normalize structural density so that it is relative
to the network size n, it is divided by the total number of possible links in the network,
which, for a directed network with n nodes, is given by n(n − 1), so that ρs = Rs

n(n−1)
Finally, in order to adjust for bicameral legislatures, with nc nodes in each chamber c,

we define the adjusted relative structural density ρ̄s to be the proportion of all possible
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links which exist across all chambers. Let Rc
s be the structural density (12) of chamber c

of the legislature. Then

ρ̄s =
∑

c Rc
s∑

c nc(nc − 1)
(13)

Gives the adjusted relative structural density of the legislature. Intuitively, this is the
fraction of all possible links in both networks which exist with nonzero weights.

Data analysis
Cross-country analysis

For the purposes of the analysis, the network formation and its dynamics must be consid-
ered as separate processes. Indeed, one benefit of this approach is that it does not require
imposition of a strict structural form for preferences – it requires only that agents’ util-
ity considers corruptibility ηi and control input uik as complements. While the separation
of formation and dynamics is not ideal for the purposes of capturing the evolution of
a network, it allows for us to capture the shocks to network membership which occur
when new members (with potentially new attitudes toward corruption) enter the net-
work, existing nodes leave, and the network is reformed under new norms. Regressions
are focused on the following models which aim to uncover the temporal relationships
between controllability n̄D and attitudes toward corruption within a society.
Network data are provided by Briatte (2016). The measure used to define a link weight

is the “weighted propensity to cosponsor” measure first proposed by Fowler (2006). This
measure provides a connectedness weight which is given by:

wij =
∑

l

alij
cl

(14)

where wij represents the strength of the link from legislator j to legislator i, alij is a binary
indicator of whether or not legislator j had a cosponsorship relation with legislator j on
bill l, and cl is the total number of cosponsors on the bill.
World Bank Governance Indicators of Control of Corruption (CCE) were merged with

the calculated controllability data of the networks to create a panel of data across 20 Euro-
pean countries (also including Israel and Iceland) within the time period from 1996 to
2015, in order to estimate the coefficients of regressions of the following form:

yit = β1 ∗ Corruptionit + FEi + εit (15)

Where yit denotes the outcome variable (either adjusted controllability n̄D or adjusted
relative structural density ρ̄s), FEi denotes fixed effects at the country level, subscript t
represents the time period, and Corruption is the negative of CCE, in order to create a
variable which increases with corruption. Summary statistics for the variables of interest
are given in Table 2. Results, shown in Table 3, reject the null hypothesis of no correlation
between attitudes toward corruption in an area and the controllability of the political
social networks which form there, and with a high degree of statistical significance.
These first pass results support the hypothesis that political corruption is an important

factor in the evolution of controllability in the social network between politicians. They do
not, however, seem to reveal any significant correlation between changes in the structural
density of the network and changes in corruption over time. This could indicate that the
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Table 2 Summary statistics

