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Chainalysis, New York, USA Hacks are one of the most damaging types of cryptocurrency related crime, accounting

for billions of dollars in stolen funds since 2009. Professional investigators at Chainalysis
have traced these stolen funds from the initial breach on an exchange to off-ramps, i.e.
services where criminals are able to convert the stolen funds into fiat or other
cryptocurrencies. We analyzed six hack subnetworks of bitcoin transactions known to
belong to two prominent hacking groups. We analyze each hack according to eight
network features, both static and temporal, and successfully classify each hack to its
respective hacking group through our newly proposed method. We find that the static
features, such as node balance, in degree, and out degree are not as useful in
classifying the hacks into hacking groups as temporal features related to how quickly
the criminals cash out. We validate our operating hypothesis that the key distinction
between the two hacking groups is the acceleration with which the funds exit through
terminal nodes in the subnetworks.

Keywords: Cybercrime, Network analysis, Complex networks, Hacks, Crytocurrency,
Bitcoin, Cybersecurity, Temporal networks, Sociotechnical systems

Introduction

The Bitcoin network is a distributed, public ledger, secured through blockchain technol-
ogy. All transactions occur between two distinct public addresses and are permanently
recorded on the specific blockchain built for bitcoin. The process of securing these trans-
actions is handled by bitcoin miners, who use their computing power to solve complex
cryptographic problems and in the process verify blocks and transactions (Nakomoto
2009).

Anyone can create a bitcoin address to receive funds through a variety of software
projects such as Blockchain.info (BLOCKCHAIN LUXEMBOURG S.A 2011) or Electrum
wallets (Electrum 2011). Additionally, there is no limit to the number of bitcoin addresses
that any individual or organization can make. There are also no requirements for verifying
your identity in the process of address creation. It is completely free to make an address,
however, it costs money to transfer money on the network by paying transaction fees.

Because of the ease of transactions between pseudonymous addresses, cryptocurren-

cies, and bitcoin in particular have been especially attractive to criminals who both exploit
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technological vulnerabilities and prefer to move funds through the pseudonymous bit-
coin transaction network to avoid detection by law enforcement (Huang and et al. 2018).
Indeed, the amount of cybercrime involving cryptocurrencies has grown via ransomware
(Huang and et al. 2018), scamming activity, phishing scams, and hacking of exchanges
or wallets (Chainalysis 2019). There have been several attempts to quantify the scale of
criminal activity as well (Yin and et al. 2017).

Notably, exchange hacks are one of the most costly types of cryptocurrency related
crime. Hackers have stolen $1.7 billion dollars worth of cryptocurrency from exchanges
since 2011 (Chainalysis 2019). Tracing stolen funds in order to freeze the assets of the per-
petrators is one of the most effective ways of safeguarding against future attacks, as this
method removes bad actors from the ecosystem and disincentivizes similar activity from
other actors. Typically, either government or private cyberinvestigators, take up the task
of tracing stolen cryptocurrency funds. Their investigations begin with a known address
that has been hacked. They then follow the funds through up to thousands of different
addresses until the funds hit a service (an off-ramp), i.e. an alternative means of cash-
ing out the stolen bitcoin. Ideally, an investigator will trace funds to a service so that a
subpoena can be issued to the service to unmask the identity of the criminal. These inves-
tigations result in traced out subnetworks representing the flow of stolen bitcoin from the
point of breech on an exchange through exit ramps.

We obtained six subnetworks from investigators at Chainalysis, a firm specializing in
blockchain investigations. These were investigations carried out over several months, and
which effectively trace all of the stolen funds through the entire bitcoin transaction graph.
Each edge is a transfer of the stolen money to a node which is controlled by the hacker.
The size and complexity of these graphs vary according to the amount of effort the hacker
used to move funds and that hacker’s level of technological sophistication.

Similar subnetworks can be collectively generated by the community of users that
trace funds on the public Bitcoin ledger and often does occur after a criminal steals
cryptocurrency on a public ledger (ErgoBTC 2019).

We present research to algorithmically visualize and analyze hack cash out subnetworks
that capture the temporal behavior of hackers and locate the stolen funds. We then build
similarity matrices based on eight graph features, run community detection over those
matrices, and successfully classify certain hacks to the known hacking organization to
have carried out the attack. We find that temporal features, such as the rate at which
the hackers send funds to exit ramps, are the most effective features to use for grouping
specific hacks together and classifying them to their hacking groups.

