
Applied Network ScienceLiu and Barahona Applied Network Science             (2020) 5:3 
https://doi.org/10.1007/s41109-019-0248-7

RESEARCH Open Access

Graph-based data clustering via
multiscale community detection
Zijing Liu1 and Mauricio Barahona1,2*

*Correspondence:
m.barahona@imperial.ac.uk
1Department of Mathematics,
Imperial College London, South
Kensington Campus, SW7 2AZ
London, UK
2EPSRC Centre for Mathematics of
Precision Healthcare, Imperial
College London, SW7 2AZ London,
UK

Abstract
We present a graph-theoretical approach to data clustering, which combines the
creation of a graph from the data with Markov Stability, a multiscale community
detection framework. We show how the multiscale capabilities of the method allow
the estimation of the number of clusters, as well as alleviating the sensitivity to the
parameters in graph construction. We use both synthetic and benchmark real datasets
to compare and evaluate several graph construction methods and clustering
algorithms, and show that multiscale graph-based clustering achieves improved
performance compared to popular clustering methods without the need to set
externally the number of clusters.

Keywords: Multiscale community detection, Clustering, Graph partitioning, Data
mining

Introduction
Clustering is a classic task in data mining, whereby input data are organised into groups
(or clusters) such that data points within a group are more similar to each other than to
those outside the group (Xu and Wunsch 2005). Such a task is distinct from supervised
(or semi-supervised) classification, where examples of the different classes are known a
priori and are used to train a computational model to assign other objects to the known
groups. Instead, clustering aims to find natural, intrinsic sub-classes in the data, without
assuming a priori the number or type of clusters. Indeed, a key open issue in this field is
the principled determination of the number of clusters in an unsupervised manner, with-
out the assumption of a generative model (Sugar and James 2003; Azran and Ghahramani
2006). The obtained groups can then constitute the basis for a simpler, yet informative,
representation of large, complex datasets.
Data clustering has a long history and there exist a myriad of clustering algorithms

based on different principles and heuristics (Jain et al. 1999). In their most basic form,
many popular clustering techniques (e.g., k-means (MacQueen 1967) and mixture mod-
els (Dempster et al. 1977)) are based on the assumption that the data follows an explicit
(typically multivariate Gaussian) distribution. Clusters are then defined as the samples
most likely generated from the same distribution, and learned by likelihood maximisa-
tion. However, in real applications, the model that generates the data is unknown and the
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resulting data distribution may be complex. In this case of data-driven analysis, model-
based clustering often yields poor results (Shi and Malik 2000; Ng et al. 2001; de Sa 2005;
Ye et al. 2016).
An alternative approach is provided by spectral clustering, which uses the eigenvec-

tors of a (normalised) similarity matrix derived from the data to find relevant subgroups
in the dataset (Ng et al. 2001; Von Luxburg 2007). Spectral clustering is underpinned
by results in matrix analysis (e.g., singular value decomposition), and has strong con-
nections to model reduction, geometric projections and dimensionality reduction (Von
Luxburg 2007; Schaub et al. 2019). The choice of similarity measure is a crucial ingredient
to the clustering performance but, as long as a similarity matrix can be computed, spec-
tral methods provide an attractive choice for non-vector data or for data sampled from
irregular and non-convex data manifolds (Alpert et al. 1999; Dhillon 2001).
From a different perspective, the similarity matrix of a dataset can also be viewed as

the adjacency matrix of a fully connected, weighted graph, where the nodes correspond
to data points and the edge between two nodes is weighted by their similarity. One can
then apply graph-based algorithms for community detection or graph partitioning to the
problem of data clustering. Graph-based methods typically operate by searching for bal-
anced graph cuts, sometimes invoking notions from spectral graph theory, i.e., using the
spectral decomposition of the adjacency or Laplacian matrices of the graph (Hagen and
Kahng 1992; Chung 1997). Spectral clustering can thus be understood as a special case
of the broader class of graph-based clustering methods (Schaub et al. 2019). Importantly,
graph-based clustering is also able to reveal modular structure in graphs across levels of
resolution through multiscale community detection (Lambiotte et al. 2008; 2014; Del-
venne et al. 2010). This approach allows for the discovery of natural data clusterings
of different coarseness (Altuncu et al. 2019), thus recasting the problem of finding the
appropriate number of clusters to the detection of relevant scales in the graph.
Methods for graph construction usually involve a sparsification of the similarity (or

