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PA USA Learning low-dimensional representations of graphs has facilitated the use of
traditional machine learning techniques to solving classic network analysis tasks such
as link prediction, node classification, community detection, etc. However, to date, the
vast majority of these learning tasks are focused on traditional single-layer/unimodal
networks and largely ignore the case of multiplex networks. A multiplex network is a
suitable structure to model multi-dimensional real-world complex systems. It consists
of multiple layers where each layer represents a different relationship among the
network nodes. In this work, we propose MUNEM, a novel approach for learning a
low-dimensional representation of a multiplex network using a triplet loss objective
function. In our approach, we preserve the global structure of each layer, while at the
same time fusing knowledge among different layers during the learning process. We
evaluate the effectiveness of our proposed method by testing and comparing on
real-world multiplex networks from different domains, such as collaboration network,
protein-protein interaction network, online social network. Finally, in order to
deliberately examine the effect of our model's parameters we conduct extensive
experiments on synthetic multiplex networks.
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Introduction

Networks offer a rich way to represent a large number of phenomena and relationships
between variables of interest. While traditional network science research has led to the
development of a variety of analytical tools that can provide us with a detailed view of the
structure and processes that take part over a network, until recently powerful machine
learning methods were not able to be (fully) utilized in network analysis. Given this preva-
lence of networked data and to allow for the application of machine learning techniques
in network analysis, there has been a growing interest in learning low-dimensional repre-
sentations of graphs. These representations, essentially vectorize nodes (or edges) of the
network, which further allows to apply state-of-art machine learning algorithms to tackle
network-related tasks such as community detection, link prediction, network similarity
and even graph visualization.

These methods can be broadly classified into three main categories, namely, (a) matrix
factorization (b) random walk-based, and (c) neural network-based. The first category
tries to reduce the dimensions of the adjacency matrix so that the resulting low-ranked
matrix keeps the existing relationships of the original adjacency matrix. In this category
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we can refer to Singular Value Decomposition (SVD) (Ou et al. 2016) and Non-negative
matrix factorization (Wang et al. 2017a). In the second class, different types of ran-
dom walks are utilized to generate samples of nodes that preserve some local (or global)
structure and then they are used to learn a vector representation through a suitable opti-
mization problem (Perozzi et al. 2014; Grover and Leskovec 2016). Approaches belonging
to the third category utilize artificial neural networks to obtain latent representation of
nodes. The key aspect in these approaches is to obtain samples of node pairs that are sim-
ilar (positive samples), and hence, need to be close in the latent space to be learned, and
node pairs that are not similar (negative samples) (Wang et al. 2017b).

The vast majority of the existing methods for learning low-representations of network
objects operates on single-layer, unimodal, networks. That is, networks that represent
a single type of relationship between the node(Grover and Leskovec 2016; Perozzi et
al. 2014). However, in many real-world systems there are several relationships between
the network nodes that need to be captured. For example, there are several relation-
ships between people living in a neighborhood, such as, friendship, professional, blood
relationships etc. These relationships reflect different characteristics of the entities and
hence it necessitate the use of a multidimensional model to represent these relationships
distinctively. (Figure 1)

Attempting to represent these interactions by aggregating them into a single unimodal
network leads to loss of valuable information (Aleta and Moreno 2018). Therefore, to