We find that this method might prove useful as a component of some automated classi-
fication system designed for anti-money laundering or anti-fraud detection of transaction
ledgers, not only for the specific use case that we describe in the work below as specific
to these investigations, Chainalysis, or even bitcoin as a whole.

Algorithmically traversing hack subnetworks and its limitations
We investigate bitcoin hacks by traversing subnetworks of nodes that have been built out
by professional crime investigators. These hack subnetworks are comprised of nodes that
have either directly or indirectly received hacked funds, see Fig. 1 for visualization.

We then create visualizations to identify trends in the hack and to better under-
stand the time patterns specific to each hack as the stolen bitcoin flows to the
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Fig. 1 Sample Hack Subnetwork, Hack A3

boundary of the networks generated, see Fig. 2. In some cases, when the level of
obfuscation is minimal, investigations tracking stolen funds often terminate at ser-
vices (see Methodology section on identifying services), simply because criminals want
to change their stolen bitcoin for fiat currency, or at least convert it to a another
cryptocurrency.
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Yet cryptocurrency investigations are usually much more complex then this (Nouh and
et al. 2019). Often, the investigator may not know if a node belongs to a service, par-
ticularly in the case of a mixing service. Furthermore, stolen bitcoin from some of the
largest hacks may utilize laundering mechanisms in which OTC brokers act as third
party sellers allowing for a change of hands to an entity that is no longer behind the
hack. This activity can not be detected through blockchain analytics unless their is a
source of ground truth confirming the funds passing through on OTC broker. Without
this confirmation, the funds would appear to move from one pseudonymous node to
another.

Sometimes the investigations are so complex that the investigator simply cannot go
through the process of tracing every single stolen bitcoin to an cash out point. In this case,
the investigator may choose to chase particularly promising leads, rather then spend the
time to analyze every single transaction that occurred. At any given time, stolen funds
may be sitting idly in non-service clusters for extended periods of time. In practice, it is
common for funds to slowly leak out of these “holding” clusters (Chainalysis 2019).

Generally, as networks are built out manually by subject matter experts, methods
such as the one proposed below can help ensure that the proper classifications of these
networks have been achieved.

Methodology
Pipeline
1. We first gather subnetworks of known hacks that have been built out by
professional investigators.

¢ Due to the sensitivity of this data and relative infrequency of hack events, the
result of this process provided a small set of anonymized, curated subnetworks
that trace stolen funds from the origin of the hacks to all end points of interest.

e [tis at this point that we introduce a new tool for analyzing these subnetworks
for additional insights that we can eventually return to the investigators and
compliance officers at exchanges.

2. We traverse these subnetworks from the starting clusters through the boundary of
the subnetwork.

e An element of complexity emerges in this analysis that requires additional
attention, namely that the terminal nodes require a more rigorous definition
than any cluster sitting on the outskirts of the subnetwork since many of these
terminal nodes act as sinks but still slowly leak funds despite maintaining
control over the majority of their hacked balance. This definition will be
fleshed out in the subsection “Defining Terminal Nodes.” Additionally, as seen
in Table 1, the simple static network characteristics demonstrate that the data
is tree like, with low average degrees (in- and out-degrees are equivalent on
average) and low clustering coefficients. Yet the complexity due to the
temporal nature of the subnetworks as well as the nature of these terminal
nodes require additional features to be defined before information can be
meaningfully extracted from the data, since it is not always the leaves of these
tree-like subnetworks that play important roles, either from the temporally -
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Hack Txs Nodes Avg In-Deg Clust. Coeff
Al 1,981 1,257 1.02 0.001
A2 421 55 1.11 0.041
A3 607 218 1.05 0.008
B1 190 176 1.01 0.000
B2 374 335 1.06 0.002
B3 57,299 174 1.62 0.068
in that they arrive latest - or topologically - they sit farthest in the transaction
graph.
3. Next, to better visualize the temporal activity in the hacks, we create two time
series that display the activity of the hacked funds.
e First, we measure how active the hackers are over time by computing the
number of transfers the hackers make each day, as seen in Fig. 3.
e Second, we measure the funds traced as they move to terminal nodes, as seen
in Fig. 2. As the funds move through terminal nodes, the share of funds still
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held by hackers decreases. A fully tracked hack subnetwork would be visualized
by the funds decreasing from 100% to 0% of funds still held by the hacker over
the number of days that it takes to fully exit the funds through terminal nodes.