distance) matrix under different heuristics (from simple thresholding to sophisticated
regularisations) in order to extract a similarity graph that preserves key properties of the
dataset (Cheng et al. 2010). The representation of data through graphs has attractive char-
acteristics, including the capability of capturing efficiently the local and global properties
of the data through graph-theoretical concepts that embody naturally the notions of local
neighbourhoods, paths, and global connectivity (Tenenbaum et al. 2000; Beguerisse-Díaz
et al. 2013; Lambiotte et al. 2014). The usage of graphs provides a natural links of spectral
clustering with other clustering methods and allows for easy generalisation to a semi-
supervised setting (Dhillon et al. 2004; Kulis et al. 2009). Graphs also provide a means
to capture the geometry of complex manifolds, a feature of interest in realistic datasets
(Bronstein et al. 2017). Graph representations not only reduce the computational cost for
spectral graph methods, but also allow us to use the techniques developed for complex
networks as an alternative to address problems in data clustering. However, it has been
shown that both the method of graph construction and the choice of method parame-
ters (i.e., sparsity) have a strong impact on the performance of graph-based clustering
methods (Maier et al. 2008; Daitch et al. 2009; Maier et al. 2013; Jebara et al. 2009).
Here, we study the use of multiscale community detection applied to similarity graphs

extracted from data for the purpose of unsupervised data clustering. The basic idea of
graph-based clustering is shown schematically in Fig. 1. Specifically, we focus on the
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Fig. 1 Schematic diagram of the workflow for graph-based clustering

problem of assessing how to construct graphs that appropriately capture the structure
of the dataset with the aim of being used within a multiscale graph-based clustering
framework. In particular, we carry out an empirical study of different graph construction
methods used in conjunction with Markov Stability (MS), a dynamics-based framework
for multiscale community detection (Delvenne et al. 2010; Delvenne et al. 2013). As a
dynamics-based framework (Delvenne et al. 2013; Lambiotte et al. 2014; Delvenne et
al. 2013), MS provides a unified framework for many multiscale community detection
algorithms, such as the RB Potts model (Reichardt and Bornholdt 2006), the constant
Potts model (Traag et al. 2011) and the absolute Potts model (Ronhovde and Nussi-
nov 2010), and allows for the unsupervised community detection at different levels of
resolution. MS has also been shown to allow for the detection of both clique-like and
nonclique-like communities in graphs (Schaub et al. 2012). MS has been applied suc-
cessfully to a variety of problems, including protein structures (Delmotte et al. 2011;
Amor et al. 2014), airport networks (Lambiotte et al. 2014), social networks (Beguerisse-
Díaz et al. 2014) and neuronal network analyses (Bacik et al. 2016). Other dynamical
processes have been extensively applied in network analysis, such as temporal networks
(Petri and Expert 2014), crowded networks (Asllani et al. 2018) and network classification
(Tran et al. 2019).
In this paper, we evaluate several geometric graph constructions, from methods that

use only local distances to others that balance local and global measures, and find that
the recently proposed Continuous k-nearest neighbours (CkNN) graph (Berry and Sauer
2019) performs well for graph-based data clustering via community detection. We then
show how the multiscale capabilities of the Markov Stability to scan across scales can
be exploited to deliver robust clusterings, reducing the sensitivity to the parameters of
the graph construction. In other words, a range of parameters in the graph construction
lead to good clustering performance. We validate our graph-based clustering approach
on real datasets and compare its performance to several other popular clustering meth-
ods, including k-means, mixture models, spectral clustering and hierarchical clustering
(Rokach and Maimon 2005).
The rest of the paper is structured as follows. We first introduce several methods for

graph construction, apply them to eleven public datasets with ground truths, and evalu-
ate the performance of graph-based data clustering on the ensuing similarity graphs. We
then describe briefly the Markov Stability framework for multiscale community detec-
tion, and use a synthetic example dataset to illustrate how the multi-resolution clustering
reduces the sensitivity to graph construction parameters. Finally, we validate the Markov
Stabiity graph-based clustering through comparisons with other clustering methods on
real datasets.
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Graph constructionmethods for data clustering
Let us consider a dataset consisting of n samples {yi}ni=1, where each sample yi is a
d-dimensional vector. We will assume that we can define a measure of pairwise dissim-
ilarity between the samples: d(i, j) ≥ 0. In some cases, the vectors will be defined in a
metric space, and the dissimilarity will be a true distance d(i, j) = ||yi − yj|| ≥ 0. Other
dissimilarity measures, such as the cosine distance, can also be used depending on the
application. In the examples below, we will restrict ourselves to Euclidean distances as the
measure of dissimilarity.
The high dimensionality of data usually leads to complex and non-linear geometries

associated with datasets, posing challenges to standard clustering methods. The aim of
transforming the data into a graph is to capture the complex geometry of the data through
the graph topology (Tenenbaum et al. 2000), so as to reveal the structure of the data
via graph-theoretical concepts and tools from complex network analysis. There exist a
variety of ways to construct a graph from a high-dimensional dataset, invoking different
principles. Here we focus on geometric graphs and examine two of the most widely used
methods (ε-ball graph, k-nearest neighbour (kNN) graph) and three recentmethods (con-
tinuous k-nearest neighbours (CkNN) graph (Berry and Sauer 2019), perturbedminimum
spanning tree (PMST) (Carreira-Perpiñán and Zemel 2004) and relaxed minimum span-
ning tree (RMST) (Beguerisse-Díaz et al. 2013)). These methods can be broadly ascribed
to two categories depending on how they use the geometry of the data, as follows.