Fig. 1 An example of a multiplex network. Different layers represent different relationships
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model these systems, multilayer networks are introduced. In a multilayer network, a net-
work is built from a set of layers that each one describe different type of interactions or
relationships between entities. Multiplex network is a specific type of multilayer networks
where each layer represents the different relationships of the same set of nodes. These lay-
ers can also be interconnected capturing inter-dependencies between the different layers.
In multiplex network, if there is any interlayer link, it connects counterpart nodes located
on different layers. Examples are but not limited to proteins-protein interaction network
(Zitnik and Leskovec 2017) in a specific human tissues in which tissue-specific gene-
function relationships between layers exists or a transportation network that consists of
layers representing different modes of transportation . In latter, passengers could switch
between modes of transportation which could be modeled by interlayer links (Strano et
al. 2015). Motivated by the importance of this type of network, recently, a few papers have
addressed the problem of learning representation of nodes in a multiplex network. Liu et
al. (2017a) extended the idea of Node2vec (Grover and Leskovec 2016) to multiplex net-
works. In this approach, the random walker not only can traverse on nodes of a layer, but
also based on the value of a jumping factor, it can be transported to the the same node
in another layer of the network. At the end, they would have the numerous sequences of
visited nodes generated from all layers that can be used as the input to softmax classi-
fier used in Node2vec. Also, Zhang et al. (2018) introduce two different embeddings for
nodes in a multiplex network. One is a high-dimensional common embedding and a low-
dimensional embedding vector for each layer of the network. The final embedding of a
node is the linear aggregation of these two vectors.

As alluded to above, most of the existing low-dimensional representation learning
approaches operate on single-layer networks, but do not necessarily perform well on mul-
tiplex networks. While for each one of these different /ayers we can use one of these
off-the-shelf network representation learning (embedding) algorithms to identify repre-
sentations of the nodes, this largely ignores information from the rest of the layers, which
can be valuable. In this work, we propose MUNEM a novel approach toward MU]Itiplex
Network EMbedding using a triplet loss objective function. In MUNEM, at each step,
we create a triplet of nodes consists of randomly selected anchor node and comparing it
with both a positive and a negative sample. The distance between the anchor node and
the negative one must be higher than the distance between the anchor node and the neg-
ative node. This objective function gives us the flexibility to both learn the structure of
each single independently, and pair nodes between layers to fuse the learned knowledge
across layers. We test our method with other baseline methods to predict links exists
between nodes on a single layer of the network. The experiments depict that MUNEM
outperforms all of the baseline methods in all of the data sets.

The rest of the paper is organized as follows: “Related work” section discusses related
to our study literature. “Proposed methodology” section presents in detail our proposed
method. Then, in “Experiments” section we evaluate the effectiveness of our proposed
method by testing and comparing with baselines on synthetic networks as well as real-
world networks gathered from different domains.

Related work
In this section, we briefly survey notable related works addressing the methodological
problem of learning low-dimensional representations on different types of networks.
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Network embedding

Network embedding is a prominent research area that its goal is to learn low-dimensional
representation of nodes in a graph. The learned latent vectors are expected to preserve
the structure and any existing attributes of the input network. Although, there has been
some classic approaches like (Belkin and Niyogi 2002; Tenenbaum et al. 2000), they were
only applicable on capturing local structure of small or medium sized networks. Recently,
inspired by a work of Mikolov et al. (2013) in which they introduced the Skip-gram
model for learning low-dimensional representations of words in a huge corpus, a new
generation of scalable methodologies were proposed in the recent years. Inspired by their
work, Deepwalk (Perozzi et al. 2014) and Node2vec (Grover and Leskovec 2016) were
introduced to use similar approach for learning representations on graphs. These meth-
ods consider nodes that are visited by a random walker analogues of words appearing in
a sentence. Generating a large corpus of words, i.e. the visited nodes, they employed the
very similar Skip-gram model to learn representation of each node. However, the latter
one, provide a more flexible sampling strategy that controls the random walker whether
to traverse in the neighborhood of the recently visited node(s) or sample nodes from a
deeper structure of the network. Another approach named LINE was introduced by Tang
et al. (2015) to capture first-order and second-order proximity of nodes.

In recent years, various number of methodologies were proposed to learn low-
dimensional representations of different type of networks. In Wang et al. (2017b), the
authors provide a deep learning framework to learn node embeddings of a signed social
network. They design an objective function that ensures “friends" have closer represen-
tations than “foes". A network with various node types, i.e. heterogeneous network, is
another interesting topic which was addressed in Chang et al. (2015). The authors have a
network which its nodes are images and texts and therefore three types of connections.
Using a deep neural network structure they learn the embeddings of each type then, the
embeddings are mapped to a common space by using a linear layer. In case of network
embedding with side information, we can refer to (Le and Lauw 2014) in which they
introduce a generative model to learn the embedding of a network of documents. In this
network, each node is a document which not only contains valuable content, but also
structurally connected to other nodes.