4. We then generate distributions for the following features for each hack subnetwork:

e Logarithm of Hack balance of all nodes, see Fig. 4.

e Weighted In-degree of all nodes, see Fig. 5.

e Weighted out-degree of all nodes, see Fig. 6.

e Average number of transactions to terminal nodes per day, across all p values,
derived from data shown in Fig. 3.

e Terminal Nodes as a function of p, see Fig. 7.

e Logarithmic difference of the average percent of funds still in play, across all p
values, derived from data shown in Fig. 2.

e Second difference of the average percent of funds still in play, across all p
values, derived from data shown in Fig. 2.

e Logarithmic difference of the standard deviation of the percent of funds still in

play, across all p values, derived from data shown in Fig. 8.
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Afterwards, we create similarity matrices corresponding to each distribution,
whose elements are the pairwise similarities of the distributions corresponding to
each of the hack subnetworks via the 1-Dimensional Wasserstein Distance, i.e. the
Earthmover Distance (Villani 2003; ).

We run two community detection algorithms, Modularity Optimization (Clauset
and et al. 2004) and Walktrap (Pons and et al. 2013). We compare the output of the
overall approach across the similarity matrices for all the distributions against our
ground truth attribution of the two underlying hacking groups and demonstrate
the potential for such a method by properly reattributing the hack networks to
their respective groups. Both this step and the previous step are motivated by the
idea that relational data is best analyzed using the tools of network science and the
similarity of the distributions between the hacks in question fall into relational
data. For a larger range of approaches utilizing complex networks for more general
data clustering see (de Arruda and et al. 2012). The reason we employ purely
topological distance here, rather than the exponent of a related distance as
suggested in de Arruda and et al. (2012), is due to the inherent assumption that the
behavior of the underlying hacking groups are similar to the point of minor

Page 7 of 20
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Fig. 6 Distribution of Out Degree

perturbations in the underlying distributions of activity, which we believe the
Earthmover Distance is particularly well suited to detect.

7.  Lastly, we review the output communities and test our hypothesis that the features
relating to the hack dynamics are more informative in classifying the hacking
groups than the static network features.

Identifying services

A typical service can control thousands of addresses, while larger services can even man-
age into the millions. We identify services by exploiting features unique to the Bitcoin
blockchain. There are many different approaches that blockchains employ to crypto-
graphically verify transactions, but the Bitcoin blockchain relies on Unspent Transaction
Outputs (UTXO’s) to record all transactions. A UTXO is the unspent output of a pre-
vious transaction that a user is entitled to transfer to another bitcoin address. Every
wallet that holds a positive bitcoin balance is in possession of at least one UTXO. When
multiple UTXO’s are held by a single user and spent together in a transaction, it then
becomes possible to definitively ascribe common ownership to all of the UTXO’s that
were spent together. This concept of a cospend is the basis of the clustering activity used

Page 8 of 20
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Fig. 7 Number of Terminal Nodes as function of p, TVR

by blockchain analysis firms such as Chainalysis to identify clusters of addresses con-
trolled by a single entity. The network then becomes comprised of cospend clusters, i.e.
nodes, composed of multiple addresses rather than long chains of single-use addresses
(Meiklejohn and et al. 2013; Akcora and et al. 2019).

Once addresses have been mapped to a node through cospending activity, the node
can be mapped to a named entity by interacting directly with it. For the example of an
exchange, this process can occur by visiting an exchange’s website, depositing funds on
the exchange, and tracing that transaction via a block explorer (BLOCKCHAIN LUX-
EMBOURG S.A 2011). Only services with publicly available address information can be
identified in this way.

When stolen funds arrive at a known service, such as a an exchange, we can assume that
the hackers have attempted to cash out their funds. Professional investigators trace funds
through these nodes to create hack subnetworks that capture as much of the meaningful
movement of the stolen funds as possible.