Neighbourhood based methods: ε-ball, kNN and CkNN graphs

The idea of neighbourhood basedmethods is to connect two nodes if they are local neigh-
bours, as given by their pairwise distance d(i, j). The two simplest and most popular ways
to construct a graph from pairwise distances are the ε-ball graph and the k-nearest neigh-
bour graph (kNN): in the ε-ball graph, any two points at a distance smaller than ε are
connected; in the kNN graph, every point is connected to its k-th nearest neighbours.
These twomethods capture the local information of the data but are highly sensitive to the
parameters ε or k (Maier et al. 2008). The parameter is usually set according to the density
of the data points but in many datasets, the data points are not uniformly distributed.
A recently proposed method that can resolve this problem is the continuous k-nearest

neighbours (CkNN) graph (Berry and Sauer 2019). If d(i, j) is the distance between sample
i and sample j, and dk(i) is the distance between sample i and its k-th nearest neighbour,
the CkNN graph is constructed by connecting sample i and sample j if

d(i, j) < δ

√
dk(i)dk(j), (1)

where δ is a positive parameter that controls the sparsity of the graph. Through this con-
struction, the topology of the CkNN graph captures the geometric features of the data
with the additional consistency that the CkNN graph Laplacian converges to the Laplace-
Beltrami operator in the limit of large data (Berry and Sauer 2019). It should be kept in
mind that in CkNN the distance d(i, j) must be a metric to ensure geometrical consis-
tency, whereas kNN graphs can be generated from any dissimilarity measure (i.e., one
does not need a true distance) since only the ranking of node closeness matters.
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Minimum spanning tree basedmethods: PMST and RMST graphs

A different class of approaches for graph construction attempt to capture the global
geometry of the overall dataset by constructing graphs based on measures of global
connectivity of the ensuing graph. A popular way to ensure such global connectivity is
through the minimum spanning tree (MST) (Cormen et al. 2009), as follows. If we con-
sider the matrix of all pairwise distances d(i, j) as the adjacency matrix of a weighted,
fully connected graph, the MST is the subgraph such that all the nodes are path con-
nected and the sum of edge weights is minimised. In other words, the MST provides a
graph that connects all the points in the dataset with minimal global distance. MST-based
approaches can thus capture the geometry of in-homogeneously sampled data points in a
high-dimensional space since the MST contains not only local but also global features of
the dataset.
In its simplest form, the MST is sometimes added to sparse neighbourhood graphs

as a means to guarantee global connectivity of the dataset, i.e., the final graph is the
union of the MST and a kNN graph with a small k. These schemes, which are sometimes
referred as MST+kNN graphs, are the ones we adopt by default in our neighbourhood
constructions. However, the global properties of the MST can be exploited to gener-
ate MST-based graphs from data with distinct properties. We have explored here the
use of two such MST-based algorithms: the perturbed minimum spanning tree (PMST)
(Carreira-Perpiñán and Zemel 2004) and the relaxed minimum spanning tree (RMST)
(Beguerisse-Díaz et al. 2013; Vangelov 2014).
In PMST (Carreira-Perpiñán and Zemel 2004), each data point yi is perturbed by a small

amount of noise of standard deviation si = rdk(i) (r ∈[0, 1]) where dk(i) is used as an
estimation of the local noise and r is a parameter controlling the level of noise. The MST
is then computed for each realisation of the perturbed data and the process is performed
repeatedly to generate an ensemble of MSTs. The PSMT graph is given by the union of
all the perturbed MSTs, plus the original MST. The intuition behind this algorithm is
that random perturbations of the points in high-dimensional space will induce changes
inhomogeneously in different parts of the MST, depending on how globally important
certain edges of the graph are, i.e., globally important edges will be consistently captured
across all MSTs in the perturbed ensemble. One limitation of this algorithm is the heavy
computational demand, since both the distance matrix andMST need to be computed for
each random realisation. The computational burden makes it impractical to sweep over
the parameters of the PMST, so we fix r = 0.5 and k = 1 in this paper.
RMST (Vangelov 2014) proposes a different heuristic for estimating an MST-based

graph with lower computational cost. Note that any two nodes are connected by a single
path in the MST and we denote the longest edge on this path as dmax

path(i,j). In RMST, the
samples yi and yj are connected if

d(i, j) < dmax
path(i,j) + γ

(
dk(i) + dk(j)