Multiplex network

Many real-world systems are characterized by different views and properties that can not
be modeled by single network. Multiplex networks are designed as more advanced net-
work structures to capture various existing interactions or relationship between the same
entities in a complex system. In a Multiplex network, each type of relationship between
nodes is represented through set of edges connecting nodes in a layer. Temporal dynamic
networks is another type of network that could be modeled by Multiplex network in the
way that snapshots of the network taken in a specific time-window is considered as layers
(Javadi et al. 2018).

In recent years, Zhang et al. (2018) propose a method to learn two different represen-
tations for nodes in a multiplex network. One high-dimensional vector which is identical
for each node across different layers and a low-dimensional embedding vector which
is being learned for each relation (i.e. layer) during the learning process. A node’s final
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representation is linear summation of the shared embedding vector and the low-
dimensional vector specifically learned for for each layer. Since these two vectors have
different sizes, the authors introduce a transformation matrix to align these two vec-
tors into the same size. In Ohmnet (Zitnik and Leskovec 2017), the authors focus on a
multiplex network in which layers represent molecular interactions in a different human
tissue. Using a rich multi-scale tissue hierarchy, they enforce sharing of similar features
between nodes of similar network neighborhoods, i.e. proteins activated in similar tissues.
Although they have reached a higher accuracy in predicting of tissue-specific cellular
functions, their method is hard to be generalized for other datasets lacking hierarchical
similarities of layers. Another framework named MINES (Ma et al. 2018) was proposed
to learn embedding space of nodes in a multi-dimensional e-commerce network. Their
learning methodology consists of independent structure of each layer and shared infor-
mation of nodes between layers. For the latter one, they utilize the categories of nodes as
a mean to capture dependent information of the nodes with the same attribute located on
different layers. However, without the attribute information of nodes, their method loses
the shared information and simply learns representations of nodes on different layers
independently.

Proposed methodology

In this section, we present our proposed method. First, we introduce the notations used
throughout the paper. Then, after we describe our single layer embedding approach, we
provide details of our proposed method to learn low-dimensional representations of a

multiplex network.

Notations and definitions

We model a multiplex network G as a set of L network layers { g% gL}, where ¢! =
(Vl, El) denotes a specific layer consisting of the set of nodes V! and E! intra-layer edges.
In our model, the set of nodes are identical on all layers. Therefore, as long as a node is
not isolated on at least on one layer, we include that in all layers. The set of all nodes on all
layers is represented as V = { V!, V2, ., V1], and the set of intra-layer edges £ is defined
as a set of all edges on all layers, i.e. £ = {El,Ez, vr EL}.

The goal of our work is to find a mapping from Vil to fil € R® where s << |V)|. In this
work, our objective is to learn low-dimensional representations of nodes of each layer in
a way that not only it preserve network structure of each layer, but also incorporate rich
information of other layers in the learning process. We use notion of f! to denote the
learned embedding space of node i on layer /.

Single-Layer network embedding

In this section, we introduce our basic embedding methodology that is applicable on a
single layer network. In our work, we employ triplet loss objective function which had
a remarkable performance in the task of face recognition and clustering (Schroff et al.
2015). The triplet loss objective function strives to learn representation in the way that the
square distances between entities “related" to each other be less than the square distances
of entities that are “non-related”. The terms “related” and “non-related” could be inter-
preted differently in various context. As an instance, in Schroff et al. (2015), all images
of a specific person are considered to be related and all pairs of images of non-identical
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persons are considered as non-related. Hence, the objective function encourages that fea-
ture space of an image taken from a specific person encouraged to be closer to another
image of the same person rather than an image of any other one.