Defining terminal nodes
There are two types of terminal nodes discussed in this paper. 1) A known service terminal
node that is a confirmed service through the process mentioned above of pairing ground

Page 9 of 20
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truth knowledge with cospending activity. These services can be exchanges, mixers, gam-
bling sites, merchant service platforms, or any exit ramp through which a criminal can
off-load stolen bitcoin to an institutional cryptocurrency player. 2) An unknown service
node, where the investigator has reason to believe a node is behaving like a service and
will therefore terminate the investigation at that point.

One problem may arise when the investigator simply chooses to stop pursuing a lead.
At this point, the boundary of their investigated subnetwork might resemble a terminal
node. This limitation should be further investigated in future work. In the cases of the
subnetworks chosen for this research, the investigators followed all leads, which limited
the terminal nodes to those described above.

By default, terminal nodes are the edges of the graph subnetwork. Ideally, a subnetwork
of a hack would track 100% of the funds from the point of a hack through all exit ramps.
This would allow us to set p = 0.00, as the terminal nodes would simply be all the natural
edges of the graph. In this case, the investigator would trace funds to a service, whether
it be an exchange, mixing site, gambling site, etc. p = 0.00 indicates that a node has only
ever received funds within the subnetwork.

We focus on the ratio rather than the difference of funds sent to received because

we want to maximize the number of meaningful leads for investigators rather than raw
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amount due to hacked funds. By returning this normalized list of terminal nodes and
resulting charts, we find all partial sinks “of interest” in the subnetwork that may facil-
itate the issuance of subpoenas or other leads, as well as wallets to watch because they
still contain funds, large or small. As a secondary filter, we can sort by balance due to the
hack, but this feature is only relevant in the operational stage for investigators, not when
conducting our analysis.

We define p as:

weighted in-degree

 weighted out-degree’

i.e. the ratio for a given node of the total amount of funds it sent to the total amount of
funds it received.

Others have proposed using ratios of the in/out degrees when studying the Bitcoin
Transaction Graph, but in different contexts and not as a node-level feature (Bovet and et
al. 2018). We introduce this ratio as a means of classifying individual nodes based on fea-
tures specific to networks of financial transactions. This is particularly important when
trying to capture the underlying behavior of the nodes over time, as value flows in the
temporal network that they collectively compose.

Subnetworks that vary over time, such as hack investigations, generate terminal nodes
throughout the duration of the network’s activity. Terminal nodes with high p values
should represent an optimal list of possible leads for an investigation, since they represent
sinks of value in the transaction graph and are therefore plausibly operated by the true
perpetrator of the hack or another entity of interest.

Figure 9 shows the spectrum of p values and their subsequent interpretation.

Visualizing temporal behavior in the hack subnetworks

The temporal visualizations are shown in Figs. 3 and 2. Figure 3 shows the number of
transfers over time within the hack subnetwork so that the investigator can get a sense of
how active the hackers are over time. They can answer questions such as: does the hacking
group consistently make transactions over time, or do they tend to move funds according
to a temporal pattern. A pattern may be indicative of an algorithm moving the funds, as
opposed to actual individuals approving the transactions.

Figure 2 shows how the funds exit over time through terminal nodes. It allows an inves-
tigator to see the exiting strategy of the hacking group in time. For example, do the hackers
exit the funds in one period of time, or consistently over a longer duration of time? Each of
these strategies has implications for how the investigator profiles the hacking group over-
all. For example, a hacking group that exits all the funds through one exchange in one day

p=0.0 p=0.5 p=1.0
A node on the Node of interest. Complete pass
boundary of the Sends half of the through address.
subnetwork retains values it received. Node sends 100%
100% of the value it of value it receives.
receives.
Fig. 9 Spectrum of rho values and their significance
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may be less organized and less well-funded than a hacking group that gradually, through
thousands of strategic transactions, exits the funds over a long period of time.

The trends are made visible by restructuring the hack subnetworks into time series.
Figure 3 demonstrates how active the hackers are by using the number of transactions
they carry out as proxies.

Figure 3 allows us to see the way the hackers utilize terminal nodes. Hacking group
alpha (A1) is much more active, slowly moving funds through terminal nodes over a
shorter period. Hacking group beta (B1) utilizes fewer transactions in general, but tends
to send all of their transfers to terminal nodes in a short period of time. In the case of
chart B1 in Fig. 3, the hackers sat on their funds for a long period of time before abruptly
exiting over 70% of the funds through a few exit ramps within a one week period.