)
, (2)

where γ > 0 is a parameter that weights the local density (measured by the average
distance to the k-th neighbours of yi and yj ) against a global property (the maximum dis-
tance found on the MST path linking the samples i and j). Similarly to the parameter δ in
CkNN, the value of γ controls the sparsity of the resulting graph. The RMST construction
was proposed as a means to reconstruct data that have been inhomogeneously sampled
from continuous manifolds, and has been shown to provide good description of datasets
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when preserving a measure of continuity (due to temporal or parametric changes) is
important (Beguerisse-Díaz et al. 2013).
In Fig. 2, we use a synthetic dataset of four groups of points sampled from a geomet-

ric structure (a noisy circle and its centre) to illustrate the different graph construction
schemes (Ben-Hur et al. 2001). The graph representations allow us to gain intuition about
the suitability of the different graph constructions for clustering, and the effect of their
parameters. For instance, the sparsity of the RMST graph is controlled by the parameter
γ . Note that RMST gives a similar graph to PMST with much lower computational cost.
Note also that, for the same number of neighbours k, the CkNN gives a sparser graph
than the kNN. To make CkNN and kNN comparable, we thus fix the parameter δ = 1 in
CkNN and vary k.
As discussed above, theMST-basedmethods are not optimised for clustering but aimed

atmanifold learning. It follows from (2) that, in the RMST (and PMST) graphs it is more
likely for an edge to appear between node i and node j if the longest edge on the MST
path between node i and j is large. This feature makes the geodesic distance on the graph
a good approximation to the true distance in the underlying space. Hence both RMST
and PMST are closer to manifold learning approaches such as Isomap (Tenenbaum et al.
2000)). In contrast, the kNN and CkNN graphs tend to have better modular structures
and hence appear as potentially more suitable for graph partitioning. We compare these
issues in detail in “Tests on benchmark real datasets” section below.

Markov stability for graph-based clustering
Let us consider a graph representing the dataset. The unweighted and undirected graph
with n nodes representing the dataset is encoded by the adjacencymatrixA, whereAij = 1
if there is an edge connecting node i and j and Aij = 0 otherwise. The degree of the
nodes is summarised in the degree vector d where di = ∑n

j Aij, and we also define the
diagonal degree matrix D where Dii = di. The total number of edges of the network
is m = ∑

i,j Aij/2. We then apply multiscale community detection to extract relevant
subgraphs in an unsupervised manner using the framework of Markov Stability.

Multiscale community detection with Markov Stability

Markov Stability is a quality measure for community detection which adopts a dynam-
ical perspective to unfold relevant structures in the graph at all scales as revealed by a
diffusion process (Lambiotte et al. 2008; 2014; Delvenne et al. 2010; Schaub et al. 2012).
Consider a continuous-time Markov process on the graph governed by the dynamics
ṗ = −p(I − M) where p is an n-dimensional row vector defined on the nodes and
M = D−1A is the one step random walk transition matrix. For this Markov process, there
is a unique stationary distribution π = dT/2m. Let us denote the autocovariance matrix
of this process as B(t) = �P(t)−πTπ where � = D/2m encodes the stationary distribu-
tion and P(t) = exp(−t(I − M)) is the transition matrix. Given a partition g of the nodes
into c non-overlapping groups denoted by g = {g1, g2, ..., gc}, the Markov Stability of g is
defined as:

r(t, g) =
c∑

s=1

∑
i,j∈gs

B(t)ij. (3)
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Fig. 2 Illustration of the differences introduced by graph construction methods. a Synthetic dataset
consisting of four groups of randomly sampled points: three groups are sampled from a circle and one group
from its centre. b The minimum spanning tree (MST) of the dataset based on Euclidean distances. We also
present the graphs constructed with MST-based methods: c PMST and d RMST, as well as neighbourhood
methods: e kNN and f CkNN. RMST, kNN and CkNN are shown for different parameters that vary the sparsity
of the resulting graphs
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A partition has a high value of (3) if the probability of finding a random walker at time t
within the group where it started at t = 0 is higher than that expected by mere chance. In
this sense, Markov Stability is a quality function for partitions of a graph and the objective
is therefore to find the partitions that achieve high values of the Markov Stability as a
function of t:

r∗(t) = max
g

r(t, g) achieved by the partition g∗(t). (4)