Country Time Period Bicameral Mean n̄D Min n̄D Max n̄D EU

Austria 1996-2015 Yes* 0.5489048 0.4776119 0.6274510 1995

Belgium 1996-2015 Yes 0.2567353 0.1781376 0.3714285 1958

Bulgaria 2005-2015 No 0.5578258 0.4593301 0.7020408 2007

Czech Republic 1996-2015 Yes 0.6646738 0.5956679 0.7896996 2004

Denmark 2004-2015 No 0.3223872 0.2285714 0.6612903 1973

Estonia 2007-2015 No 0.9153994 0.9036145 0.9307690 2004

Finland 2000-2014 No 0.5126068 0.4000000 0.5916230 1995

France 1998-2015 Yes 0.6077847 0.5680366 0.6747475 1958

Hungary 1998-2015 No 0.6144966 0.5300546 0.6700000 2004

Iceland 1996-2015 No 0.3306113 0.2588235 0.4090909 N/A

Ireland 1998-2015 Yes 0.5563497 0.5373135 0.5769231 1973

Israel 2009-2015 No 0.3002131 0.2752294 0.3272727 N/A

Italy 1996-2015 Yes 0.2406424 0.1620227 0.3555556 1958

Lithuania 1996-2015 No 0.3670615 0.2466667 0.7676768 2004

Norway 1996-2015 No 0.4493115 0.4225352 0.4672131 N/A

Portugal 1996-2015 No 0.6032528 0.5182482 0.6492891 1986

Romania 1996-2015 Yes 0.4944944 0.3786982 0.6328829 2007

Slovak Republic 1998-2015 No 0.5369782 0.4814815 0.6170213 2004

Sweden 1996-2015 No 0.0851795 0.0631579 0.1059783 1995

Switzerland 1996-2015 Yes 0.5609081 0.5074074 0.7259259 N/A

* Austria has a bicameral legislature, but data are only available on the lower chamber.

actual mechanism by which politicians change their linking strategies is more complex
than simply by a reduction of their in-degree.
The motivation for this analysis is, primarily, to establish that there is a correlation

between the incentives for control input and the controllability of social networks. A
potential benefit of this conclusion is that controllability of a regional social network
could be used as an instrumental variable for corruption, when determining its effect
on other aspects of the local economy. This is, of course, provided that the variable of
interest is uncorrelated with controllability of the network except through changing views
toward quid-pro-quo corruption (Woolridge 2002). As an example of such an analysis,
the parameters of the following system of regression equations were estimated using a
two-stage least squares procedure:

GEEit = β2 ∗ ̂Corruptionit + β3 ∗ EUit + FEi + εit (16)
̂Corruptionit = β1 ∗ n̄Dit + FEi (17)

Table 3 Estimates using the aggregate WGI control of corruption indicator

(15) (15) (16)

ρ̄s n̄D Governance

Corruption (WGI) -0.00510 0.0918*** -0.721**

(0.00626) (0.0291) (0.313)

EU 0.117***

(0.0328)

N 302 302 302

Standard errors in parentheses
* p < 0 : 1, ** p < 0 : 05, *** p < 0 : 01
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Where ̂Corruption denotes values of the negative of the CCE control of corruption indi-
cator, estimated by the results of regression (14) using controllability of the network n̄D as
an instrumental variable. Normally, regression (16) would be invalid because of potential
endogeneity between theWorld Bank indicators. By using the controllability of the politi-
cal social network as an instrument for regional attitudes toward corruption, however, we
can theoretically overcome this endogeneity issue and estimate the true effects of other
variables on the effectiveness of governance while controlling for corruption. Since the
time frame of interest includes addition of several new members to the European Union,
a multinational organization dedicated to, among other things, “[promoting] sustainable
development based on balanced economic growth,”6 there is a distinct possibility that
EU membership changes over time could affect the effectiveness of governance in mem-
ber countries. For this reason, we estimate the effects of EU membership on governance
effectiveness in regression (16) while controlling for corruption through the proposed
instrument. The estimated effect of EU membership on the effectiveness of governance
in a country when controlling for corruption through the instrument of controllability of
the social networks within legislature was found to be positive and highly significant.

Robustness

The World Bank Worldwide Governance Indicators (and aggregated survey-based indi-
cators in general) have been heavily criticized for their potential issues with endogeneity
between the indicators as well as difficulties which arise whenmaking cross-country com-
parisons due to the lacking of certain data for some countries and time periods (Kaufmann
et al. 2011; Knack 2007). Fortunately, the World Bank makes some data on individual sur-
vey sources publicly available. We conduct the same analysis on these lower-level data in
order to establish robustness of the results to potential issues with the indicators.
Specifically, the same regressions as above were conducted on data fromThe Economist