To test the hypothesis that the hackers are best classified using temporal features such
as the rate at which funds cash out at terminal nodes, we vary p in the following sensitivity
analysis section to observe stolen bitcoin exiting through terminal nodes under a range of

conditions.

Sensitivity analysis of p

We allowed p to range from 0.02 to 0.98 to test the implications of gradually change the p
parameter. A cluster with a very low p value, e.g. p = 0.1, would have to hold on to more
90% of the funds it received to be considered a terminal node. On the other hand, a very
high p value, e.g. p = 0.9, allows a cluster to retain only 10% of the funds it received from
the hack in order for it to be considered a terminal node. A higher p will capture many
more terminal nodes, as it is an easier condition for nodes to meet.

A lower p value means that the there are fewer terminal nodes picked up in the graph,
and the criteria for being “of interest” to an investigator is extremely high. A very low p
specifies that wallets of interested are those which may only hold small amounts of the
total funds that it received. A node holding over 90% of the funds might be a holding
wallet gradually leaking out funds, it might be a consolidation wallet for a criminal ring,
a wallet associated with other types of criminal activity, or even a point of conversion to
another cryptocurrency if, for example, the wallet is an Exodus wallet, which allows for
wallet level cryptocurrency conversions.

Choosing the right value for p allows us to optimally grow the hack subnetwork such
that it would include the paths of interest without becoming too large to meaningfully
analyze. We found that setting the ratio too high resulted in a less meaningful yet larger
hack subnetwork, where the terminal nodes did not adequately capture dynamics of inter-
est, and setting the ratio to be too low did not include clusters that likely should have been
included.

Applying a range of p from p = 0.02 through p = 0.98, in increments of 0.02, had
very large implications for the amount of funds considered to be tracked. While chang-
ing p typically revealed how much of the funds the investigator tracked, at the same
time, changing the p value does not impact the overall cash out trend witnessed by the
investigator.

These results indicate that varying p may not be useful for understanding the behaviors
of the hacker, but is a useful tool for identifying nodes of interest that could be possible
leads to the investigator. Indeed the variance in the p parameter proved one of the most
useful tools for running community detection.
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We finally then needed to handle the introduction of funds at a time later than the hack
by either the same or different user. To account for this, we either add these new flows to
the funds at the start and work with the new total as our amount of hacked funds, or we
incorporate these flows into our p definition, by stating a further constraint that if p > 1,
then it is a terminal node and we do not follow its flows forward in time. In the case of the
former, we can track all funds engaged in clearly illicit activity, regardless of source, while
in the case of the latter, we are actively restricting the subnetwork to funds that explicitly
originated from the source of the hack.

Feature definitions

The goal when selecting which distributions to analyze was to capture the behavior of
movement of the hacked funds in a precise way. To confirm the hypothesis that the two
hacking groups exhibit different cashout strategies, we decided to consider the empirical
distributions of 8 different features, as mentioned in Step 4 of the Pipeline.

In the following definitions, the expectations are defined over the nodes of the subnet-
works (and terminal nodes in the case of Transactions). Additionally, the time units are
discretized at the daily level. Lastly, the Initial Hack Amount is the value stolen from the
exchange by the hacking group which was the source of the investigated subnetworks.

We define several of the features in our analysis as follows:

1. Amount in Play.
AIP = Initial Hack Amount — Y, . 1.c Weighted in — degree
2. Hack balance of all nodes.
Bal = log(weighted in — degree — weighted out — degree)
3. Logarithmic first difference of the average, LDA, percent of amounts still in play,

AIP, across all p values.

_ E[AIP(t41)]
LDA = log <7E[AIP(t)] )

4. Second difference of AIP, across all p values.

Second Diff (AIP) = %{W

5. Logarithmic difference of the standard deviation, LDST, of the AIP, across all p

values.