For our single-layer network embedding we use the first-order proximity of nodes to
define similar and non-similar entities, that is, if two nodes are connected through an
edge they are considered to be similar, otherwise they are not similar. From the point
of a given node Vé (anchor) located on layer I, we select a node Vlﬁ (positive) from its
neighbors and another node V,ﬂ (negative) from the set of non-neighbor nodes (Fig. 2a).
To sample the triplets, for every link, we choose one endpoint of the link as anchor and the
other one as positive. Then, for the negative, we only need to randomly select a node not
connected to the anchor node. For large networks containing millions of links this might
not computationally effective to sample all links, therefore, we could sample a portion of
links for the sake of learning process.

By collecting N possible triplets from layer /, we need to minimize the following
objective function:

0= 5 mas (0 £~ 1~ 1B+ ) v

v(VaVEVE)eN!

where fal, j;f and fnl denote the representations of anchor node Vé, positive sample VII, and
the negative sample V,ll, respectively. The set N contains the triplets sampled from layer /.
The hyper-parameters;, enforces a margin between the distances of positive and negative
pairs.

In MUNEM, this objective function enforces that the squared distances of representa-
tions of two connected nodes need to be less than squared distances of representations
of two non-connected nodes. Although we choose first-order proximity as criteria of
similarity, one can extend it to higher-order proximity as well.

To compare our negative sampling strategy with Node2vec(Grover and Leskovec 2016)
we must explain that in node2vec a negative node is randomly drawn from the noise
distribution. It is a distribution of nodes based on how frequently it is appeared in the
sequence of nodes visited by a random walker. Without any checking process in use, it
is likely to have pairs of nodes both as negative and positive samples. It usually happens
when two nodes appeared in a sequence both have high degree centralities. Two nodes are

Fig. 2 A toy network to illustrate in-layer triplet sampling (left) and inter-layer triplet sampling (right)
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most likely to be appeared in the same sequence when they are both connected or there
are a high relative number of common neighbors existing between them . This structure
is very common in real-world network (Valente et al. 2008) and it causes to decrease the
effectiveness of the method. The other drawback of this approach is that the noise distri-
bution need to be made after all sequence of visited nodes are generated which it requires
to traverse all nodes of the network. In contrast, in the MUNEM, we can generate triplets
of a node only by looking at the local information (i.e. neighborhood) of that specific node
to pick a positive from its neighbors and negative from the non-connected ones.

Multiplex network embedding

In order to fuse knowledge of layers into the learning process, we sample triplets from
different layers. In our approach, same nodes on different layers are encouraged to have
closer representations than non-identical nodes located on different layers. This essen-
tially allows us to fuse information obtained from different dimensions. To do so, for
any non-isolated anchor node V located on layer / we sample the same node of another
layer V;‘ , where k # [, as a positive pair and a random non-isolated node V,f from the
set of nodes not connected to V¥ as a negative pair (Fig. 2b). By collecting M possible
triplets we need to minimize the following objective function:

Q= > max (O1Iff — KB — 1L — KI5 + Sver) @)

v(VLVEVKYeM

where £/, fK and f¥ denote the representations of anchor node V7, positive sample VX
and the negative sample V,’f, respectively. This objective function enforces the distances
between the counterpart nodes on different layers, V2 and VX, be less than the distances
between Vé and Vylf by the margin of §p¢;.
In order to both fuse knowledge of within and between layers we introduce the
following objective function:
P=Q+y LV 3)
viel
By minimizing P not only we do preserve the global structure of each layer, but we
also fuse knowledge between different layers during the learning process by pairing

counterpart nodes on different layers.