The (time) parameter t is the so-called Markov time, and can be understood as the res-
olution parameter that leads to multiscale community detection (Delvenne et al. 2013;
Schaub et al. 2012). For small t, the number of detected communities is large and the com-
munities capture the local information of the graph. As t becomes larger, there are fewer
communities and the communities are able to capture the global features of the graph.
Computationally, the Markov Stability is optimised at different Markov times through a
version of the Louvain algorithm (Blondel et al. 2008).
Through the computational maximisation (4), Markov Stability detects optimised par-

titions g∗(t) at all scales, parameterised by the value of t. However, we are interested in
finding robust partitions and robust scales, in the sense that a partition is found to opti-
mise MS over a long interval of Markov time. We thus compute the dissimilarity between
the obtained partitions at different times t and t′:

VI(t, t′) = VI(g∗(t), g∗(t′)), (5)

where we use the variation of information (VI) (Meilă 2003) as the metric of dissimilarity
between partitions. If g∗(t) is a robust partition, the partition g∗(t′) found at a Markov
time t′ close to t should be very similar, and henceVI(t, t′)will be small.We therefore look
for large diagonal blocks of small values in the VI(t, t′) matrix. Such blocks correspond to
a robust scale with an associated robust partition.
As an additional feature, we look for optimised partitions that are also robust to the

Louvain optimisation. Since the Louvain method is a greedy algorithm dependent on the
random initialisation, the consistency of the output of the algorithm can be used as an
indicator of the robustness of the solution. At each t, we run the Louvain optmisation
multiple times and if the Markov time corresponds to a robust scale, the output partition
should be always the same. Therefore we expect a low value of the average variation of
information of the optimised partitions at time t

VI(t) = 1
nL(nL − 1)

nL∑
s=1

nL∑
s′=1

VI(gs(t), gs′(t)), (6)

where the Louvain algorithm is run nL times. Depending on the structure of the graph,
several such robust scales and associated graph partitions might be found, which can then
be used as the basis of unsupervised data clustering.

Using Markov stability for data clustering

We illustrate the application of MS to data clustering through the synthetic dataset in
Fig. 3. The example dataset has geometric struture and is designed to have two scales,
so that it can be divided into 3 big clusters or 9 small clusters. First, we construct an
unweighted CkNN graph (k = 7, δ = 1.8) and apply MS as described above. We optmise
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Fig. 3 Graph-based unsupervised analysis using Markov Stability of a synthetic dataset with multiscale
geometric structure. We generate a CkNN graph (k = 7, δ = 1.8) and scan across Markov time from 1 to 1000.
Two significant scales corresponding to robust partitions are identified based on the zero blocks of the
VI(t, t′) matrix, the long plateaux in the number of communities, and the low values of VI(t). Note that with
Markov Stability, there is a range of δ for the CkNN graph (k = 7) that can reveal the multiscale structure of
the data (see Fig. 5)

the Markov Stability (3) for nT Markov times t ∈[1, 1000], and at each t, we run the Lou-
vain algorithm nL = 500 times. For each Markov time, we record the partition with the
maximal Markov Stability, g∗(t), and the average dissimilarity of the partitions found in
the nL optimisations, VI(t) (6). Once the scan across Markov time is completed, we also
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compute VI(t, t′), the matrix recording the dissimilarity of the optimal partitions found
across the scan.
The results are presented in Fig. 3, where, as a function of Markov time t, we plot the

number of communities in the optimal partition g∗(t); the optimised Markov Stability
r∗(t) (3); the average dissimilarity due to algorithmic variability VI(t); and the dissimilar-
ity of partitions across time given by theVI(t, t′)matrix. The diagonal blocks of low values
of VI(t, t′) (which also correspond to plateaux in the number of communities) and the
low values (or dips) of VI(t) suggest that there are two relevant scales in this graph, which
correspond to a finer partition into 9 groups (at small t) and a partition into 3 groups
(at larger t > 200). The inset shows that the partition recovers the planted groups of this
synthetic example.
The robustness of the partitions found across scales is further examined in Fig. 4. To

understand how the graph partitions evolve with t, we compute the VI metric between
all the partitions found across the Markov time scan (nL × nT ) and project them on a low
dimensional space using multidimensional scaling (MDS). In Fig. 4, we use the first MDS
coordinate of each of the partitions as a function of t coloured by its number (frequency)
of appearances out of the nL Louvain runs at each Markov time. Several partitions can
coexist at a given Markov time, but our numerics show that the two robust partitions
(c = 9 and c = 3) have a long-lived high frequency of appearance when the t matches the
corresponding resolution. Between c = 9 and c = 3, other partitions of lesser robustness
appear through mergers of clusters one by one, as shown by the Sankey diagramme in
Fig. 4, and only exist for short Markov times until the robust partition of c = 3 appears.
One advantage of using community detection for data clustering is the computational