Intelligence Unit (EIU), which is one of the individual data sources that is harnessed to
construct the World Bank Worldwide Governance Indicators (WGI) used above. This
stood out as the best individual data source from which to conduct robustness checks
for a number of reasons, in particular its coverage of [almost] the entire time period of
interest7 and the availability of data on both corruption and governance effectiveness for
all of the countries studied in this paper.
Specifically, EIU data on governance consist of expert responses to survey questions

and are subject to peer review for consistency. For governance effectiveness, questions ask
about both institutional quality and excessive bureaucracy. For corruption, respondents
rate their perception of the presence of corruption among public officials between zero
and four. Responses are then weighted to lie between zero and one.
Results of these new regressions are displayed in Table 4. These establish that the cor-

relation between corruption perception and controllability of the political network over
time is robust to the data source. With these data, we find a much stronger correla-
tion between the density of the network and the EIU measure of corruption, and in the
direction implied by our simulation results. That is, as corruption increases over time,
it is coupled with a decreasing density of the political network as incoming influence is

6Paraphrased from the “Goals and values of the EU” page of europa.eu, the official website of the European Union (EU
2019b). This site is also where data on country entry to the EU were collected (EU 2019a)
7With the exception of Iceland in 1996-2005
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Table 4 Estimates using the EIU indicator of corruption among public officials

(15) (15) (16)

ρ̄s n̄D Governance

Corruption (EIU) -0.0653*** 0.246*** -0.329

(0.000998) (0.0474) (0.244)

EU 0.0642**

(0.0280)

N 295 295 295

Standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01

removed by individual nodes. In the instrumental variable regression, the effect of cor-
ruption when instrumented by controllability has a similar magnitude as earlier, but lacks
as much statistical significance (with a p-value of 0.179). While the primary results of this
paper hold, this robustness check calls into question the validity of controllability as an
instrumental variable for corruption with this specific dependent outcome measure.
It is encouraging that estimates between the two regressions had the same sign, but

the lack of significance of the estimates could indicate that n̄D is correlated with the
effectiveness of governance outside of its correlation with corruption, making it at best
a weak instrument for governance effectiveness (as measured by institutional quality
and excessive bureaucracy). This is consistent with the model of Battaglini et al. (2019)
which considers the effectiveness of individual legislators as a result of a network with
endogenous structure. The lack of significance of the coefficient estimate in this particu-
lar estimation does not invalidate its use as an instrumental variable in other estimations
for which this potential endogeneity issue is not present. Indeed, this robustness check
strongly confirms the primary result of this paper, which is that attitudes toward corrup-
tion over time are highly correlated with changes in the controllability of social networks
between politicians.
As a final robustness check, we repeat the regression (15) while controlling for time

fixed effects and using heteroskedasticity-robust standard errors, clustered at the country
level. The new regression models are:

n̄Dit = β ∗ Corruptionit + FEi + FEt + εit (18)

ρ̄sit = β ∗ Corruptionit + FEi + FEt + εit (19)

In doing so we repeat the same regressions but allow for fixed effects which could
affect the controllability and density of networks in all countries in each year, as well as
accounting for possible correlation between the residuals in each country over time when
calculating standard errors. Results of these regressions on the EIU data, shown in the
second column of Table 5, again support the theoretical results and with a high degree
of statistical significance. That is, both controllability and network density show a highly
significant correlation with the EIU indicator of corruption among public officials.
In this estimation the World Bank indicator shows less statistical significance in its

effect on controllability, although the estimate is still significant at the conventional ten-
percent level. This drop in statistical association could very well be due to the fact that
theWGI are comprised of many different surveys, and that which individual surveys used
to generate these indicators are not consistent over time (Kaufmann et al. 2011), while



Solimine Applied Network Science            (2020) 5:23 Page 17 of 20

Table 5 Time fixed-effects and clustered standard errors

(18) (19) (18) (19) (18) (19)

n̄D ρ̄s n̄D ρ̄s n̄D ρ̄s

Corruption (WGI) 0.411* -0.00835 0.132*** -0.0132

(0.2240) (0.0152) (0.0423) (0.0134)

Corruption (EIU) 0.267*** -0.0706***

(0.0833) (0.0179)