Optimization
To optimize the aforementioned objective function, we use Stochastic Gradient Descent
as an efficient approach to learn the embeddings. Here, we present the gradient needed

to update every parameters of the method.

fos ¥ [2<frf—fé>' if (1= A03=WfL = A +8m) 20
l B .
Va Y(VLVEVEeN! 0, otherwise
dloss _ {—z(/;’—fn’), if (V=105 =1 =S5 +0m) 20
l B .
Uy Y(VL,VEVE)eN! 0, otherwise
dLoss Z(ﬁ—ﬁ>,if(|[]ﬁ—ﬁ|l%—|ﬂ—fyf||%+5m)zo
I > . ©)
U 0, otherwise

Y(VLVEVK)eN!
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For between layers learning we would have :

dLoss _ 3 2(f8 —£5) i (I =S5 = 11fs = £5 115 + Sber) = O -
l B .
s V(VL VK VEeM 0, otherwise
M: Z _2(fal_f;f)’if(ll][al_f;(||%_|[f;ll_fj||%+5bet)Z() ®)
8f; 0, otherwise

V(VLVEVReM

OLoss v 20fa 1), o (Ve =S5 = Wa =13+ 8par) 20 g

af,f - 0, Otherwise

Y(VLVkVvKyem
In Algorithm 1 we summarize our approach.
Algorithm 1: MUNEM Algorithm

Data: Multiplex network which is composed of network layers {g!, g2, ..., g"},
embedding dimension d, learning rate n, margin parameters for in-layer

embedding 8;,, margin parameters for between layers embedding .,
Result: Low-dimensional representations for different nodes on each layer fil
initialization: Initialize weights of nodes uniformly distributed
[0.5 cm] For each layer [ we make the set N’ of in-layer triplets
Make the set M consists of between layer triplets
Create a set O from merging two sets of samples N’ and M

while not converged do
calculate loss by Eq 3

select randomly a triplet from the set O as (Vé, VI’,( , V,’f )

if k==[then
do

fl=fl-n
fo=tf—n

dLoss

oy
dLoss

oy
dLoss

of,

fl=ft—n

else
do

fl=ft-n
fR=fF—n
fi=f=n

end

dLoss

oy
dLoss

A
dLoss

oy

end

return fl-l

Parameter boundaries

It is essential to note that in order to constrains the representations to be on a hyper-
sphere, L2 normalization is applied on the learning representations. This guarantees that
representation embedded in a Euclidean space and therefore an angular distance metric is
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applicable to the learned space (Liu et al. 2017b). The L2 normalization also restrict that
the range of the effective margin parameter §;, to be in the interval of [0,4]:

A p A N

e — —— 3 =l — —— |13 (10)
HAIL 1P 1AL N2
P A A-N N
=13 —-2 ol |y | e i [ ) — =113 (11)
HAINY THANPL IR AN T AN CINT
1o AP g AN (12)
IIAIIIIP]| IIAIIIN]|
A-N A-P
=2 — (13)
HAIIINTL AP
and since the value of the cosine similarity of two vectors ranges between -1 and 1 we
would have:
A A N
“4<(l— - I -l - ——I13) <4 (14)
Al 112l Al [N

therefore, in order to keep the value of the equation positive, the margin value only needs
to be chosen as a value in the range of [0,4].

Experiments
To evaluate the effectiveness of our method, we examine it on both real-world and
computer-generated multiplex networks.

Datasets

Real-world networks

We select four real-world networks from various domains with sizes ranging from less
than hundred to hundreds of thousands nodes. In these networks, each node has at least
one link on one layer. In other words, if there is a node that is isolated on all layers,
we exclude it from the network. Here are the description of the networks we use in our
experiments:

Celegans: This multiplex network consists of different synaptic junctions of genetic
interactions (Chen et al. 2006).

Genetic: This is the multiplex genetic and protein interactions network of the Saccha-
romyces Pombe. In this network, multiple types of genetic interactions for organisms are
included and represented as a separate layer. For more technical explanation on each type
of interaction we refer you to (De Domenico et al. 2015; Stark et al. 2006).

ArXiv: It’s a multiplex network consists of layers corresponding to different ArXiv
categories. In this network, each node is a researcher and links represent the collabo-
ration between researchers. To restrict the analysis to a well-defined topic of research,
this dataset contains papers with “networks" in the title or abstract up to May 2014 (De
Domenico et al. 2015).