— E[(AIP(t+1)~E[AIP(t+1)])?]
LDST = log( E[(AIP(t)—E[AIP(t)])?] )

6.  Average number of transactions to terminal nodes, TTN per day, across all p values.
Transactions = E[ TTN)

Similarity matrices

Once all of the normalized histograms were generated, we measure the pair-wise simi-
larity between them, per variable, via the 1-Dimensional Wasserstein Distance, a.k.a. the
Earthmover Distance or L' Norm. Generally, the L” Norm is defined as:

1 1/p
Wy (F,G) = ( / F ) — G )P du) :
0

where F and G are empirical distribution functions with generalized inverses, F —1 and
G~ (Villani 2003; ).
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Community detection
After the similarity matrices are computed for the distributions of interest, the goal
becomes differentiating between the two hacking groups. We propose a method of rep-
resenting the similarity matrices as networks and searching for two distinct communities
via both Modularity Optimization and Walktrap and comparing the results.

Modularity Optimization (Clauset and et al. 2004) consists of finding a near maximal
value for Modularity, Q, returned from the communities applied to some null model of
network formation, typically a Random Network.

1 kyky,
Q= % Z |:|:Avw - 2}’}’1] 3(cy, Cw):| ’

vw
where m is the number of edges in the network, A, is 1 when nodes v and w are con-
nected and 0 otherwise, &, is the sum of A,,, over w, and §(i,j) is 1 when i and j are equal
and 0 otherwise.
Walktrap (Pons and et al. 2013) operates similarly, also attempting to optimize the same
modularity, but with a focus on short random walks exiting communities as the explicit
motivation and approach.

Both algorithms are built for analyzing large networks, and their true modularity
optimization functions are not explicitly the Q written above, but a derived form.

We utilized both methods as independent confirmation rather than any benefits from
their relative optimizations. As the resulting networks are small, with one node cor-
responding to each hack, are eight distributions analyzed, and two applications of
community detection, any conclusions drawn from our method are only tentative since
no conclusive results can be drawn from such small amounts of data. Nevertheless, we
propose the full method as technically sound and a novel tool in the analysis of hack
subnetworks in the bitcoin blockchain.

Results

As discussed in the Methodology, the communities shown in Fig. 10 correspond to those
identified by two clustering algorithms with the first two rows being Walktrap’s output
communities on each distribution’s similarity network as seen in Fig. 11, and the second
two rows being the results obtained via Modality Optimization. As can be seen, similarity
matrices derived from different distribution comparisons, whether analyzed by the same
or different algorithm lead to different observed communities. Though they are often
different, the communities do share some common characteristics with each other. For
example, for all but the clustering of Balance similarity and TvR, nodes {B1, B2, B3} are
always clustered together. Furthermore, 9 out of the 16 clusters have at least two members
of group A together.

To better quantify consensus among the results in Fig. 10, we first find one node N
which remains in the same group through all of the methods (we chose node B6) so as to
establish a common group naming (in other words, it is no longer the case that a node is
either in the blue or the red group seen in Fig. 10, rather that each node is either in the
same group as our fixed node or in the opposite group), and then we generate a number
n;; associated to each node i and community j, with j € {1,2,3,...,16}, setting n;; = 1
if i is in the same group as N and 7;; = 0 otherwise. We then compute the probability

6 .
of node i being in the same group as N with p = Z’%én” Finally we bisect the vector of

values to along its median and obtain the grouping {41, A2, A3}, {B1, B2, B3}.
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This process was repeated using two feature set combinations. The first set contained
all 8 features, and its resulting vector was (0.625, 0.5, 0.1875, 0.8125, 1, 1). The second
set included only temporal features, namely: LDA, Second Diff(AIP), LDST, and ATVR
and had a resulting vector of (0.25, 0.5, 0, 1, 1, 1). Note, that the ground-truth vector is
simply (0, 0, 0, 1, 1, 1). In both cases, the bisection works to successfully find the two
communities. In the case of only temporal features, the results are even more compelling
where 0.5 can be used to bisect the set of hacks into their respective communities.

Discussion

We ran this analysis on historical hacks curated by Chainalysis investigators. The 6 hacks
analyzed were carried out by 2 distinct and well-known hacking groups that have been
active for the past several years. Each hack was manually classified by the investigators
into one of the two groups, which we take as ground truth. We did not include images of
these investigations because they visually did not contribute towards understanding the
hacking methods.