efficiency of fast community detection algorithms (Fortunato 2010). Empirically, the
Louvain algorithm scales nearly linearly with the size of the dataset (Blondel et al. 2008).
In its full form, Markov Stability has been applied to community detection in networks of
sizes up to tens of thousands of nodes (Delmotte et al. 2011; Altuncu et al. 2019). To give
an indication, running a full MS scan for a dataset of 2310 samples sweeping 100 Markov
times with 100 Louvain runs at each Markov time on a desktop 1 requires about 20 min.
The space complexity of the graph-based clustering is dominated by the storage of the
graph, i.e., similar to spectral clustering if the adjacency matrix is used. For very large
datasets(> 20000), the computational complexity is dominated by the matrix exponen-
tial in P(t). The use of linearised (approximate) version of MS allows to scale its use up to
graphs with hundreds of thousands of nodes with reduced CPU times, at the cost of some
reduction in the quality of the clusterings (Delvenne et al. 2013). The linearised versions
also allows the storage of the graph in a sparse matrix to reduce the space complexity.

Scanning across Markov time reduces the sensitivity to graph construction

Graph-based clustering performance is sensitive to the parameters of the graph con-
struction method, which modulate sparsity, but there is no easy way to select the best
parameter if the ground truth is unknown. In practice, the parameters are usually set
empirically with little guidance that the chosen parameter will lead to good clustering
results for a particular dataset. Within the Markov Stability framework, we can use the

1With a 4-core 3.4GHz CPU and MATLAB implementations
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Fig. 4 Robustness of the partitions found through Markov Stability for the CkNN graph with k = 7 and
δ = 1.8 of the dataset in Fig. 3. aWe show the one-dimensional MDS embedding (based on the VI distance)
of all the graph partitions found by the nL Louvain optimisations for each of the nT Markov times. The
partition with the maximal Markov Stability at each Markov time is labelled by a filled circle, whereas the
non-optimal partitions are represented by open squares. The graph partitions are coloured according to the
frequency of their appearance in the optimisations. b The Sankey diagram represents the relationship
between the partitions found by MS across Markov time, from c = 9 to c = 3. Note the hierarchical structure
which is not pre-imposed by the algorithm but emerges from the intrinsic properties of the dataset

robustness provided by scanning across Markov time to reduce the sensitivity to the
details of graph construction, thus improving the reliability of the detected clusters.
To illustrate this idea, We use the same dataset in Fig. 3 and construct CkNN (k = 7)

graphs with different values of δ = 1.5, 1.8, 2.4. Our numerics show that Markov Stabil-
ity detects the relevant underlying scales of the data (c = 9 and c = 3) for the different
values of δ, as shown by the long diagonal blocks of low VI(t, t′) and the low values of
VI(t) in Fig. 5. Although the degree of the CkNN graph varies markedly with the parame-
ter δ, the two significant scales are identified by scanning across the Markov time. Hence
the scanning across scales inherent to multiscale community detection provides addi-
tional robustness to the parameters of the graph construction algorithm. We have also
carried out a similar analysis of the clusterings for two real datasets (‘WBDC’ and ‘Control
charts’). The clusterings remain robust when varying k in CkNN (see Additional file 1:
Figure S1 and Additional file 2: Figure S2).

Tests on benchmark real datasets
We have tested several graph-based clustering approaches (both graph constructions
and clustering methods) using eleven benchmark datasets from the UCI repository (see
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Fig. 5 The multiscale character of Markov Stability alleviates the sensitivity to the parameters of graph
construction. Using the same synthetic dataset as in Fig. 3, MS finds the robust partitions and scales in the
data (c = 3 and c = 9) in an unsupervised manner for CkNN graphs constructed with a range sparsities as
given by varying the parameters: k = 7 and δ = 1.5, 1.8, 2.4 in (a), (b) and (c), respectively. Markov time, as a
resolution parameter, allows the community algorithm to reveal the local and global properties of the graph
constructed from the data
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Table 1 Attributes of the eleven real datasets from the UCI repository used in this study

Dataset No. of samples, n Dimension, d No. of classes, c∗

Iris 150 4 3

Glass 214 9 6

Wine 178 13 3

WBDC 569 30 2

Control chart 600 60 6

Parkinsons 195 22 2

Vertebral 310 6 3

Breast tissue 106 9 6

Seeds 210 7 3

Image Segmentation 2310 19 7

Yeast 1484 8 10

Table 1 for a summary of attributes) (Dheeru and Karra Taniskidou 2017). All the datasets
have ground truth labels, which we use to validate the results of the different methods.