Climate: It consists of different types of social relationships among Twitter users during
a large-scale activist event to advocate global action against climate change which held in
New York in 2014. The layers of this network are corresponding to retweet, mentions and
replies between users (Omodei et al. 2015). Table 1.

Page 9 of 16
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Table 1 The properties of real-world networks used in our experiments

Dataset Number of nodes Number of edges Number of layers
Celegans 279 5863 3

Genetic 4,092 63,677 7

ArXiv 14,488 59,026 13

Climate 102,439 348,973 3

Synthetic networks
In spite of real-world datasets, we examine the effectiveness of our method, by comparing
its performance with the baselines on artificially generated multiplex networks. This is
due the fact that by changing parameter values we would be able generate a wide range
networks with different levels of modularity. Modularity is one of the most important
characteristics of a complex network that measures how well subset of nodes are densely
interconnected to each others and loosely connected to other subset of nodes. Real-world
networks have different levels of modularity (Leskovec et al. 2009) and hence to represent
a wide range of real-world examples we generate multiplex networks with different levels
of modularity. First, we need to generate multiple layers of networks that each of which
has characteristics of a scale-free networks. To do so, we generate a single network of LFR
benchmark(Lancichinetti et al. 2008). A network is generated by specifying exponents
of power-law distributions for both edge degree and community sizes and the mixing
parameter u ranges between 0 to 1 which set the average fraction of neighbors of a node
that belongs to different communities that the node belongs to. A synthetic multiplex
network with L layers would be made by making L — 1 copies of the generated network.
Then, for each layer network layers, we do the edge sampling by keeping each link with
the probability of 1/L.

We test the effectiveness of our method on different set of synthetic networks with 4
layers and default value suggested in the benchmark except the mixing parameters p. We
change the mixing parameter to produce networks with different structure.

Baseline methods
In our experiments, we compare our approach with the following methods:

Aggregated Deepwalk: The original DeepWalk employs a random walker to generate
sample of nodes by traversing on the network. The generated sequence of visited nodes
are treated as a sentence to use Skip-gram to learn the node embeddings. Since Deepwalk
is an embedding method that works only on a single layer network, we apply Deepwalk
on each layer independently, and then, for each node, we concatenate the embeddings of
that node learned on each layer.

Aggregated Node2Vec: It takes the same steps of Deepwalk with this difference that
two parameters are introduced to control the random walker movement. By specifying
different values for these parameters, we encourage the random walker to stay in the
neighborhood of currently visited node or traverse to farther nodes. Similar to the Aggre-
gate Deepwalk, the learned embeddings of each layer will be concatenated, so each node
would have one representation composed of independent representation of that node on
different layers.

Principled Multilayer Network Embedding: Similar to DeepWalk and Node2Vec this
method use random walk to generate a sequence of nodes. However, in this approach,
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the random walker could jump between layers. We report the accuracy their method
introduced in Liu et al. (2017a).

In addition to the aforementioned embedding methods, we will test our approach with
the state-of-the-art network structure-based link prediction algorithms.

Jaccard Coefficient: For a pair of nodes, it measures the normalized number of
common neighbors of two nodes by the number of their total neighbors.

Adamic Adar: This metric emphasizes on common neighbors with low degree by
giving more weight to them.

In these link prediction algorithms, the high value of Jaccard coefficient or Adamic Adar
index between a pair of nodes are interpreted as high probability of existence of a link
connecting those nodes.

Evaluation metrics

Given a multiplex network, we report the accuracy of the link prediction task for one
layer at a time. For a layer /, we split its links into training and test sets. After exclud-
ing positive test edges from that layer, the multiplex network is given to each method.
The ratio of links chosen for the test set ranges from 10% to 90% in 10% increments.
Accordingly, the higher ratio of edges are removed from the layer, the more probable the
residual network would have higher number of connected components. For testing we
sample uniformly non-neighbor node pairs as negative testing links as the same size of
positive testing links. Both positive and negative test edges are used to evaluate the effec-
tiveness of each method in predicting existence of a link between the pair of node on the
layer /.