Analyzing the subnetworks using our proposed methodology allowed investigators to
observe the cash out methods for the different hacking groups. Furthermore, the analy-
sis of each subnetwork based on the features above facilitated greater understanding of
each specific hack and hacking group, as well as the ability to successfully classify the
subnetworks into their respective hacking groups via our pipeline.

Hacking group alpha

We analyzed three distinct hacks carried out by hacking group alpha. Hacking group
alpha is a large, well-funded organization. The hacks analyzed in this paper reveal that
the subnetworks tracing funds stolen by hacking group alpha are highly complex, with
the stolen funds moving through many nodes. The stolen bitcoins are slowly cashed out
through terminal nodes overtime. Investigators confirmed this trend.

Funds flowing to terminal nodes from the three hacks visualized in Fig. 2 further con-
firm this trend. Stolen bitcoin being moved by hacking group alpha appear to slowly leak
out of possession of the hackers through terminal nodes. Taking both the first and second
differences for the amount in play visualized in Fig. 2 demonstrates that the acceleration
at which stolen funds exit through terminal nodes is a significant means of clustering the
graphs. Just taking first differences successfully clusters hack A3 and hack Al together.
Visually, A1 and A3 are more similar. Looking at the second differences, i.e. the accelera-
tion, for the amount in play visualized in Fig. 2 is most successful at finding communities
of hacks. Running community detection on the similarity matrices for the second differ-
ences of the amount in play successfully identifies that A1, A2, and A3 belong in the same
community.

The number of transfers that the hackers use to move the funds has also proven sig-
nificant for helping to effectively classify the hacks according to their hacking groups. As
shown in Fig. 3, hack A2 and A3 appear to have similar trends in terms of the number of
transfers made each day following the hack. The community detection that we ran on the
hacks classified these two hacks together when looking only at trends in the frequency of
transactions sent to terminal nodes.

Analysing the variance in the p parameter, as visualized by Fig. 8 captures how the
share of funds exiting through terminal nodes changes as p approaches 1. The standard
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deviation for the p parameter as p approaches 1 approximates the variety in behavior for
terminal nodes. Using the log difference in standard deviation across the amount in play
by varying p allows us to classify hacks A3 and A1 together. Both these hacks had similar
changes in the amount in play for each p over time, whereas A2 had some uncharacteristic
behavior for hacking group alpha around day 250. A2 was a much smaller sized subnet-
work, with only 55 nodes, than Al and A3, with 1257 and 218 respectively. This made
the standard deviation of the amount exiting through terminal node more sensitive as p
increased.

We investigated whether the distribution of balances across all the nodes in the hack
would be a useful indicator to help classify hacks. This was one of the weakest features
used to classify the hacks into hacking groups. As shown in Fig. 4 there is a wide vari-
ety in the distribution across all the nodes in the graph based on their hack balances.
Hack A3’s distribution, for example, had a higher peak, meaning many of the hacks in A3
held a similar balance. Yet A2 had much more variety across the nodes within the graph
in terms of how much stolen bitcoins each node ended up holding. Using the distribu-
tion of the log balance by nodes was not useful on its own to help classify hacks, and
caused one of the few instances of mistakenly grouping hacks A3 and B4 together as seen
in Fig. 10.

Hacking group beta

We then analyzed three hacks carried out by the second hacking organization referred to
here as hacking group beta. When visualizing the hack subnetworks for hacking group
beta, there are striking differences in the cash out mechanisms. Hacking group beta
tends to send a majority of its funds through terminal nodes over a short period of time.
They tend to sit on their funds quietly, sometimes moving some funds through wallets of
interest, but have a characteristically abrupt cash out pattern.

This pattern is visualized in Fig. 2, where hacks B1, B2 and B3 all have notable vertical
drops, representing abrupt moments of cashing out through terminal nodes. Running
our community detection algorithms on the first differences of this activity successfully
classified all B hacks as belonging together, see Fig. 10, yet also identified hack A2 as
fitting a similar pattern. The second differences for the amount in play chart is the best at
predicting the proper community assignment. Its top performance can be attributed to its
correctly capturing the acceleration of the funds exiting through terminal nodes, which
confirms the hypothesis put forward by investigators about temporal trends in exiting
funds.