Time fixed effects Yes Yes Yes Yes Yes Yes

N 302 302 295 295 295 295

Standard errors in parentheses, clustered at the country level
* p < 0.1, ** p < 0.05, *** p < 0.01

the EIU corruption measure specifically measures only perceptions of “corruption among
public figures” and from a consistent sample.
When the seven years of observations from Iceland, which are the only data missing

from the EIU, were dropped from the WGI data, the estimate again becomes significant
at the conventionally high levels, with a p-value of 0.006. Although estimates of the effect
of corruption on density do not become significant, the magnitude of the estimated effect
is substantially larger relative to its standard errors than in the earlier estimation. The
results of these estimations are reported in the fifth and sixth columns of Table 5. This
appears to indicate that the controllability of political networks is specifically strongly
correlated with corruption among public figures, but less so with the other types of cor-
ruption which are measured by the WGI Control of Corruption estimate. For example,
theWGI Control of Corruption estimate also includesmeasures of “petty” corruption and
household bribery. Indeed, this conclusion is further supported by the fact that the EIU
data are one of the few individual data sources within theWGI aggregation that cover cor-
ruption specifically among public figures, across all the countries and approximately the
same time frame as our data on network controllability. Thus that the removal of EIU data
from certain observations of the WGI estimate would impact that estimate’s correlation
with controllability of the political network.

Discussion
We have found a strong and robust negative correlation between corruption among pub-
lic figures in a region and the controllability of the political networks which form there. In
doing this, we shed some light on the ways in which incentives may direct the formation
and subsequent structure of social networks. We have proposed a basic theoretical model
of member preferences which could explain this correlation. This model is based on the
idea that as corruption becomes more acceptable, nodes can rent-seek by manipulating
their position in the social network (primarily through their number of incoming links) so
that they become more important to any control schematic. This supports the anecdote
that as corruption becomes more popular or acceptable, individuals will want a “piece of
the action.” Their manipulation of their own position to become more critical for control-
lability of the network is given the term “hierarchical congestion.” This is due to the effect
that as more nodes take actions to raise their position in the hierarchy of controllability,
the network system as a whole becomes more difficult to control.
Simulation results support that decreasing their structural in-degree could be a mech-

anism by which nodes increase their own control capacity, without affecting that of their
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neighbors, and thus increase the size of the minimum driver set. This suggests that politi-
ciansmay increase their position in the controllability hierarchy through a heuristic which
places additional cost on the forming of incoming links. If this were true, then corruption
should be expected to have a negative correlation with the density of networks. Empirical
evidence on this phenomenon is mixed. While the estimates all point toward the same
central tendency, the effect is not statistically different than null when estimated using the
WGI aggregate indicator. In the estimates on the individual data source provided by the
EIU, however, they are highly statistically significant at conventional levels.
The use of political network controllability as an instrumental variable for politi-

cal corruption in a region has been discussed. Importantly, it is crucial to ensure that
the dependent variable in an instrumental variables regression is uncorrelated with
controllability of the political network, other than through corruption. For example,
instrumentation for governance effectiveness may not be possible if the measure to define
the “effectiveness” of the legislature is otherwise correlated with controllability of the net-
work. Instrumentation using network controllability may very well be possible for other
dependent variables such as educational outcomes or infrastructure quality, provided that
they are coupled with a suitable argument regarding a lack of direct correlation between
controllability and the outcome variable.
This paper is the first to examine the controllability of a network system in an envi-

ronment where nodes have value of control input signals and the network formation is
endogenous. We have discovered evidence of hierarchical congestion in political influ-
ence networks, which are networks where nodes can choose their incoming directed links,
but because control capacity is primarily determined by a node’s in-degree there may be
wholly different effects of control preference in networks where nodes choose outgoing
links, or in undirected networks. Thus a key conclusion of this paper is that controllabil-
ity of a social network should not be considered in isolation from the incentive structure
of the nodes within the network, particularly in situations where the network is growing,
forming, or changing over time.
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