Comparison between graph constructions

Starting from the Euclidean distance d(i, j) = ||yi − yj||2, we generated geometric graphs
from each of the elevenUCI datasets using the five graph constructionmethods described
in “Graph construction methods for data clustering” section. If the constructed graph is
disconnected, the MST is added to the graph to ensure a connected graph. Each graph
was analysed using Markov Stability to obtain optimised partitions at any scale, and we
selected the closest of those partitions to the ground truth, as measured by the normalised
mutual information (NMI) (Strehl andGhosh 2002). The computedNMI is a quality index
for the graph construction under clustering. We also compute the adjusted Rand index
(ARI) (Hubert and Arabie 1985) as an additional quality index.
The results of the comparison are shown in Table 2. The kNN and ε-ball graphs, both

widely-used in many machine learning and both based on local neighbourhoods, give
good results for a range of k. (Note that ε is set to be the average of the distances to the 7-
th neighbour, d7(i).) For theMST-basedmethods, RMST achieves better performance for
sparser graphs (with smaller γ ) when the cluster structure is not obscured by the objective
of manifold reconstruction (Fig. 2). The same applies to the PMST graph. The empirical
tests show that the CkNN graph gives the best average results over the eleven datasets for
k = 7 and above. Hence we adopt the CkNN graph with k in the range of 7 to 12 as a good
choice for graph-based clustering.
The CkNN graph is constructed by using a variable bandwidth diffusion kernel (Berry

and Harlim 2016) where the bandwidth is inversely proportional to the sampling density
and allows for uniform estimation errors over the underlying manifold, while the graph
construction which uses a fixed bandwidth kernel will have large errors in areas of small
sampling density. By such a construction, the graph Laplacian of the CkNN graph con-
verges to the Laplacian operator in the manifold. This explains why the CkNN graph
shows a better clustering performance than the other graph construction when the graph
is partitioned with Markov Stability, which considers a diffusion process on the graph.

Comparison between clustering methods

In this section, we evaluate the performance of graph-based clustering through Markov
Stability against several other clustering methods applied to the datasets from the UCI
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repository. We include a variety of clustering approaches. Model-based methods include
k-means and Gaussianmixture (clustering is repeated 50 times and partition with the best
objective function is reported). We also apply hierarchical clustering with complete link-
age and Euclidean distance is used as the distance measure. Since graph-based clustering
is closely related to spectral clustering, we compare to two spectral clustering methods:
the multiclass n-cut algorithm (Yu and Shi 2003) and the classic NJW algorithm (Ng et al.
2001). The affinity matrix for these two spectral clustering algorithms is calculated with a
local density kernel as described in Zelnik-Manor and Perona (2004). Note that all these
algorithms need the number of clusters to be given as an input. Hence we use the number
of classes in the ground truth c∗ as an input to set the number of clusters. For comparabil-
ity, in the case of Markov Stability, we construct the CkNN graph with Euclidean distance
(k = 7 and δ = 1) and find the optimised partition with the number of clusters equal to c∗.
The results are presented in Table 3. Given the distinct features of the datasets, no

method is expected to achieve consistently better performance across all datasets. The
hierarchical clustering performs worst, as it is easily affected by the noise in real datasets.
Model-based methods, such as the Gaussian mixture model, can achieve good perfor-
mance if the properties of the data fit the assumptions (e.g., the Iris dataset), but can also
perform poorly. On datasets that have non-convex geometries, graph-based methods and
spectral clustering tend to perform better. On average, the Markov Stability approach
achieves the best NMI and ARI scores.
To further validate the quality of the robust partitions found by Markov Stability, we

also carried out MS clustering in a fully unsupervised manner, i.e., without providing
the number of classes in the ground truth as an input. Using the principles described in
“Markov stability for graph-based clustering” section, we identify robust scales and robust
partitions in order to establish the number of clusters inherent to the data in an unsuper-
vised manner. The number of clusters detected by MS and the clustering performances
in terms of NMI and ARI are presented in Table 4, together with the results obtained in
Table 3, where the number of clusters in the ground truth was provided. Although the
number of detected clusters differs slightly from the ground truth, the clusters found in
the unsupervised MS have comparable ARI values and a higher average NMI value which
indicates that the clusters are of good quality and provide more information about the
ground truth. This highlights the capability of Markov Stability as an unsupervised data
clustering approach in practice where the number of clusters are usually unknown (see
also Additional file 3: Table S1).