All of the hacks from hacking group beta have a large variance for p as p approaches one,
which can also be visualized in 2. This signifies a large range in sending versus receiving
behavior for the nodes within the hacking group beta hacks. Funds are exiting through
a wide variety of nodes, and not simply hitting one exit point which only ever received
funds.

Looking at the distribution of balances held by the nodes within the subnetwork demon-
strates the variety of node behaviors present. However, this was again a weak feature when
it came to classifying the hacks through community detection. Hack B1 had many nodes
that passed through mixing services which were unclustered in the subnetwork. The mix-
ers would siphon off parts of the stolen funds into consolidator wallets in similar patterns.
The investigator only tracked the fattest paths, leaving many of the known nodes passing
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through mixers with a similar balance. Using balance distribution when the graph is not
fully built out was shown not to be useful for community detection.

We next looked at the variation in the AIP over all p as visualized in Fig. 8. The shape
of this graph visualizes how p affects the share of funds exiting through terminal nodes.
Almost all of hack B1’s funds exit through a wide variety of terminal nodes on the first day.
The standard deviation peaks at this point, followed by a long period of no fund move-
ments. We successfully classified hacks B1, B2, and B3 together using our community
detection algorithms, but hack A2 was mistakenly grouped in when using this feature, as
shown in Fig. 10.

We then analyzed the number of transactions going to terminal nodes in Fig. 3. The
number of transactions showed no clear visible pattern to help classify the hacks into
hacking groups. While the community detection algorithms successfully classified all
three hacks from hacking group beta together, it also picked up hack Al.

Key takeaways

We began this analysis by talking with Chainalysis investigators about what they knew
about the hacking groups. They indicated that the key differentiation between the two
groups, is the pattern by which they hold funds and the subsequent rate at which they
cash them out. Our analysis confirms this hypothesis.

We conclude that static features of the charts, such as balance distributions, in degrees,
and out degrees are not useful features for classifying the hacks into hacking groups.
There are many limitations to these static features. To start, they likely require a fully built
out, comprehensive graph. Many of the graphs we chose to analyze were incomplete from
the start. This means the takeaways from the static features of the charts were also fun-
damentally incomplete. Table 1 contains general summary statistics that further reinforce
the relative scarcity of meaningful information from the static features for the hacks.

More importantly, our hypothesis of focusing on the temporal features of the subnet-
works, rather than the static features was validated. The results indicate that the patterns
by which the subnetworks evolve over time serve as useful features for optimal clas-
sification based on the method described in this paper. The optimal classifications in
Fig. 10, specifically the second difference - or acceleration - of AIP, are most charac-
teristic of the subnetworks temporal nature. Varying p to alter our level of resolution
into terminal nodes also plays a role in the usefulness of our temporal features and
the resulting classifications. The correct classifications were obtained when similarity
matrices were built from these temporal features and the community detection algo-
rithms was subsequently run to differentiate the hacking groups based on these features

exclusively.

Conclusion

Hacks represent an important challenge for law enforcement, the Bitcoin community, and
financial institutions. There is opportunity for an algorithmically informed approach to
analysis of existing hacks as well as real time monitoring of hacks. This research rep-
resents an attempt at building a more rigorous framework for such an approach via
an analysis of both the static and temporal features of hack subnetworks and suggests
that the temporal features represent an important avenue of exploration for a deeper
understanding of the hack subnetworks.
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Future work

In this paper, we have described our proposed approach for analyzing characteristics
of the hack subnetworks within the broader bitcoin transaction graph as a means of
classifying specific hacks to their respective perpetrating hacking groups. We find that
specifically, the temporal characteristics are the most effective for allowing this catego-
rization to occur. Our methods, however, can also be used in other contexts. Open source
investigations, for example, can exploit these methods to more effectively track stolen
funds from the breach point on the exchange that has been hacked.

This technique also, for example, could be used even in fiat systems such as the swift
network. For example, once a potential fraud flag is raised on an account, this method
could be used to learn from the behavior of the fraudulent actors. There are, however,
limitations to extending this method to the fiat system. One key distinction between our
use case and the fiat example stems from how we knew the hack was initiated by either of
only two actors. If however one considers a much larger system with many more potential
criminal actors, it might take many ground truth examples and a more robust learning
algorithm to distinguish between the broader scope of potential illicit actors.
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