For embedding algorithms, after we learned the representations of nodes, we measure
the cosine similarities of the node representations of layer /. The higher the cosine value,
the more likely a link is connecting those nodes. After repeating this process for all layers,
the average Area Under the Curve (AUC) as a standard metric for evaluating link predic-
tion tasks, is reported. For the sake of a fair comparison, we use the same set of positive
and negative links for our method and all other baselines.

Experimental settings

Model parameters

We followed default variables suggest in the original papers for methods needed param-
eter settings. For all the embedding based methods, we set their embedding dimensions
and the dimension of our embedding to be 32. For Node2Vec, we empirically use p = 2
and q = 0.5. For MUNEM, we keep the same embedding length mentioned above. For two
parameters 8y and §;, we set values 1.5 and 1 for all experiments.

Result

Based on the experiment results, from the Fig. 3 we can observe that aggregated Deep-
Walk and aggregated Node2Vec perform poorly in compare to MUNEM and even PMNE.
These methods, that are originally used on single networks, can not fuse knowledge
between layers and consequently end up in loosing valuable information. This indi-
cates that by learning each layers independently even with the state-of-the-art learning
algorithms we may not learn the possibly complement information embedded through
layers.
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Fig. 3 Performance of the proposed model on different real-world networks

On the other hand, PMNE, which is roughly an extension to Node2Vec outperforms
aggregated Node2vec, Adamic Ada and Jaccard link prediction methods, most of the
time due the fact that the random walker they use in their method could be trans-
ported between layers. However, in all cases, MUNEM outperform PMNE by a significant
margin, especially in the larger networks.

Another observation is that the more links we remove from a layer, the less link pre-
diction algorithms, i.e. Adamic Adar and Jaccard are successful. This happens because of
intrinsic approach of these methods that only consider the local information of nodes.
Without any knowledge from global structure of the networks, they are highly vulnera-
ble to missing links. In contrast, MUNEM by fusing information from different layers,
compensate the missing information of a layer by incorporating embedding vectors of
counterpart nodes of the other layers of the network.

To provide a stronger evidence for the effectiveness of our method, we generate syn-
thetic network described in “Synthetic networks” section. These networks resemble the
very main characteristics of real-world networks. In our experiment, we vary the mix-
ing parameters to produce multiplex networks with different structure. The mixing
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parameter p ranges between O to 1 which define the average ratio of neighbors of a node
that belongs to different communities that the node belongs to.

Again, as it can be seen in Fig.4, we observe the effectiveness of MUNEM against its
competitors. It is worth mentioning that even with mixing parameter of 0.6, MUNEM
could achieve a remarkable performance.

Allin all, we test our models to state-of-the-art methods with different approaches. We
observed that MUNEM outperforms the baselines in both real-world networks as well as
synthetic networks. We believe that the process of pairing layers to fuse knowledge across
them is the key element that helps this effectiveness.

Parameter sensitivity
We already provided the boundaries of both parameter §;, and 8¢ in our model. Here
in Fig.5, we report the AUC values we get when we use different values for these two
parameters on Celegans network.

It can be seen that the sensitivity of the model to 8y, is higher to §;,. This observation,

again, indicates the important role of fusing knowledge of layers in a multiplex network.
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Fig. 4 Performance of the proposed model on different synthetic networks
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Fig. 5 The AUC values of the proposed model with different 8pe; and 8, value on Celegans network

Through our experiment we figured it out that the range of 1 to 2 is a safe choice for both

parameters.

Conclusion and future work

In this work, we propose MUNEM, a novel approach for learning a low-dimensional rep-
resentation of a multiplex network using a triplet loss objective function. In our approach,
we preserve the global structure of each layer, while at the same time fusing knowl-
edge among different layers during the learning process. We evaluate the effectiveness
of our proposed method by testing and comparing on both real-world and synthetic
network. For the next step, we plan to design an embedding algorithm to find low-
dimensional representations of dynamic networks. With some similarities with multiplex
network, temporal network is more challenging network in both case of representation

and learning.
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