Conclusion
We have investigated the use of multiscale community detection for graph-based data
clustering. The first step in graph-based clustering is to construct a graph from the data,
and our empirical study shows that the recently proposed CkNN graph is a good choice
for this purpose. In contrast to other neighbourhood-based graph constructions like kNN
or ε-ball graphs, the CkNN graph is designed to provide a consistent discrete approxima-
tion of the diffusion operator on the underlying data manifold. Since many community
detection methods are closely related to diffusion or random walks (e.g., Markov Stabil-
ity and spectral methods), this explains the good performance of CkNN for clustering
purposes. Other graph construction methods specifically designed for manifold learning
(e.g, RMST) performed well but are not optimised for cluster separation.
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Table 4 Graph-based clustering via Markov Stability performs equally well in a totally unsupervised
manner, even if the number of clusters is not given a priori

Dataset Markov Stability (c fixed to ground truth c∗) Markov Stability (c found by MS unsupervised)

Normalised Mutual Information (NMI)

Iris 0.7980 (c∗ = 3) 0.7980 (c = 3)

Glass 0.3932 (c∗ = 6) 0.3687 (c = 5)

Wine 0.8347 (c∗ = 3) 0.8347 (c = 3)

WBDC 0.7231 (c∗ = 2) 0.7231 (c = 2)

Control chart 0.8489 (c∗ = 6) 0.8520 (c = 4)

Parkinson 0.1334 (c∗ = 2) 0.2973 (c = 3)

Vertebral 0.5971 (c∗ = 3) 0.6018 (c = 2)

Breast tissue 0.5291 (c∗ = 6) 0.5104 (c = 3)

Seeds 0.7142 (c∗ = 3) 0.7142 (c = 3)

Image Seg. 0.5816 (c∗ = 7) 0.6338 (c = 13)

Yeast 0.2909 (c∗ = 10) 0.2909 (c = 10)

Average 0.5858 0.6023

Adjusted Rand Index (ARI)

Iris 0.7455 (c∗ = 3) 0.7455 (c = 3)

Glass 0.2380 (c∗ = 6) 0.2086 (c = 5)

Wine 0.8471 (c∗ = 3) 0.8471 (c = 3)

WBDC 0.8244 (c∗ = 2) 0.8244 (c = 2)

Control chart 0.7056 (c∗ = 6) 0.6824 (c = 4)

Parkinson 0.2659 (c∗ = 2) 0.2667 (c = 3)

Vertebral 0.6096 (c∗ = 3) 0.6113 (c = 2)

Breast tissue 0.3659 (c∗ = 6) 0.3764 (c = 3)

Seeds 0.7432 (c∗ = 3) 0.7432 (c = 3)

Image Seg. 0.4150 (c∗ = 7) 0.4516 (c = 13)

Yeast 0.1746 (c∗ = 10) 0.1746 (c = 10)

Average 0.5395 0.5393

The best performance for each dataset is indicated in boldface

Our work has also examined the suitability of multiscale community detection as a
means for unsupervised data clustering. Specifically, we have used the Markov Stability
framework, which employs a diffusion process on the graph to detect the presence of
relevant subgraphs at all scales. The time of the diffusion process acts as a resolution
parameter and a cost function for graph partitioning is optimised at different scales by
scanning time. Robust partitions and robust scales can be identified by analysing the con-
sistency of the ensemble of optimised partitions found by the Louvain algorithm. Our
numerics show that the Markov Stability framework is able to determine the number of
clusters and reveal the multiscale structure in data. Further, by scanningMarkov time, the
MS analysis can reduce the sensitivity to the parameters in the graph construction step,
thus improving the robustness of graph-based clustering.
We have validated our graph-based clustering approach on several real datasets by

comparing with other popular clustering methods, including k-means, Gaussian mixture
model, hierarchical clustering, and two spectral clustering algorithms. The graph-based
clustering method achieves the best NMI and ARI values on average across the datasets.
Importantly, we show that the clustering can be done in a completely unsupervised way
(without assuming a knowledge of the number of clusters), whereas for the other standard
methods the number of clusters needs to be given as an input.



Liu and Barahona Applied Network Science             (2020) 5:3 Page 18 of 20

Our study also suggests several directions of future work. Here we showed that the
CkNN graph is a good choice for graph-based clustering, but it will be interesting to estab-
lish the performance of CkNN in other data mining problems, such as manifold learning
where graphs also play a important role (Yan et al. 2007). We showed that the variation of
information of partitions and the ensemble of partitions found by greedy optimisation can
be used to guide the identification of robust partitions. However, a quantitative, statisti-
cally sound process to choose the significant partitions automatically would be desirable
and useful in practice. Another interesting direction is the potential study of the outputs
of MS clustering using methods from topological data analysis (TDA). Scanning across
Markov time results in an ensemble of time-dependent weighted graphs with adjacency
matrices DP(t). It would the be possible to use methods from TDA to characterise the
persistent homology of the graphs as a function of the Markov time t to detect robust
structures in the data across scales and its relationship with the observed hierarchy of
clusters of increasing coarseness.

Supplementary information
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Additional file 1: Supplementary Figure: Multiscale Markov Stability analysis of the Control Chart dataset.

Additional file 2: Supplementary Figure: Multiscale Markov Stability analysis of the WBDC dataset.
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